2. Complex dynamics in one variable

1-dimensinol polynomial maps and the Julia set

Consider 1-dimensinol polynomial maps with degree d

$$
P: z \mapsto P(z)
$$

where

$$
P(z)=z^{d}+a_{1} z^{d-1}+\cdots+a_{d} \quad(d \geq 2)
$$

Classify the orbits according to the behavior of $n \rightarrow \infty$

$$
\begin{array}{lll}
F_{P}=\left\{z \in \mathbb{C} \mid \lim _{n \rightarrow \infty} P^{n}(z)=\infty\right\} & : & \text { Fatou set } \\
K_{P}=\left\{z \in \mathbb{C} \mid \lim _{n \rightarrow \infty} P^{n}(z) \text { is bounded }\right\}: & \text { Filled Julia set } \\
K_{P}=\mathbb{C}-F_{P} & &
\end{array}
$$

In particular

$$
J_{P}=\partial K_{P} \quad: \quad \text { Julia set }
$$

The dynamics around $z=0$ or $z=\infty$

Suppose

$$
P: z \mapsto a_{1} z+a_{2} z^{2}+\cdots a_{d} z^{d} \quad\left(a_{1} \neq 0\right)
$$

Then, $z=0$ and $z=\infty$ are attracting fixed points.

The dynamics around $z=0$ and $z=\infty$ are rather simple.

$$
\begin{array}{ll}
P(z) \sim z & \text { around } z=0 \\
P(z) \sim z^{d} & \text { around } z=\infty
\end{array}
$$

The behavior around $z=0$

Theorem (Koenigs) $\quad F(z)$ is holomorphic near $z=0$ and has the Taylor expansion

$$
F(z)=\lambda z+c_{2} z^{2}+\cdots \quad(0<|\lambda|<1)
$$

Then there exists a conformal map $\psi: U \rightarrow \mathbb{C}$ which satisfies the functional equation (Schröder equation)

$$
\psi(F(z))=\lambda \psi(z) \quad(z \in U)
$$

where U is a neighborhood of $z=0$.

Note: If $|\lambda|>1$, then one can show the same assertion by considering the inverse function.

(Proof)

Step 1
Obtain a formal solution for $\psi(z)$ by assuming

$$
\psi(z)=\sum_{\ell=0}^{\infty} a_{t} z^{\ell}
$$

The coefficients $\left\{a_{\ell}\right\}$ are expressed as

$$
a_{\ell}=\frac{K_{\ell}\left(c_{2}, \cdots, c_{\ell}, a_{2}, \cdots, a_{\ell-1}\right)}{\lambda^{\ell}-\lambda}
$$

where $K_{\ell}\left(c_{2}, \cdots, c_{\ell}, c_{2}, \cdots, a_{\ell-1}\right)$ are a polynomial function of $\left(c_{2}, \cdots, c_{\ell}, a_{2}, \cdots, a_{\ell-1}\right)$.
Note : if $|\lambda|=1$, even the formal solution cannot be constructed.

Step 2
Prove the convergency of $\psi(z)=\sum_{\ell=0}^{\infty} a_{\ell} z^{\ell}$.

The behavior around $z=0$

- Linearization around a neutral fixed point -

Theorem (Siegel-Moser) For

$$
F(z)=\lambda z+c_{2} z^{2}+\cdots \quad\left(\lambda=e^{2 \pi i \alpha}, \alpha: \text { irrational }\right)
$$

suppose that there exist $a, b>0$ such that $\left|\alpha-\frac{p}{q}\right|<\frac{a}{q^{b}}$ for all $p, q \in \mathbb{Z}$. Then there is a nbd U of $z=0$ on which $F(z)$ is analytically conjugate to the irrational rotation, that is, $z \mapsto \lambda z$.

More specifically,
Theorem (Bryuno-Yoccoz) For quadratic maps

$$
F(z)=\lambda z+c_{2} z^{2} \quad\left(\lambda=e^{2 \pi i \alpha}, \alpha: \text { irrational }\right)
$$

Rotational domains

- Siegel disk \mathcal{D} -

Theorem (Siegel) Around a neutral fixed point $z=0$,

$$
F(z)=\lambda z+c_{2} z^{2}+\cdots \quad\left(\lambda=e^{2 \pi i \alpha}, \alpha: \text { Diophantine number }\right)
$$

has a region \mathcal{D} which is conjugate to an irrational rotation. Such a region \mathcal{D} is called the Siegel disk .

Note : If there exists a Siegel disk \mathcal{D}, then $\operatorname{Area}\left(K_{P}\right)>0$, where Area(•) denotes 2-dimensinoal area in \mathbb{C}.

The behavior around $z=\infty$

Theorem (Böttcher) For a sufficiently large R, there exists a conformal map $\varphi(z)$ of $V=\{|z|>R\}$ into \mathbb{C} which has the form

$$
\varphi(z)=z+b_{0}+\frac{b_{1}}{z}+\cdots
$$

and satisfies

$$
\varphi(P(z))=\{\varphi(z)\}^{d}
$$

$\varphi(z)$ is called the Böttcher function

(Proof)

Step 1

Consider

$$
\psi(z)=\log \frac{P(z)}{z^{d}}
$$

Step 2

$$
\begin{aligned}
& P(z)=z^{d} \exp \psi(z) \\
& \begin{aligned}
P^{2}(z)=P(P(z)) & =P\left(z^{d} \exp \psi(z)\right) \\
& =\left(z^{d} \exp \psi(z)\right)^{d} \exp \left(z^{d} \exp \psi(z)\right) \\
& =z^{d^{2}} \exp (d \psi(z)+\psi(P(z)))
\end{aligned}
\end{aligned}
$$

