
Plan of Lectures

1. Time domain semiclassical approach to dynamical tunneling

2. Complex dynamics in one variable

3. Complex dynamics in two variables

4. How to apply general theory of complex dynamics to tunneling problems



Some important properties derived from the convergent theorem

Theorem (Bedford-Smillie)

1. For any unstable periodic orbit p, Ws(p) = J+, Wu(p) = J−

2. µ satisfies the mixing property and is hyperbolic measure,
where suppµ = J∗

3. {Unstable periodic points } = J∗

Note : The measure µ is said to be hyperbolic measure, if characteristic
exponents satisfy λ1 > 0 > λ2.



Fundamental working hypothesis

1. Vacant interior conjecture (J± = K± and J = K)

2. J∗ = J

Note : J∗ ⊂ J for generic cases and J∗ = J for hyperbolic cases.



“Dynamics” connecting KAM curves

- {KAM curves (either real or complex) } ⊂ K (=Filled Julia set)

- K = J = J∗ (⇐ working hypothesis)

“KAM curves are subsets of the Julia set J∗”

- µ is mixing and ergodic (suppµ = J∗)

“KAM curves are no more dynamical barriers in C2”



How to apply general theory to tunneling problems ?

Quantum propagator

K(a, b) = 〈b|Ûn|a〉 =
∫ +∞

−∞
· · ·
∫ +∞

−∞

∏

j

dqj

∏

j

dpj exp
[

i
!

S({qj}, {pj})
]

|a〉 : initial state |b〉 : final state

Semiclassical propagator (⇐ saddle point evaluation of K(a, b) )

Ksc(a, b) =
∑

γ

A(γ)
n (a, b) exp

{ i
!

S(γ)
n (a, b)

}

Aa = { (p, q) ∈ C2 | A(p, q) = a } : initial manifold

Bb = { (p, q) ∈ C2 | B(p, q) = b } : final manifold



Step 1 : Incorporate the boundary conditions

A set of classical orbits contributing to Ksc(a, b)

Ma,b
n ≡ { (p, q) ∈ C2 | A(pn, qn) = a and B(pn, qn) = b }

where (pn, qn) = Pn(p, q).

Instead ofMa,b
n we consider the sequence of hyperplanes

M ∗, b
n ≡ { (p, q) ∈ C2 | B(pn, qn) = b

}

We further introduce “limit” ofM ∗, b
n (in the Hausdorff topology) as

Mb
∞ ≡ lim

n→∞
M ∗, b

n and M∞ ≡
⋃

β∈R
Mb
∞

Then, we can prove
J+ ⊂Mb

∞ ⊂ K+ for every b ∈ R. In particular, J+ ⊂M∞ ⊂ K+.



Step 2 : Define the “tunneling orbits”

Semiclassical sum

Ksc(a, b) =
∑

γ

A(γ)
n (a, b) exp

{ i
!

S(γ)
n (a, b)

}

The behavior of Im S(γ)
n as n → ∞

Im S(γ)
n → +∞ : negligible amplitude

Im S(γ)
n → −∞ : unphysical explosion

⇒ should be removed by the Stokes phenomenon

Therefore, it is reasonable to define the tunneling orbits as

CLaputa ≡
{

(q, p) ∈M∞ | Im Sn(q, p) converges absolutely at (q, p)
}
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Tunneling orbits and Julia sets

Theorem For the Hénon map P,

(i) If P is hyperbolic and htop(P|R2) = log 2, then CLaputa = J+

(ii) If P is hyperbolic and htop(P|R2) > 0, then CLaputa = J+

(iii) If htop(P|R2) > 0, then J+ ⊂ CLaputa ⊂ K+

Here htop(P|R2) is topological entropy confined on R2.

( Proof ) Use the convergent theory of current (Bedford-Smillie)



Remark 1

J+ ⊂ CLaputa ⊂ K+ in the genetic case (i), therefore if the vacant interior

conjecture (i.e. J± = K±, J = K) is true, then

CLaputa = J+

holds even in the generic case (iii).

Remark 2

Note that CLaputa = J+ holds in hyperbolic (or generic) cases, whereasCLaputa =

J+ in the horseshoe situation. There indeed exist exponentially many orbits

contained in J+\CLaputa in hyperbolic (or generic) cases. They itinerates in the

complex space and do not have convergent imaginary action.
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| pa〉 : initial state | pb〉 : final state
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pa pb

Ma,b
n = Aa ∩ F−n(Bb) = ∅ for ∀n ∈ Z
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What if we take KAM curves as initial and final states ?

