Next: About this document
Up: Practical implementation of nonlinear
Previous: Acknowledgments
References
- 1
-
The TISEAN software package is publicly available at http://www.mpipks-dresden.mpg.de/~tisean.
The distribution includes an online documentation system.
- 2
-
H. Kantz and T. Schreiber,
``Nonlinear Time Series Analysis''.
Cambridge University Press, Cambridge (1997).
- 3
-
T. Schreiber,
Interdisciplinary application of nonlinear time series methods,
Phys. Reports 308, 1 (1999).
- 4
-
D. Kaplan and L. Glass,
``Understanding Nonlinear Dynamics'',
Springer, New York (1995).
- 5
-
E. Ott,
``Chaos in Dynamical Systems'',
Cambridge University Press, Cambridge (1993).
- 6
-
P. Bergé, Y. Pomeau, and C. Vidal,
``Order Within Chaos: Towards a deterministic approach to turbulence'',
Wiley, New York (1986).
- 7
-
H.-G. Schuster,
``Deterministic Chaos: An introduction''.
Physik Verlag, Weinheim (1988).
- 8
-
A. Katok and B. Hasselblatt
``Introduction to the Modern Theory of Dynamical Systems'',
Cambridge University Press, Cambridge (1996).
- 9
-
E. Ott, T. Sauer, and J. A. Yorke,
``Coping with Chaos'',
Wiley, New York (1994).
- 10
-
H. D. I. Abarbanel,
``Analysis of Observed Chaotic Data'',
Springer, New York (1996).
- 11
-
P. Grassberger, T. Schreiber, and C. Schaffrath,
Non-linear time sequence analysis,
Int. J. Bifurcation and Chaos 1, 521 (1991).
- 12
-
H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. Sh. Tsimring,
The analysis of observed chaotic data in physical systems,
Rev. Mod. Phys. 65, 1331 (1993).
- 13
-
D. Kugiumtzis, B. Lillekjendlie, n. Christophersen,
Chaotic time series I,
Modeling, Identification and Control 15, 205 (1994).
- 14
-
D. Kugiumtzis, B. Lillekjendlie, n. Christophersen,
Chaotic time series II,
Modeling, Identification and Control 15, 225 (1994).
- 15
-
G. Mayer-Kress, ed.,
``Dimensions and Entropies in Chaotic Systems'',
Springer, Berlin (1986).
- 16
-
M. Casdagli and S. Eubank, eds.,
``Nonlinear Modeling and Forecasting'',
Santa Fe Institute Studies in the Science of Complexity, Proc. Vol. XII,
Addison-Wesley, Reading, MA (1992).
- 17
-
A. S. Weigend and N. A. Gershenfeld, eds.,
``Time Series Prediction: Forecasting the future and understanding the
past'',
Santa Fe Institute Studies in the Science of Complexity, Proc. Vol. XV,
Addison-Wesley, Reading, MA (1993).
- 18
-
J. Bélair, L. Glass, U. an der Heiden, and J. Milton, eds.,
``Dynamical Disease'',
AIP Press (1995).
- 19
-
H. Kantz, J. Kurths, and G. Mayer-Kress, eds.,
``Nonlinear analysis of physiological data'',
Springer, Berlin (1998).
- 20
-
T. Schreiber,
Efficient neighbor searching in nonlinear time series analysis,
Int. J. Bifurcation and Chaos 5, 349 (1995).
- 21
-
F. Takens,
``Detecting Strange Attractors in Turbulence'',
Lecture Notes in Math. Vol. 898, Springer, New York (1981).
- 22
-
T. Sauer, J. Yorke, and M. Casdagli,
Embedology,
J. Stat. Phys. 65, 579 (1991).
- 23
-
M. Richter and T. Schreiber,
Phase space embedding of electrocardiograms,
Phys. Rev. E 58, 6392 (1998)
- 24
-
M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson,
State space reconstruction in the presence of noise,
Physica D 51, 52 (1991).
- 25
-
A. M. Fraser and H. L. Swinney,
Independent coordinates for strange attractors from mutual
information,
Phys. Rev. A 33, 1134 (1986).
