
2. Complex dynamics in one variable



1-dimensinol polynomial maps and the Julia set

Consider 1-dimensinol polynomial maps with degree d

P : z !→ P(z)
where

P(z) = zd + a1zd−1 + · · · + ad (d ≥ 2)

Classify the orbits according to the behavior of n → ∞

FP = { z ∈ C | lim
n→∞

Pn(z) = ∞ } : Fatou set

KP = { z ∈ C | lim
n→∞

Pn(z) is bounded } : Filled Julia set

KP = C − FP

In particular

JP = ∂KP : Julia set

Note: Alternative definitions for FP, JP based on

(1) normal family, (2) equicontinuity, (3) density of periodic oribts



The behavior around z = 0

Theorem (Koenigs) F(z) is holomorphic near z = 0 and has the
Taylor expansion

F(z) = λz + c2z2 + · · · (0 < |λ| < 1)

Then there exists a conformal map φ : U → C which satisfies the
functional equation (Schröder equation)

φ
(
F(z)
)
= λφ(z) (z ∈ U)

where U is a neighborhood of z = 0.

Note : If |λ| > 1, then one can show the same assertion by considering
the inverse function.

z = 0 z = ∞
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The dynamics around z = 0 or z = ∞

Suppose
P : z "→ a1z + a2z2 + · · · adzd (a1 ! 0)

Then, z = 0 and z = ∞ are attracting fixed points.

The dynamics around z = 0 and z = ∞ are rather simple.

P(z) ∼ z around z = 0
P(z) ∼ zd around z = ∞

P(z) = a1z + a2z2 + · · · adzd (d ≥ 2)

P : z "→ P(z)
where

P(z) = a1z + a2z2 + · · · adzd (d ≥ 2)
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ψ
(
F(z)
)
= λψ(z) (z ∈ U)

where U is a neighborhood of z = 0.

Note : If |λ| > 1, then one can show the same assertion by considering
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φ
(
F(z)
)
= λφ(z) (z ∈ U)

where U is a neighborhood of z = 0.

Note : If |λ| > 1, then one can show the same assertion by considering
the inverse function.

z = 0 z = ∞

The behavior around z = 0

Theorem (Koenigs) F(z) is holomorphic near z = 0 and has the
Taylor expansion

F(z) = λz + c2z2 + · · · (0 < |λ| < 1)

Then there exists a conformal map φ : U → C which satisfies the
functional equation (Schröder equation)
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( Proof )

Step 1
Obtain a formal solution for ψ(z) by assuming

ψ(z) =
∞∑

"=0

a"z"

The coefficients {a"} are expressed as

a" =
K"(c2, · · · , c", a2, · · · , a"−1)

λ" − λ
where K"(c2, · · · , c", c2, · · · , a"−1) are a polynomial function of (c2, · · · , c", a2, · · · , a"−1).

Note : if |λ| = 1, even the formal solution cannot be constructed.

Step 2

Prove the convergency of ψ(z) =
∞∑

"=0

a"z".



The behavior around z = 0
— Linearization around a neutral fixed point —

Theorem (Siegel-Moser) For

F(z) = λz + c2z2 + · · · (λ = e2πiα, α : irrational)

suppose that there exist a, b > 0 such that
∣∣∣∣α−

p
q

∣∣∣∣ <
a
qb

for all p, q ∈ Z.

Then there is a nbd U of z = 0 on which F(z) is analytically conjugate
to the irrational rotation, that is, z #→ λz.

More specifically,
Theorem (Bryuno-Yoccoz) For quadratic maps

F(z) = λz + c2z2 (λ = e2πiα, α : irrational)

is linearizable if and only if α is a Bryuno number.
We say that α is a Bryuno number if

∞∑

n=1

1
qn

log qn+1 < ∞

where {qn}∞n=0
denotes the denominators of continued fractional ap-

proximation of α



Rotational domains
— Siegel diskD—

Theorem (Siegel) Around a neutral fixed point z = 0,

F(z) = λz + c2z2 + · · · (λ = e2πiα , α : Diophantine number)

has a regionD which is conjugate to an irrational rotation.
Such a regionD is called the Siegel disk .