The transition from one invariant curve to another invariant curve

Aa = { (p, q) ∈ R2 | I(p, q) = Ia } Bb = { (p, q) ∈ R2 | I(p, q) = Ib }

No contributions in the semiclassical propagator :

Ksc(Ia, Ib) =
∑

γ

A(γ)
n (Ia, Ib) exp

{ i
!

S(γ)
n (Ia, Ib)

}
= 0

since I(p, q) is invariant in the whole C2 plane.
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Initial and final state dependency

Ksc(pa, pb) ! 0

Ksc(Ia, Ib) = 0

Initial and final state dependency

Ksc(pa, pb) ! 0

Ksc(Ia, Ib) = 0

Tunneling in the integrable model is not driven by the (complex) dynamics

What about in the non-integrable system?



Analyticity of complexified KAM curves

The rotation on the KAM curve Cω is expressed as a constant rotation
in a sutable coordinate θ:

σ : θ !→ θ + 2πω (mod 2π)

In order to have such a coordinate θ, the conjugation function ϕ satisfying

F : Cω !−→ Cω
ϕ ↓ ↓ ϕ
σ : T1 !−→ T1

has to be analytic with respect to θ.

For given ω, assume

ϕ(θ,ω) =
∑

n

an(ω)einθ

KAM curve can be complexified up to where ?
⇒ Natural boundary (Percival, Greene, Berretti, Marmi, Gentile)

analytic continuation of
invariant curve
natural boundary?

σ :
(

I
θ

)
!→
(

I
θ + 2πω

)

The rotation on a KAM torus with ω:

Natural boundary for an analytic map (standard map)
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A completely integrable model

F :
(

p′
q′

)
=

(
p + K sin q

q + ω

)

completely integrable

nonintegrable

analytical continuation of an invariant curve

Tunneling orbits in the non-integrable system

Natural boundary ? (Percival, Greene 1982)

Analytical continuation of invariant curves

Analyticity of complexified KAM curves

The rotation on the KAM curve Cω is expressed as a constant rotation
in a sutable coordinate θ:

σ : θ !→ θ + 2πω (mod 2π)

In order to have such a coordinate θ, the conjugation function ϕ satisfying

F : Cω !−→ Cω
ϕ ↓ ↓ ϕ
σ : T1 !−→ T1

has to be analytic with respect to θ.

Assume
ϕ(θ,ω) =

∑

n

an(ω)einθ

For sufficiently irrational ω, KAM curves can be complexified up to
where ? ⇒ Natural boundary (Percival, Greene, Berretti, Marmi, Gentile)
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The natural boundary and the Julia set in 1-dimensional maps

Theorem (Milnor, Costin-Krustal , ... )

The domain of analyticity of φ(z) is KP, and JP = ∂KP is a singularity barrier
(= natural boundary) of φ(z).
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The domain of analyticity of the Böttcher functionϕ(z) is KP and JP = ∂KP is
a singularity barrier (= natural boundary) ofϕ(z).
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analytic continuation of
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The natural boundary and the Julia set in 2-dimensional maps

“Vacant interior conjecture”
The filled Julia sets of the area-preserving map have no interior points :

J± = K± hence J = K

If the vacant interior conjecture is true, then
{KAM curves (either real or complex) } ⊂ the Julia set J

Therefore, we may expect that
Natural boundaries of ϕ ⊂ the Julia set
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The most dominant complex orbits for the tunneling transport

The general theory tells us that

1. KAM curves are no more dynamical barriers in C2

2. The orbits with convergent imaginary action are dense in the Julia set J+

Which are the most dominant complex orbits controlling
the tunneling transition from T to C ?

The most dominant complex orbits for the tunneling transport

The general theory tells us that

1. KAM curves are no more dynamical barriers in C2

2. The orbits with convergent imaginary action are dense in the Julia set J+

“Which are the most dominant complex orbits controlling
the tunneling transition from T to C ?”



Going out from T to C directly : the most dominant paths ?

Direct paths are optimal since they gain no imaginary action Im Sn

“KAM curves are no more dynamical barriers in C2”

implies that for arbitrary neighborhoods U(z1) and U(z2) of any two points
z1 and z2 in {KAM curves (either real or complex)}, there exists n such that
U(z1) ∩ Pn(U(z2)) ! ∅.



