Plan of Lectures

4. How to apply general theory of complex dynamics to tunneling problems




Some important properties derived from the convergent theorem

Theorem (Bedford-Smillie)

1. For any unstable periodic orbitp, Ws(p) = J©, WH(p) = J~

2. u satisfies the mixing property and is hyperbolic measure,
where suppu = J°

3. {Unstable periodic points } = J*




Fundamental working hypothesis

1. Vacant interior conjecture (J* = K* and | = K)

2. =]

Note : J* C | for generic cases and J* = | for hyperbolic cases.




“Dynamics” connecting KAM curves

- { KAM curves (either real or complex) } € K (=Filled Julia set)
- K=] =] (& working hypothesis)

“KAM curves are subsets of the Julia set J*”

- uis mixing and ergodic (suppu = J)

“KAM curves are no more dynamical barriers in C*”




How to apply general theory to tunneling problems ?

Quantum propagator

K(a,b)=(b|lf1"|a)=f f dg; | | dp;ex [15({ 1A '})]
N _ool:[q]]:[ py exp| =Stay) ip;

|a) : initial state |b) : final state

Semiclassical propagator ( <= saddle point evaluation of K(a, b) )

K*(a,b) = )" A (a,b) exp{%sfj’(a, b)}
Y

A, ={(p,q) € C*| Alp, g) = a }: initial manifold
By, ={(p,q) € C*| B(p,q) = b }: final manifold




Step 1: Incorporate the boundary conditions

A set of classical orbits contributing to K*¢(a, b)

M’ ={(p,q) € C*| Alp,, q,) = a and B(p,,q,) = b}
where (p,, q,) = P"(p, q).

Instead of MZ’b we consider the sequence of hyperplanes
M ={(p,q € C*| Bp,,q,) =b}

We further introduce “limit” of M;’b (in the Hausdorff topology) as

M? = lim Mn*’b and M, = U M
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Step 2 : Define the “tunneling orbits”

Semiclassical sum

K<(a,b) = Y A7, b) exp{%SLy)(a, b)}
Y

The behavior of Im S;y) as 11 = oo

Im SLY) — +oo : negligible amplitude

Im SS’) — —oo : unphysical explosion
= should be removed by the Stokes phenomenon

Therefore, it is reasonable to define the tunneling orbits as

Clraputa = {Eq, p) € Mo; I[Im S.(gq, p) converges absolutely at (g, pﬂ}

boundary conditions necessary condition for tunneling orbits




Tunneling orbits and Julia sets

Theorem For the Hénon map P,

B () If Pis hyperbolic and hy,,(Plg:) = log?2, then Cropua = J*

B (i) If Pis hyperbolic and hiep(Plr2) > 0, then Cropua = J*

(111) If htop(PllRZ) > O, then ]+ C CLaputa C K*

Here hy,(Plr2) is topological entropy confined on R?.

hyperbolic horseshoe
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First tangency




Remark 1

J© C Ciaputa € K7 in the genetic case (i), therefore if the vacant interior

conjecture (i.e. J[* = K*, | = K) is true, then

CLaputa — ] *

holds even in the generic case (iii).

Remark 2

Note that Ci.,ua = J* holdsin hyperbolic (or generic) cases, whereas Ciaputa =

J* in the horseshoe situation. There indeed exist exponentially many orbits

contained in J*\Cy,puta in hyperbolic (or generic) cases. They itinerates in the

complex space and do not have convergent imaginary action.




A completely integrable model

r. p’ _ p+ Ksing
7 q+w

MZ’b =A,NF™B,) =0 for Vn € Z
if B, is outside the classically allowed region.

where
A, ={lp,9 eR*|p =p,}
B, ={(p,9 e R*|p =py}
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Tunneling transport on complexified KAM cuvres

ch(par Pb) — ZA,(:/)(PW pb) exp[%SLY)(par pb)] 0
Y

even if L;”b = F"(A,) N B, = 0 on R?

Lz’b = F*(A,(complexified)) N B,(complexified)
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What if we take KAM curves as initial and final states ?

The transition from one invariant curve to another invariant curve

A, ={lp,q9 eR*|I(p,9 =1,} By={(p,q9 e R*|1(p,q) =1}

T

[RARRANA

P

No contributions in the semiclassical propagator :

K>, Iy) = ZA,(Z/)(IW Iy) exp{%SLy)(Ia, Ib)} =0
y

since I(p, q) is invariant in the whole C? plane.




Initial and final state dependency

KSC(Pa, Pb) # 0 KSC(Ia/ Ib) =0

LZ’b = F"(A,(complexified)) N B,(complexified)
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By,(complexified)
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F*(A,(complexified))
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Tunneling in the integrable model is not driven by the (complex) dynamics

What about in the non-integrable system?




Analyticity of complexified KAM curves

The rotation on the KAM curve C, is expressed as a constant rotation

in a sutable coordinate O:

o:0pP 0+ 2w (mod 27)

In order to have such a coordinate 0, the conjugation function ¢ satisfying

F:C, — C, nonintegrable

@ d i @ natural boundary?

- Tl 1 analytic continuation of
o: T r an invariant curve

has to be analytic with respect to 0.

For given w, assume

PO, w) = ) a,(w)e™

n

KAM curve can be complexified up to where ?