Siegel diskの図

Note : If there exists a Siegel diskD, then Area(KP) > 0,
where Area(·) denotes 2-dimensinoal area in C.
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Interior points of KP — 1-dimensional maps —

If there exists Siegel disksD, then Area(KP) > 0, and so KP can have
interior points.

Theorem (Siegel) Around a neutral fixed point z = 0,

F(z) = λz + c2z2 + · · · (λ = e2πiα , α : Diophantine number)

has a regionD which is conjugate to an irrational rotation.
Such a regionD is called the Siegel disk .

Siegel disk の図



The behavior around z = ∞

Theorem (Böttcher) For a sufficiently large R, there exists a conformal map
ϕ(z) of V = { |z| > R } into C which has the form

ϕ(z) = z + b0 +
b1

z
+ · · ·

and satisfies

ϕ
(
P(z)
)
=
{
ϕ(z)

}d

ϕ(z) is called the Böttcher function

The behavior around z = 0
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( Proof )

Step 1
Consider

ψ(z) = log
P(z)
zd

Step 2
P(z) = zd expψ(z)

P2(z) = P
(
P(z)
)
= P

(
zd expψ(z)

)

=
(
zd expψ(z)

)d exp
(
zd expψ(z)

)

= zd2
exp
(
dψ(z) + ψ

(
P(z)
))

Inductively, we have

Pn(z) = zdn
exp
(
dn−1ψ(z) + dn−2ψ

(
P(z)
)
+ · · · + ψ(Pn−1(z)

))



Step 3

ϕn(z) =
(
Pn(z)

)d−n

= z exp
(1

d
ψ(z) +

1
d2
ψ
(
P(z)
)
+ · · · + 1

dn
ψ
(
Pn−1(z)

))

∞∑

j=1

1
dj
ψ
(
Pj−1(z)

)
is uniformly convergent, hence

ϕ(z) = lim
n→∞
ϕn(z) = z exp

(1
d
ψ(z) +

1
d2
ψ
(
P(z)
)
+ · · ·

)

does so, and satisfies the desired functional relation: ϕ
(
P(z)
)
=
{
ϕ(z)

}d
.

Check: lhs = ϕ
(
P(z)
)
= P(z) exp

(1
d
ψ(P(z)) +

1
d2
ψ
(
P2(z)

)
+ · · ·

)

rhs =
{
ϕ(z)

}d
= zd exp

(1
d
ψ(P(z)) +

1
d2
ψ
(
P2(z)

)
+ · · ·

)d

= zd exp
(
ψ(z) +

1
d
ψ
(
P(z)
)
+ · · ·

)

= P(z) exp
(1

d
ψ
(
P(z)
)
+

1
d2
ψ
(
P2(z)

)
+ · · ·

)



Green function

We define the Green function as

G(z) ≡ log |ϕ(z)|
whereϕ(z) is the Böttcher function.

G(z) can be extended to the Fatou set FP as the harmonic function, that is

∆G(z) = 0

For KP = C − FP, we define

G(z) = 0

Then one can prove that G(z) is continuous and subharmonic in C.

Note : Subharmonic function f (z) is a function satisfying

f (z) ≤ 1
2π

∫ 2π

0
f (z + reiθ)dθ

Note For the harmonic function we have

f (z) =
1

2π

∫ 2π

0
f (z + reiθ)dθ

——–

For the Böttcher functionϕ(z) obtained for some z ∈ V , we define

Gn(z) = log |ϕ(z)|

and we define Gn+1(z) by

Gn+1(z) =
1
dn

Gn
(
Pn(z)

)

Since Fatou set FP =
∞⋃

n=1

P−n(V)
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Potential theoretic approach

We define the Green function by

G(z) ≡ log |ϕ(z)|

whereϕ(z) is the Böttcher function.
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1
dn

Gn
(
Pn(z)

)

Since Fatou set FP =
∞⋃

n=1

P−n(V)



More explicit expression for the Green function

G(z) = lim
n→∞

1
dn

log+
∣∣∣Pn(z)

∣∣∣

where log+ t ≡ max{ log t, 0 }.