- 26
-
B. Pompe,
Measuring statistical dependences in a time series,
J. Stat. Phys. 73, 587 (1993).
- 27
-
M. Paluš,
Testing for nonlinearity using redundancies: Quantitative and
qualitative aspects,
Physica D 80, 186 (1995).
- 28
-
M. B. Kennel, R. Brown, and H. D. I. Abarbanel,
Determining embedding dimension for phase-space reconstruction using a
geometrical construction,
Phys. Rev. A 45, 3403 (1992).
- 29
-
http://hpux.cs.utah.edu/hppd/hpux/Physics/embedding-26.May.93
- 30
-
http://www.zweb.com/apnonlin/
- 31
-
I. T. Jolliffe,
``Principal component analysis'',
Springer, New York (1986).
- 32
-
D. Broomhead and G. P. King,
Extracting qualitative dynamics from experimental data,
Physica D 20, 217 (1986).
- 33
-
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
``Numerical Recipes'', 2nd edn.,
Cambridge University Press, Cambridge (1992).
- 34
- R. Vautard, P. Yiou, and M. Ghil,
Singular-spectrum analysis: a toolkit for short, noisy chaotic
signals,
Physica D 58, 95 (1992).
- 35
-
A. Varone, A. Politi, and M. Ciofini,
CO laser with feedback,
Phys. Rev. A 52, 3176 (1995).
- 36
-
R. Hegger and H. Kantz,
Embedding of sequences of time intervals,
Europhys. Lett. 38, 267 (1997).
- 37
-
J. P. Eckmann, S. Oliffson Kamphorst, and D. Ruelle,
Recurrence plots of dynamical systems,
Europhys. Lett. 4, 973 (1987).
- 38
-
M. Casdagli,
Recurrence plots revisited,
Physica D 108, 206 (1997).
- 39
-
N. B. Tufillaro, P. Wyckoff, R. Brown, T. Schreiber, and T. Molteno,
Topological time series analysis of a string experiment and its
synchronized model,
Phys. Rev. E 51, 164 (1995).
- 40
-
http://homepages.luc.edu/~cwebber
- 41
-
A. Provenzale, L. A. Smith, R. Vio, and G. Murante,
Distinguishing between low-dimensional dynamics and randomness in
measured time series,
Physica D 58, 31 (1992).
- 42
-
H. Tong,
``Threshold Models in Non-Linear Time Series Analysis'',
Lecture Notes in Statistics Vol. 21, Springer, New York (1983).
- 43
-
A. Pikovsky,
Discrete-time dynamic noise filtering,
Sov. J. Commun. Technol. Electron. 31, 81 (1986).
- 44
-
G. Sugihara and R. May,
Nonlinear forecasting as a way of distinguishing chaos
from measurement errors in time series,
Nature 344, 734 (1990); Reprinted in [9].
- 45
-
J.-P. Eckmann, S. Oliffson Kamphorst, D. Ruelle, and S. Ciliberto,
Lyapunov exponents from a time series,
Phys. Rev. A 34, 4971 (1986); Reprinted in [9].
- 46
-
J. D. Farmer and J. Sidorowich,
Predicting chaotic time series,
Phys. Rev. Lett. 59, 845 (1987); Reprinted in [9].
- 47
-
D. Auerbach, P. Cvitanović, J.-P. Eckmann, G. Gunaratne, and I. Procaccia,
Exploring chaotic motion through periodic orbits,
Phys. Rev. Lett. 58, 2387 (1987).
- 48
-
O. Biham and W. Wenzel,
Characterization of unstable periodic orbits in chaotic attractors and
repellers,
Phys. Rev. Lett. 63, 819 (1989).
- 49
-
P. So, E. Ott, S. J. Schiff, D. T. Kaplan, T. Sauer, and C. Grebogi,
Detecting unstable periodic orbits in chaotic experimental data,
Phys. Rev. Lett. 76, 4705 (1996).
- 50
-
P. Schmelcher, and F. K. Diakonos,
A general approach to the finding of unstable periodic orbits in
chaotic dynamical systems,
Physical Review E 57, 2739 (1998).