This is not the case since KAM curves are extended to the complex plane.

Recall the dimension counting of the complexified KAM curves

“The (Hausdorff) dimension of rotational domains associated with the con-
vergent conjugating function ϕ(θ,ω) =

∑

n

an(ω)einθ is (3 + α).”
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Let the initial plane I be a probe to search for the objects Iq which are to be

quantizd.

One may assume that the support of eigenstate is invariant under the dynamics.

The best possible candidates would be KAM circles, but

How fat are KAM curves in C2 ?

1. For a given ω ∈ R, θ can be complexified as θ = θ′ + iθ′′

=⇒ 2-dim

2. KAM theorem claims that the measure of ω ∈ R with ρc > 0 is positive,
but

KAM curves do not exist for rationalω, which also have positive measure:
=⇒ α-dim (0 < α< 1)

3. If there exist rotation domains with ω = ω′ + iω′′, which are not
necessarily

KAM curves
=⇒ 1-dim

In total, the (Hausdorff) dimension of rotational domains associated with the
convergent conjugating function ϕ(θ,ω) =

∑

n

an(ω)einθ is at most (3 + α).

2-dimensional slice of K+ Number of interior points of K+
— Hénon map —

n = 500 n = 1000 n = 5000 n = 100000

An orbit itinerating among different complex KAM curves



Natural boundary

The most dominant tunneling orbits

Semiclassical propagator

Ksc
n (a, b) =

∑

γ

A(γ)
n (a, b) exp

{ i
!

S(γ)
n (a, b)

}

— How to save ImS(γ)
n (a, b) —

1. Start at the edge of complexfied KAM curves.
minimize the initial imaginary depth

2. Go down to the real plane as fast as possible.
minimize the imaginary action gained in the itinerary

The orbits with minimum Im S(γ)
n (a, b)

Time of flight in the complex space should be minimum.



1. The existence of optimal orbits

There exist orbits which start at the natural boundary of KAM curve
and tend to the real plane

(Proof)

1. Since {natural boundaries} ⊂ J∗ (hypothesis) and

{unstable periodic orbits} = J∗ (Bedford-Smillie),

there exists an unstable periodic orbit P ∈ the natural boundary
of a given KAM curve.

2. For any neighborhood U(P), there exist an unstable periodic orbit
P′ ∈ R2 such that U(P) ∩Ws(P′) ! ∅.
This is due to Ws(P) = J+ (Bedford-Smillie).

3. There are exponentially many unstable periodic orbits P′ on the
real plane.

1. { (p, q) ∈ C2 | Im Sn(p, q) < ∞ (n → ∞) } ⊂ K+

2. take an unstable periodic orbit p ∈ the natural boundary
(since natural boundaries ⊂ J∗ and {unstable periodic orbits} = J∗)

3. U(p)∩Ws(p′) ! ∅ for any unstable periodic orbits p′ on the real plane
and for any neighborhood U(p). (from Ws(p′) = J+)

4. the point (p, q) ∈ U(p) ∩Ws(p′) tends to the real plane exponentially.

Theorem (AS, Ishii and Ikeda 2008)



Optimal paths are exponentially many: There exist exponentially many

tunneling orbits with comparable imaginary actions

(Sketch of the proof)

1. Take an optimal path γ

the edge of complexified KAM circle ↔ the real plane.

2. Since γ ∈ J+, W s(Pr) = J+, exponentially many γ′ ∼ γ exist.
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Optimal paths are exponentially many: There exist exponentially many

tunneling orbits with comparable imaginary actions

(Sketch of the proof)

1. Take an optimal path γ

the edge of complexified KAM circle ↔ the real plane.

2. Since γ ∈ J+, W s(Pr) = J+, exponentially many γ′′ ∼ γ exist.

2. Optimal orbits are exponentially many

There exist exponentially many optimal orbits with comparable
imaginary action.

(Proof)

1. Take an optimal path γ, which starts at the natural boundary of
a KAM curve and tends to an unstable periodic orbit on the real
plane.

2. Since γ ∈ J+ (hypothesis) and Ws(P) = J+ (Bedford-Smille),

exponentially many γ′ ∼ γ exist.

1. Take an optimal path γ
the edge of complexified KAM circle↔ the real plane.

2. Since γ ∈ J+, Ws(Pr) = J+, exponentially many γ′′ ∼ γ exist.



3. After landing the real plane

Optimal orbits follow almost real dynamics after reaching the real plane.