Check:
Recallϕn(z) =

(
Pn(z)

)d−n

. Take “log” and n → ∞ in both sides

Remark :
Instead of using the Böttcher function, we can also introduce
the Green function through the functional equation:

G(z) =
1
dn

G
(
Pn(z)

)

More explicit expression for the Green function is

G(z) = lim
n→∞

1
dn

log+
∣∣∣Pn(z)

∣∣∣

where log+ t ≡ max{ log t, 0 }.

Check:
Recallϕn(z) =

(
Pn(z)

)d−n

. Take “log” and n → ∞ in both sides



Invariant measure induced by the Green function

We here introduce µ(z) through the “Poisson equation”

µ(z) ≡ 1
2π
∆G(z)

where G(z) is the Green function

G(z) = lim
n→∞

1
dn

log+
∣∣∣Pn(z)

∣∣∣

Theorem (Brolin, 1965)

1. µn(z) =
1
dn

∑

z0∈P−n(a)

δ(z − z0) → µ(z) for arbitrary z = a

2. supp µ(z) = JP

3. the map P preserves the measure µ, and is strongly mixing

n → ∞
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( Proof )

1. µn(z) =
1
dn

∑

z0∈P−n(a)

δ(z − z0) → µ(z) for arbitrary z = a

Step 1

g(z) = log |z| is a fundamental solution for
1

2π
∆g(z) = δ(z)

Therefore,
1

2π
∆ log |Pn(z) − a| =

∑

Pn(z0)=a

δ(z − z0)

Step 2

prove lim
n→∞

1
dn

log |Pn(z) − a| = G(z), where G(z) = lim
n→∞

1
dn

log+
∣∣∣Pn(z)

∣∣∣

( in case z ∈ FP, Pn(z) → ∞, thus |Pn(z) − a| ∼| Pn(z)|.
also in case z ∈ Kp, Pn(z) is bounded, so lim

n→∞
1
dn

log |Pn(z) − a| = 0 )

Step 3

apply “
1

2π
∆” to both sides



2. supp µ(z) = JP

Step 1 (supp µ ⊂ JP)

The Green function G(z) = log |ϕ(z)| = lim
n→∞

1
dn

log+
∣∣∣Pn(z)

∣∣∣ is harmonic on FP

(Fatou set), which implies µ = 0 on FP.
Recall G = 0 on KP (definition of G). Thus, supp µ ⊂ JP follows.

Step 2 (supp µ ⊃ JP)

Suppose that there exists a point z ∈ JP and its neighborhood U such that
suppµ ∩ U = ∅. This implies ∆G = 0 on U (that is, G is harmonic on U ).

On the other hand, G ≡ 0 in (U ∩ KP) (by definition of G) and G ≥ 0 on C,
thus G ≡ 0 on the whole U due to the principle of minimum values (since G
is harmonic). This contradicts that G > 0 on U ∩ FP (G is positive on FP).



3. The map P preserves the measure µ, and is strongly mixing.

In order to prove P is mixing, we have to show

lim
n→∞

∫

JP

f
(
Pn(z)

)
g(z)dµ(z) =

∫

JP

f (z)dµ(z) ·
∫

JP

g(z)dµ(z)

Step 1
Consider the mass distribution {µn(·,w)} produced by a starting point w. If
we allow w to be a function of n, we get a sequence {µn(·,wn)}. µn(z) → µ(z)
(statement 1.) implies that µn(·,wn) → µ(·).

Step 2
Let {Qj}kj=1

be a finite number of boxes which cover JP, then we can prove
µn(Qj,wn) → µ(Qj) (1 ≤ j ≤ k) .