= Natural boundary (P_ercival, Gréene, Berretti, Marmi, Gentile - - -)




Natural boundary for an analytic map (standard map)

Natural boundary for Standard map
(V(g) = Ksing)




The natural boundary and the Julia set in 1-dimensional maps

Theorem (Milnor, Costin-Krustal, ... )

The domain of analyticity of y(z) is Kp, and Jp = JKp is a singularity barrier
(= natural boundary) of Y (z).

Theorem (Costin-Krustal, ... )

The domain of analyticity of the Bottcher function ¢(z) is Kp and Jp = JKp
is a singularity barrier (= natural boundary) of ¢(z).

Natural boundaries of i or ¢ = the Julia set




The natural boundary and the Julia set in 2-dimensional maps

“Vacant interior conjecture”

The filled Julia sets of the area-preserving map have no interior points :
J* =K* hence | =K

If the vacant interior conjecture is true, then

{ KAM curves (either real or complex) } C the Julia set |

Therefore, we may expect that

Natural boundaries of @ C the Julia set

natural boundary
\ analytic continuation of

an invariant curve




The most dominant complex orbits for the tunneling transport

The general theory tells us that

1. KAM curves are no more dynamical barriers in C*

2. The orbits with convergent imaginary action are dense in the Julia set J*

“Which are the most dominant complex orbits controlling

the tunneling transition from 7 to C ?”




Going out from 7 to C directly : the most dominant paths ?

Direct paths are optimal since they gain no imaginary action Im S,

“KAM curves are no more dynamical barriers in C*”

implies that for arbitrary neighborhoods U(z;) and U(z;) of any two points
z1 and z, in {KAM curves (either real or complex)}, there exists n such that
U(zq) N P"(U(zy)) # 0.




This is not the case since KAM curves are extended to the complex plane.

Recall the dimension counting of the complexified KAM curves

“The (Hausdorff) dimension of rotational domains associated with the con-

vergent conjugating function @ (0, w) = a,(w)e"’is 3 + a).”




An orbit itinerating among different complex KAM curves
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The most dominant tunneling orbits

Semiclassical propagator

K, b) = Y AT (3, b) exp %sff’(a, b)
)4

— How to save ImSLy)(a, b) —

1. Start at the edge of complexfied KAM curves.
minimize the initial imaginary depth

2. Go down to the real plane as fast as possible.
minimize the imaginary action gained in the itinerary




1. The existence of optimal orbits

There exist orbits which start at the natural boundary of KAM curve
and tend to the real plane

(Proof)

1. Since {natural boundaries} C J* (hypothesis) and

{unstable periodic orbits} = J* (Bedford-Smillie),

there exists an unstable periodic orbit P € the natural boundary
of a given KAM curve.

. For any neighborhood U(P), there exist an unstable periodic orbit
P’ € R* such that U(P) N W*(P’) # 0.

This is due to Ws(P) = J* (Bedford-Smillie).




2. Optimal orbits are exponentially many

There exist exponentially many optimal orbits with comparable
imaginary action.

(Proof)

1. Take an optimal path y, which starts at the natural boundary of

a KAM curve and tends to an unstable periodic orbit on the real
plane.

2. Since y € J* (hypothesis) and W*(P) = J* (Bedford-Smille),

exponentially many y’ ~ y exist.




3. After landing the real plane

Optimal orbits follow almost real dynamics after reaching the real plane.

(Proof)

Use the fact that the orbit staring in the neighborhood of P visit the
neighborhood of any other unstable periodic orbits P; (i = 1,2,---).

In order to prove this, we use some theorems (Bedford-Lyubich-Smillie,
Katok) and, Lambda Lemma.




The most dominant tunneling orbits

1. Godown from the torus 7 to chaotic C regions along the stable manifolds

2. Attracted by real chaos C (unstable periodic orbits on IR*) exponentially

3. Move as if they are real orbits after reaching C
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The variety of the optimal orbits

Each optimal orbit is accompanied by a family of optimal orbits with com-
parable imaginary action.

‘Hard” question : A single family or (infinitely) many families ?
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Some examples validating the scenario

Hénon map Piecewise linear map
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Piecewise linear map

F,: T? > T?

ry_(pr-V@®
qg ) \q+T (@)

where T” is a 2-dimensional torus with coordinates (p, g) mod 1, and

1
—og — > (-3 <g<0)
Vi(g) =

1
tagq = 2 (0<g<+3)

T'(p)=p




‘Smoothing’ of F,

Fa,’g : R? » R?

[(Pr—-V()
S\ g+ T @)

V'(g) = i [v_(q){eﬁ(q —n) = O5(q —n - %)} + Vo {0plg —n + %) ~ 0(q — n)}]

n=—o00

T (p) = i p{eﬁ(p -n - %) — Og(p —n + %)}

n=—00

where

0(x) = %[1 + tanh(fx)|

1 1
V—(q) — _“P - EI V+(6]) — +C\fp —_ E




‘Complexification’ of F, g

p = o

For:CHC = FuT"xCH T>*xC

p—Vi(

'(61+T’<P’>)

1
—aq =7 (-3 <Reg<0)

1
tag - 2 (0 <Reg < +3)




linear map
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Questions we asked were

+ essential differences between one- and multi-dimensions ?

+ dynamically disconnected regions are connected, why and how ?

+ evaluate or even define the tunneling probability in multi-dimensional

systems, is it possible ?