- 51
-
D. Kugiumtzis, O. C. Lingjærde, and N. Christophersen,
Regularized local linear prediction of chaotic time series,
Physica D 112 (1998) 344.
- 52
-
L. Jaeger and H. Kantz,
Unbiased reconstruction of the dynamics underlying a noisy chaotic time
series,
CHAOS 6 (1996) 440.
- 53
-
M. Casdagli,
Chaos and deterministic versus stochastic nonlinear modeling,
J. Roy. Stat. Soc. 54, 303 (1991).
- 54
- D. Broomhead and D. Lowe,
Multivariable functional interpolation and adaptive networks,
Complex Syst. 2, 321 (1988).
- 55
-
L. A. Smith,
Identification and prediction of low dimensional dynamics,
Physica D 58, 50 (1992).
- 56
-
M. Casdagli,
Nonlinear prediction of chaotic time series,
Physica D 35, 335 (1989); Reprinted in [9].
- 57
-
E. J. Kostelich and T. Schreiber,
Noise reduction in chaotic time series data: A survey of common
methods,
Phys. Rev. E 48, 1752 (1993).
- 58
-
M. E. Davies,
Noise reduction schemes for chaotic time series,
Physica D 79, 174 (1994).
- 59
-
T. Schreiber,
Extremely Simple Nonlinear Noise Reduction Method,
Phys. Rev. E 47, 2401 (1993).
- 60
-
D. R. Rigney, A. L. Goldberger, W. Ocasio, Y. Ichimaru, G. B. Moody, and
R. Mark,
Multi-channel physiological data: Description and analysis (Data set
B),
in [17].
- 61
-
P. Grassberger, R. Hegger, H. Kantz, C. Schaffrath, and
T. Schreiber,
On noise reduction methods for chaotic data,
CHAOS 3, 127 (1993); Reprinted in [9].
- 62
-
H. Kantz, T. Schreiber, I. Hoffmann, T. Buzug, G. Pfister, L. G. Flepp,
J. Simonet, R. Badii, and E. Brun,
Nonlinear noise reduction: a case study on experimental data,
Phys. Rev. E 48, 1529 (1993).
- 63
-
M. Finardi, L. Flepp, J. Parisi, R. Holzner, R. Badii, and E. Brun,
Topological and metric analysis of heteroclinic crises in laser chaos,
Phys. Rev. Lett. 68, 2989 (1992).
- 64
-
A. I. Mees and K. Judd,
Dangers of geometric filtering,
Physica D 68 427 (1993).
- 65
-
T. Schreiber and M. Richter,
Nonlinear projective
filtering in a data stream, to appear in Int. J. Bifurcat. Chaos
(1999).
- 66
-
M. Richter, T. Schreiber, and D. T. Kaplan,
Fetal ECG extraction with nonlinear phase space projections,
IEEE Trans. Bio-Med. Eng. 45, 133 (1998).
- 67
-
J.-P. Eckmann and D. Ruelle,
Ergodic theory of chaos and strange attractors,
Rev. Mod. Phys. 57, 617 (1985).
- 68
-
R. Stoop and J. Parisi,
Calculation of Lyapunov exponents avoiding spurious elements,
Physica D 50, 89 (1991).
- 69
- H. Kantz,
A robust method to estimate the maximal Lyapunov exponent of a time
series,
Phys. Lett. A 185, 77 (1994).
- 70
-
M. T. Rosenstein, J. J. Collins, C. J. De Luca,
A practical method for calculating largest Lyapunov exponents from
small data sets,
Physica D 65, 117 (1993).
- 71
-
M. Sano and Y. Sawada,
Measurement of the Lyapunov spectrum from a chaotic time series,
Phys. Rev. Lett. 55, 1082 (1985).
- 72
- J. Kaplan and J. Yorke
Chaotic behavior of multidimensional difference equations
In Peitgen, H. O. & Walther, H. O., editors,
``Functional Differential Equations and Approximation of Fixed Points''
Springer, New York (1987).
- 73
-
P. Grassberger and I. Procaccia,
Physica D 9, 189 (1983).