Step 3
For any function g(z) which are constant on each box Qj, then from the result
of step 2 we have

lim
n→∞

dν∑

ν=1

1
dn

g(ζ(ν)
−n) =

∫

JP

g(z)dµ(z)

where ζ ∈ JP and {ζ(ν)
−n} are preimages of ζ of order n.

Step 4
For any function f (z), g(z) which is constant on each box Qj,

lim
n→∞

∫

JP

f
(
Pn(z)

)
g(z)dµ(z) = lim

n→∞
lim
m→∞

∑ 1
dn+m

f (ζ(ν)
−m)g(ζ(ν)

−(m+n)
)

= lim
n→∞

lim
m→∞

∑ 1
dm

f (ζ(ν)
−m) ·

∑

ζ(ν)
−m fixed

1
dn

g(ζ(ν)
−(m+n)

)

=

∫

JP

f (z)dµ(z) ·
∫

JP

g(z)dµ(z)



The behavior around z = 0
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F(z) = λz + c2z2 + · · · (0 < |λ| < 1)
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The border of analyticity

Theorem (Milnor, Costin-Krustal , ... )

The domain of analyticity of ψ(z) is KP, and JP = ∂KP is a singularity barrier
(= natural boundary) of ψ(z).

Theorem (Costin-Krustal , ... )

The domain of analyticity of the Böttcher functionϕ(z) is FP and JP = ∂KP is
a singularity barrier (= natural boundary) ofϕ(z).



Note : An example of the function with a natural boundary

f (z) =
∞∑

k=0

z2k

The radius of convergence : r = 1

f
(
exp(imπ/2n)

)
= exp(imπ/2n) + exp(imπ/2n−1) + · · · exp(imπ)

+ exp(i2mπ) + exp(i22mπ) + · · · + exp(i2m"π) + · · ·
= exp(imπ/2n) + exp(imπ/2n−1) + · · · exp(imπ)

+1 + 1 + · · · + 1 + · · ·
= ∞

Note that z = exp(imπ/2n) (n = 0, 1, 2, · · · ; m = 0, 1, 2, · · · ) are dense on
|z| = 1, therefore f (z) cannot be analytically continued beyond |z| = 1.



( Proof for ψ(z) )

Since ψ
(
F(z)
)
= λψ(z) we have

ψ
(
Fn(z)

)
= λnψ(z)(1)

Recall that JP = ∂KP = { repelling fixed points }.
Assume z0 is a repelling fixed point of F(z) of period n, and is a point of
analyticity of ψ(z).

- The relation (1) implies ψ(z0) = 0, since |λ| < 1.

- (Fn)′(z0)ψ′(z0) = λnψ′(z0). but since |(Fn)′(z0)| > 1 and |λ| < 1,
this implies ψ′(z0) = 0.

- Inductively, we have ψ(m)(z0) = 0 for all m.

- Since we have assumed that ψ(z) is analytic, this entails ψ(z) ≡ 0.

Note:
What if λ = e2πiα where α is a Diophantine number ?



Plan of Lectures

1. Time domain semiclassical approach to dynamical tunneling

2. Complex dynamics in one variable

3. Complex dynamics in two variables

4. How to apply general theory of complex dynamics to tunneling problems



q

p

2-dimensinal area-preserving maps

F :
(

p′
q′

)
=

(
p − V′(q)
q + H′(p′)

)

- Standard map : H(p) =
p2

2
, V(q) = K cos q

- Kicked Harper map : H(p) = K cos q, V(q) = K cos q

- Cubic potential map : H(p) =
p2

2
, V(q) = −

q3

3
− cq



Iteration of the Hénon map
n = 1 n → ∞

Iteration of the Hénon map
n = 1 n → ∞Iteration of the Hénon map

n = 1 n → ∞

R P(R) P−1(R)Iteration of the Hénon map
n = 1 n → ∞

R P(R) P−1(R)

Iteration of the Hénon map
n = 1 n → ∞

R P(R) P−1(R)

“The cubic potential map” F is transformed into the Hénon map
by an affine transformation (p, q) = (y − x, y − 1),

P :
(

x′
y′

)
=

(
y

y2 − x + a

)
(a = 1 − c : nonlinear parameter)

Remark (classification theorem by Friedland-Milnor)

2-dimensiononal polynomial diffeormorphisms are conjugate either to

- elementary map
- affine map
- generalized Hénon maps (= composition of the Hénon map)

The former two are simple and can be well understood. Only the generalized
Hénon map is nontrivial.