(Proof)

Use the fact that the orbit staring in the neighborhood of P visit the
neighborhood of any other unstable periodic orbits Pi (i = 1, 2, · · · ).
In order to prove this, we use some theorems (Bedford-Lyubich-Smillie,
Katok) and, Lambda Lemma.

(Sketch of the proof)
Just use the following theorem (Ishii, 2002)

Ri (0 ≤ i ≤ N) : unstable periodic orbits in R2

For ∀ ki and ∀ neighborhood Ui of Ri (0 ≤ i ≤ N − 1), there exists a point
P ∈ Ws(RN) such that its orbit stays in Ui at least ki-steps.



The most dominant tunneling orbits

1. Go down from the torusT to chaotic C regions along the stable manifolds

2. Attracted by real chaos C (unstable periodic orbits on R2) exponentially

3. Move as if they are real orbits after reaching C



The variety of the optimal orbits

Each optimal orbit is accompanied by a family of optimal orbits with com-
parable imaginary action.

‘Hard’ question : A single family or (infinitely) many families ?
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Tunneling action evaluated using the orbits along Ws(P5)
P5 denotes the unstable periodic orbit on R2 with period 5

Hénon map Piecewise linear map
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Tunneling action evaluated using the orbits along Ws(P5)
P5 denotes the unstable periodic orbit on R2 with period 5

Some examples validating the scenario

Hénon map Piecewise linear map



Piecewise linear map

Fα : T2 !→ T2

(
p′
q′

)
=

(
p − V′(q)
q + T′(p′)

)

where T2 is a 2-dimensional torus with coordinates (p, q) mod 1, and

V′(q) =




−αq − 1
2

( − 1
2 < q < 0 )

+αq − 1
2

( 0 < q < +1
2 )

T′(p) = p

V′(q) = −K sin q

T′(p) = αp +
1
2
[
αp − ω] tanh β(p − pd)

+
1
2
[−αp + ω

]
tanh β(p + pd)



‘Smoothing’ of Fα

Fα : T2 !→ T2 ( T2 = [− 1
2 ,+

1
2 ) × [−1

2 ,+
1
2 ) )

V′(q) =




−αq − 1
2

( − 1
2 < q < 0 )

+αq − 1
2

( 0 < q < +1
2 )

T′(p) = p

‘Smoothing’ of Fα

Fα,β : R2 !→ R2

(
p′
q′

)
=

(
p − V′(q)
q + T′(p′)

)

V′(q) =
∞∑

n=−∞

[
V−(q)

{
θβ(q − n) − θβ(q − n − 1

2
)
}
+ V+(q)

{
θβ(q − n +

1
2

) − θβ(q − n)
}]

T′(p) =
∞∑

n=−∞
p
{
θβ(p − n − 1

2
) − θβ(p − n +

1
2

)
}

where

θβ(x) ≡ 1
2

[
1 + tanh(βx)

]

and

V−(q) = −αp − 1
2
, V+(q) = +αp − 1

2



‘Complexification’ of Fα,β

Fα,β : C2 !→ C2 =⇒ Fα: T2 × C !→ T2 × C

Fα :
(

p′
q′

)
=

(
p − V′(q)
q + T′(p′)

)

V′(q) =




−αq − 1
2

( − 1
2 < Re q < 0 )

+αq − 1
2

( 0 < Re q < + 1
2 )

T′(p) = p

β → ∞
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Complexification of KAM curves
KAM curves can be expressed as
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Natural Boundary

Rate of accumulation (not rigorous)

The rate of accumulation is algebiraic:

!
{
Ws

n(p) ∩Aa ⊂ Sε
}
∼ nµ

Ws
n(p) =

⋃

0≤j≤n

F− j(γs(p))

γs(p) : local contracting fiber passing through p.

θ′ θ′′ θ′′c Sε ε

K+

natural boundary

piecewise linear map Hénon map
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Questions we asked were

∗ essential differences between one- and multi-dimensions ?

∗ dynamically disconnected regions are connected, why and how ?

∗ evaluate or even define the tunneling probability in multi-dimensional
systems, is it possible ?

We here take complex semiclassical approach

∗ a natural extension of semiclassical analyses in the real domain

∗ it enables us to clarify what dynamical mechanism works

∗ to develop the theory in the complex domain follows original spirits
of semiclassical methods