- 74
-
T. Sauer and J. Yorke,
How many delay coordinates do you need?,
Int. J. Bifurcation and Chaos 3, 737 (1993).
- 75
-
J. Theiler,
J. Opt. Soc. Amer. A 7, 1055 (1990).
- 76
-
H. Kantz and T. Schreiber,
Dimension estimates and physiological data,
CHAOS 5, 143 (1995); Reprinted in [18].
- 77
-
P. Grassberger,
Finite sample corrections to entropy and dimension estimates,
Phys. Lett. A 128, 369 (1988).
- 78
-
F. Takens,
in: B. L. J. Braaksma, H. W. Broer, and F. Takens, eds.,
``Dynamical Systems and Bifurcations'',
Lecture Notes in Math. Vol. 1125, Springer, Heidelberg (1985).
- 79
-
J. Theiler,
Lacunarity in a best estimator of fractal dimension,
Phys. Lett. A 135, 195 (1988).
- 80
-
J. M. Ghez and S. Vaienti,
Integrated wavelets on fractal sets I: The correlation dimension,
Nonlinearity 5, 777 (1992).
- 81
-
R. Badii and A. Politi
Statistical description of chaotic attractors,
J. Stat. Phys. 40, 725 (1985).
- 82
-
J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer,
Testing for nonlinearity in time series: The method of surrogate data,
Physica D 58, 77 (1992); Reprinted in [9].
- 83
-
T. Schreiber and A. Schmitz,
Improved surrogate data for nonlinearity tests,
Phys. Rev. Lett. 77, 635 (1996).
- 84
-
J. Theiler, P. S. Linsay, and D. M. Rubin,
Detecting nonlinearity in data with long coherence times,
in [17].
- 85
-
T. Schreiber,
Constrained randomization of time series data,
Phys. Rev. Lett. 80 (1998) 2105.
- 86
-
T. Subba Rao and M. M. Gabr,
``An Introduction to Bispectral Analysis and Bilinear Time Series Models'',
Lecture Notes in Statistics Vol. 24, Springer, New York (1984).
- 87
- C. Diks, J. C. van Houwelingen, F. Takens, and J. DeGoede,
Reversibility as a criterion for discriminating time series,
Phys. Lett. A 201, 221 (1995).
- 88
-
T. Schreiber and A. Schmitz,
Discrimination power of measures for nonlinearity in a time series,
Phys. Rev. E 55, 5443 (1997).
- 89
-
J. Kadtke,
Classification of highly noisy signals using global dynamical models,
Phys. Lett. A 203, 196 (1995).
- 90
-
R. Manuca and R. Savit,
Stationarity and nonstationarity in time series analysis,
Physica D 99, 134 (1996).
- 91
-
M. C. Casdagli, L. D. Iasemidis, R. S. Savit, R. L. Gilmore, S. Roper, and
J. C. Sackellares,
Non-linearity in invasive EEG recordings from patients with temporal
lobe epilepsy,
Electroencephalogr. Clin. Neurophysiol. 102, 98 (1997).
- 92
-
T. Schreiber,
Detecting and analysing nonstationarity in a time series using
nonlinear cross predictions,
Phys. Rev. Lett. 78, 843 (1997).
- 93
-
R. Cawley and G. H. Hsu,
Local-geometric-projection method for noise reduction in chaotic maps
and flows,
Phys. Rev. A. 46, 3057 (1992).
- 94
-
H. Kantz,
Quantifying the closeness of fractal measures,
Phys. Rev. E 49, 5091 (1994).
- 95
-
T. Sauer,
A noise reduction method for signals from nonlinear
systems,
Physica D 58, 193 (1992).
- 96
-
E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani,
Predictability in the large: an extension of the concept of
Lyapunov exponent,
J. Phys. A 30, 1 (1997).
- 97
-
T. Schreiber and A. Schmitz,
Classification of time series data with nonlinear similarity
measures,
Phys. Rev. Lett. 79, 1475 (1997).
Next: About this document
Up: Practical implementation of nonlinear
Previous: Acknowledgments
Thomas Schreiber
Wed Jan 6 15:38:27 CET 1999