!

"

Horseshoe case (a > af )

We have a generating partition which admits the symbolic dynamics
with the binary coding {0, 1}

P : K !−→ K
ϕ ↓ ↓ ϕ
σ : Σ !−→ Σ

where Σ = {0, 1}Z

Then the Hénon map P is conjugate to

σ(· · · s−1s0.s1s2 · · · ) = (· · · s0s1.s2s3 · · · )



Parameter dependence

Hénon map :

P :
(

x′
y′

)
=

(
y

y2 − x + a

)
(a : nonlinear parameter)

Depending on a, the Hénon map shows different dynamical behaviors:

1. horseshoe

2. hyperbolic (but not horseshoe)

3. mixed

!
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Parameter dependence

Hénon map :

P :
(

x′
y′

)
=

(
y

y2 − x + a

)
(a : nonlinear parameter)

Depending on a , the Hénon map shows different dynamical behaviors:

1. horseshoe

2. hyperbolic (but not horseshoe)

3. mixed

af

Horseshoe case (a > af )

We have a generating partition which admits the symbolic dynamics
with the binary coding {0, 1}

P : K !−→ K
ϕ ↓ ↓ ϕ
σ : Σ !−→ Σ

where Σ = {0, 1}Z

Then the Hénon map P is conjugate to

σ(· · · s−1s0.s1s2 · · · ) = (· · · s0s1.s2s3 · · · )

As a decreases,
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Mixed phase space (a ∼ 1)

Invariant sets in the forward and backward iterations

Hénon map P : R2 "→ R2

P :
(

x′
y′

)
=

(
y

y2 − x + a

)

Stable (unstable) set:

K± = { (x, y) ∈ R2 | ‖Pn(x, y)‖ is bounded (n → ±∞) }
K = K+ ∩ K−

The boundaries of stable (unstable) set:

J± = ∂K± J = J+ ∩ J−

K+ K−
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Julia sets for 2-dimensinal maps

Classify the orbits according to the behavior of n → ∞

F± = { (x, y) ∈ C2 | lim
n→∞

P±n(x, y) → ∞ ( n → ∞ ) }
K± = { (x, y) ∈ C2 | lim

n→∞
P±n(x, y) is bounded in C2 }

In particular

K = K+ ∩ K− : filled Julia set

J± = ∂K± : forward (resp. backward) Julia set

J = J+ ∩ J− : Julia set
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Are they generic or characteristic only to polynomial mappings?
(Green function G(x, y) cannot be defined in non-polynomial mapping.)

1. Hénon-like maps (Dujardin 2004)

Perturbations, not necessarily polynomial, to the Hénon map.

2. Standard and semi-standard map (Simo and Lazutkin 1997)

Conjecture based on numerical investigations:
The closure of the complex unstable and stable mani folds
of the standard map contain all the real plane.
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Green function

Define

G±(x, y) ≡ lim
n→+∞

1
2n

log+
∣∣∣P±n(x, y)

∣∣∣

where log+ t ≡ max{ log t, 0 }.

G±(x, y) is continuous and plurisubharmonic on C2. Thus, by identifying
(x, y) = (z1, z2), we can apply the ddc-operator ( = complex Laplacian ) :

ddcu ≡ 2i
2∑

j,k=1

∂2u

∂zj∂zk

dzj ∧ dzk

to G±(x, y) in the sense of distribution so as to get the (1, 1)-currents :

µ± ≡ 1
2π

ddcG±

∼ Poisson equation (µ±: charge distribution)



Remark 1 Plurisubharmonic function

“Generalization of the subharmonic function to several variables cases”

Recall that subharmonic function f (z) is a function satisfying

f (z) ≤ 1
2π

∫ 2π

0
f (z + reiθ)dθ

Definition Upper semi-continuous function f (z1, z2) is plurisubharmonic
if f (z1, z2) is subharmonic or identically equal to −∞ on any complex 1-
dimensional line.



Remark 2 Currents

“Differential forms whose coefficients are given by distributions”

Definition Denote the set of differential (p, q)-forms whose coefficients are
contained in C∞

0
(distributions) byDp,q(Ω) :

Dp,q(Ω) ≡
{ ∑

|I|=p,|J|=q

uI,J dzi1 ∧ · · · dzip ∧ dz̄j1 ∧ · · · ∧ dzjq

∣∣∣∣∣∣ uI,J ∈ C∞
0

(Ω)
}

Then, linear functionals on D2−p,2−q(Ω) ( = elements of the dual space of
Dp,q(Ω) ) are called (p, q)-currents. Here I = (i1, · · · , ip), J = ( j1, · · · , jq).

Note: (2, 2)-currents whose coefficients have compact supports can be identi-
fied with the measures on Ω.



An alternative definition for the Green function G(x, y)

Recall also that in 1-dimensional cases we can define the Green function as

G(z) ≡ log |ϕ(z) |

whereϕ(z) denotes the Böttcher function.

In the same way, for 2-dimensional cases, we define as

G(x, y) ≡ log |ϕ(x, y) |

where ϕ(x, y) is a 2-dimensional analog of Böttcher function, which is con-
structed to satisfy

ϕ
(
P(x, y)

)
=
{
ϕ(x, y)

}2

Note : G(x, y) also satisfies the functional relation: G(z) =
1
2n

G
(
Pn(z)

)



Theorem (Bedford-Smillie)

supp µ± = J±

where J± is the forward (resp. backward) Julia set.

Note : suppµ(z) = JP for 1-dimensional polynomial maps (Brolin)

( Proof )
(suppµ+ ⊂ J+)
Since G+ is pluriharmonic on F+ (Fatou set), that is ddcG+ = 0, which implies
µ+ = 0 on F+. Recall that G+ = 0 on K+(by definition of G+). Thus, suppµ+ ⊂
J+.

(suppµ+ ⊃ J+)
Suppose that there exist a point z ∈ J+ and its neighborhood W such that
suppµ ∩W = ∅. This implies ddcG+ = 0 on W (that is, G+ is pluriharmonic
on W ). On the other hand, G+ ≡ 0 in (W ∩ K+) (by definition of G+) and
G+ ≥ 0 on C2, thus G+ ≡ 0 on the whole W due to the principle of minimum
values (since G+ is pluriharmonic). This contradicts that G > 0 on W ∩ F+

(G+ is positive on K+).



Complex equilibrium measure

Theorem (Bedford-Smillie)

1. µ = µ+ ∧ µ− is an invariant measure of the map P

2. Define
J∗ ≡ supp µ

where µ is the potential theoretic invariant measure defined in 1.

Then we can prove

J∗ ⊂ J = ∂J+ ∩ ∂J−

In particular, if P is hyperbolic, then

J∗ = J



Stable and unstable convergent theorem

Theorem (Bedford-Smillie) Let M be an algebraic variety, then
there is a constant c > 0 such that

lim
n→∞

1
2n

[P∓nM] = cµ±

in the sense of current, where [M] is the current of integration of M.

Note 1:
For u ∈ D1,1(Ω), the current of integration of M is defined by

∫
[M] ∧ u =

∫

M
u

Note 2 :
An algebraic variety is given as the zero set of polynomials

Ex) Line (z1 + z2 − 1 = 0), Sphere (z2
1
+ z2

2
− 1 = 0), and so on.



Some important properties derived from the convergent theorem

Theorem (Bedford-Smillie)

1. For any unstable periodic orbit p, Ws(p) = J+, Wu(p) = J−

2. µ satisfies the mixing property and is hyperbolic measure,
where suppµ = J∗

3. {Unstable periodic points } = J∗

Note : The measure µ is said to be hyperbolic measure, if characteristic
exponents satisfy λ1 > 0 > λ2.



Invariant sets in the forward and backward iterations

Hénon map P : R2 !→ R2

P :
(

x′
y′

)
=

(
y

y2 − x + a

)

Stable (unstable) set:

K± = { (x, y) ∈ R2 | ‖Pn(x, y)‖ is bounded (n → ±∞) }
K = K+ ∩ K−

The boundaries of stable (unstable) set:

J± = ∂K± J = J+ ∩ J−

K+ K−
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Mixed phase space (a ∼ 1)

Invariant sets in the forward and backward iterations

Hénon map P : R2 "→ R2

P :
(

x′
y′

)
=

(
y

y2 − x + a

)

Stable (unstable) set:

K± = { (x, y) ∈ R2 | ‖Pn(x, y)‖ is bounded (n → ±∞) }
K = K+ ∩ K−

The boundaries of stable (unstable) set:

J± = ∂K± J = J+ ∩ J−

K+ K−

For the horseshoe case, we can prove the followings :

1. For any unstable periodic orbit p, Ws(p) = J+, Wu(p) = J−

2. The measure on the invariant set satisfies the mixing property
and is hyperbolic measure,

3. {Unstable periodic points } = J∗

Here Ws(p) and Wu(p) denote the stable and unstable manifolds
for a periodic orbit p, respectively.



What does the convergent theorem tell us ?

Since supp µ± = J±,

any (algebraic) manifold M→ J∓ (n → ±∞)

An arbitrary algebraic manifold M

An arbitrary algebraic manifold M

What does the convergent theorem tell us ?

Since supp µ± = J±,

any (algebraic) manifold M→ J− = Wu(p) (n → +∞)

An arbitrary algebraic manifold M

An arbitrary algebraic manifold M

What does the convergent theorem tell us ?

Since supp µ± = J±,

any (algebraic) manifold M→ J− = Wu(p) (n → +∞)

An arbitrary algebraic manifold M

But, we have KAM curves in mixed phase space · · ·
An arbitrary algebraic manifold M



Interior points of K± and K
— 2-dimensional area preserving maps —

1. Linearization around a fixed point

Linearization around a fixed pont is not possible in the area preserving map
because the non-resonant condition for eigenvalue of the linearized matrix
A is be satisfied.
⇒ Siegel disks cannot appear in 2-dimensional area preserving maps

We say that the matrix A satisfies the non-resonant condition if we have

2∏

i=1

λki

i
− λj ! 0

for any j = 1, 2 and (k1, k2) ∈ N2 with
∣∣∣∣

2∑

i=1

ki

∣∣∣∣ ≥ 2.

However, for an elliptic fixed point of 2-dimensional area preserving maps,
we necessarily have a pair of eigenvalues λ = eiα and λ−1 = e−iα with α ∈ R
which clearly breaks the non-resonant condition.



KAM curves in C2

For a given rotation numberω, the motion on the KAM curve Cω is expressed
as a constant rotation in a sutable coordinate θ:

σ : θ !→ θ + 2πω (mod 2π)

In order to have such a coordinate θ, the conjugation function ϕ satisfying

F : Cω !−→ Cω
ϕ ↓ ↓ ϕ
σ : T1 !−→ T1

has to be analytic with respect to θ.

Assume

ϕ(θ,ω) =
∑

n

an(ω)einθ

KAM theorem claims ϕ(θ,ω) converges on the strip | Imθ | < ρc

for sufficiently irrational ω⇒ Complexfied KAM curves.
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How fat are KAM curves in C2 ?

1. For a given ω ∈ R, θ can be complexified as θ = θ′ + iθ′′

=⇒ 2-dim

2. KAM theorem claims that the measure of ω ∈ R with ρc > 0 is positive, but
KAM curves do not exist for rational ω, which also have positive measure:
=⇒ α-dim (0 < α< 1)

3. If there exist rotation domains with ω = ω′ + iω′′, which are not necessarily
KAM curves
=⇒ 1-dim

In total, the (Hausdorff) dimension of rotational domains associated with the
convergent conjugating function ϕ(θ,ω) =

∑

n

an(ω)einθ is at most (3 + α).

2-dimensional slice of K+ Number of interior points of K+
— Hénon map —

n = 500 n = 1000 n = 5000 n = 100000

An orbit itinerating among different complex KAM curves



How fat are KAM curves in C2 ?

1. For a given ω ∈ R, θ can be complexified as θ = θ′ + iθ′′

=⇒ 2-dim

2. KAM theorem claims that the measure of ω ∈ R with ρc > 0 is positive,
but

KAM curves do not exist for rationalω, which also have positive measure:
=⇒ α-dim (0 < α< 1)

3. If there exist rotation domains with ω = ω′ + iω′′, which are not
necessarily

KAM curves
=⇒ 1-dim

In total, the (Hausdorff) dimension of rotational domains associated with the
convergent conjugating function ϕ(θ,ω) =

∑

n

an(ω)einθ is at most (3 + α).

2-dimensional slice of K+
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— Hénon map —

n = 500 n = 1000 n = 5000 n = 100000



How fat are KAM curves in C2 ?

1. For a given ω ∈ R, θ can be complexified as θ = θ′ + iθ′′

=⇒ 2-dim

2. KAM theorem claims that the measure of ω ∈ R with ρc > 0 is positive,
but

KAM curves do not exist for rationalω, which also have positive measure:
=⇒ α-dim (0 < α< 1)

3. If there exist rotation domains with ω = ω′ + iω′′, which are not
necessarily

KAM curves
=⇒ 1-dim

In total, the (Hausdorff) dimension of rotational domains associated with the
convergent conjugating function ϕ(θ,ω) =

∑

n

an(ω)einθ is at most (3 + α).

2-dimensional slice of K+
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Interior points of KP — 1-dimensional maps —

If there exists Siegel disksD, then Area(KP) > 0, and so KP can have
interior points.

Theorem (Siegel) Around a neutral fixed point z = 0,

F(z) = λz + c2z2 + · · · (λ = e2πiα , α : Diophantine number)

has a regionD which is conjugate to an irrational rotation.
Such a regionD is called the Siegel disk .

Siegel disk の図

Vacant interior conjecture

Speculations on

1. Linearization around a fixed point
2. Complexified KAM curves

and
3. Numerical observations

lead us

Vacant interior conjecture

The filled Julia sets of the area-preserving map have
no interior points :

J± = K± hence J = K



Fundamental working hypothesis

1. Vacant interior conjecture (J± = K± and J = K)

2. J∗ = J

Note : J∗ ⊂ J for generic cases and J∗ = J for hyperbolic cases.



“Dynamics” connecting KAM curves

“KAM curves are no more dynamical barriers in C2”

More precisely, for arbitrary neighborhoods U(z1) and U(z2) of any two points

z1 and z2 in {KAM curves (either real or complex)}, there exists n such that

U(z1) ∩ Pn(U(z2)) ! ∅.

( Proof )
- suppµ = J∗ (⇐ Bedford-Smille)

- µ is mixing and ergodic (⇐ Bedford-Smille)

- K = J = J∗ (⇐ working hypothesis)

- {KAM curves (either real or complex) } ⊂ K
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Summary of part II

1. The Hénon map in R2 has three characteristic parameter regimes:
full horseshoe, hyperbolic but not horseshoe, mixed

2. Julia sets and Fatou sets are introduced in C2 as well as C

3. Techniques using the Green function are explained in analogy
with that in C.

4. Convergent theorem (Bedford-Smillie) and some important properties
derived from it are shown.

5. On the basis of the vacant interior conjecture together with the assumption
J = J∗, it is shown that KAM curves do not any more play the role of
barriers in the complex plane.