Inductively, we have

$$
P^{n}(z)=z^{d^{n}} \exp \left(d^{n-1} \psi(z)+d^{n-2} \psi(P(z))+\cdots+\psi\left(P^{n-1}(z)\right)\right)
$$

Step 3

$$
\varphi_{n}(z)=\left(P^{n}(z)\right)^{d^{-n}}=z \exp \left(\frac{1}{d} \psi(z)+\frac{1}{d^{2}} \psi(P(z))+\cdots+\frac{1}{d^{n}} \psi\left(P^{n-1}(z)\right)\right)
$$

$\sum_{j=1}^{\infty} \frac{1}{d^{j}} \psi\left(P^{j-1}(z)\right)$ is uniformly convergent, hence

$$
\varphi(z)=\lim _{n \rightarrow \infty} \varphi_{n}(z)=z \exp \left(\frac{1}{d} \psi(z)+\frac{1}{d^{2}} \psi(P(z))+\cdots\right)
$$

does so, and satisfies the desired functional relation: $\varphi(P(z))=\{\varphi(z)\}^{d}$.

Check: \quad lhs $=\varphi(P(z))=P(z) \exp \left(\frac{1}{d} \psi(P(z))+\frac{1}{d^{2}} \psi\left(P^{2}(z)\right)+\cdots\right)$

$$
\begin{aligned}
\text { rhs }=\{\varphi(z)\}^{d} & =z^{d} \exp \left(\frac{1}{d} \psi(P(z))+\frac{1}{d^{2}} \psi\left(P^{2}(z)\right)+\cdots\right)^{d} \\
& =z^{d} \exp \left(\psi(z)+\frac{1}{d} \psi(P(z))+\cdots\right) \\
& =P(z) \exp \left(\frac{1}{d} \psi(P(z))+\frac{1}{d^{2}} \psi\left(P^{2}(z)\right)+\cdots\right)
\end{aligned}
$$

Green function

We define the Green function as

$$
G(z) \equiv \log |\varphi(z)|
$$

where $\varphi(z)$ is the Böttcher function.
$G(z)$ can be extended to the Fatou set F_{P} as the harmonic function, that is

$$
\Delta G(z)=0
$$

For $K_{P}=\mathbb{C}-F_{P}$, we define

$$
G(z)=0
$$

Then one can prove that $G(z)$ is continuous and subharmonic in \mathbb{C}.

Note : Subharmonic function $f(z)$ is a function satisfying

$$
f(z) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z+r \mathrm{e}^{i \theta}\right) d \theta
$$

Potential theoretic approach

We define the Green function by

$$
G(z) \equiv \log |\varphi(z)|
$$

where $\varphi(z)$ is the Böttcher function.
$G(z)$ can be extended to the Fatou set F_{P} as the harmonic function :

$$
\Delta G(z)=0
$$

For $K_{P}=\mathbb{C}-F_{P}$, we define

$$
G(z)=0
$$

More explicit expression for the Green function

$$
G(z)=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log ^{+}\left|P^{n}(z)\right|
$$

where $\log ^{+} t \equiv \max \{\log t, 0\}$.

Check:
Recall $\varphi_{n}(z)=\left(P^{n}(z)\right)^{d^{-n}}$. Take " $\log ^{\prime \prime}$ and $n \rightarrow \infty$ in both sides

Remark :
Instead of using the Böttcher function, we can also introduce the Green function through the functional equation:

$$
G(z)=\frac{1}{d^{n}} G\left(P^{n}(z)\right)
$$

Invariant measure induced by the Green function

We here introduce $\mu(z)$ through the "Poisson equation"

$$
\mu(z) \equiv \frac{1}{2 \pi} \Delta G(z)
$$

where $G(z)$ is the Green function

$$
G(z)=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log ^{+}\left|P^{n}(z)\right|
$$

Theorem (Brolin, 1965)

1. $\quad \mu_{n}(z)=\frac{1}{d^{n}} \sum_{z_{0} \in P^{-n}(a)} \delta\left(z-z_{0}\right) \rightarrow \mu(z)$ for arbitrary $z=a$
2. $\operatorname{supp} \mu(z)=J_{P}$
3. the map P preserves the measure μ, and is strongly mixing
(Proof)
4. $\quad \mu_{n}(z)=\frac{1}{d^{n}} \sum_{z_{0} \in P^{-n}(a)} \delta\left(z-z_{0}\right) \rightarrow \mu(z)$ for arbitrary $z=a$

Step 1
$g(z)=\log |z|$ is a fundamental solution for $\frac{1}{2 \pi} \Delta g(z)=\delta(z)$
Therefore, $\frac{1}{2 \pi} \Delta \log \left|P^{n}(z)-a\right|=\sum_{P^{n}\left(z_{0}\right)=a} \delta\left(z-z_{0}\right)$

Step 2
prove $\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log \left|P^{n}(z)-a\right|=G(z)$, where $G(z)=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log ^{+}\left|P^{n}(z)\right|$ (in case $z \in F_{P}, P_{n}(z) \rightarrow \infty$, thus $\left|P^{n}(z)-a\right| \sim\left|P^{n}(z)\right|$.
also in case $z \in K_{p}, P_{n}(z)$ is bounded, so $\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log \left|P^{n}(z)-a\right|=0$)

Step 3
apply " $\frac{1}{2 \pi} \Delta^{"}$ to both sides
2. $\operatorname{supp} \mu(z)=J_{P}$

Step 1 (supp $\mu \subset J_{P}$)
The Green function $G(z)=\log |\varphi(z)|=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log ^{+}\left|P^{n}(z)\right|$ is harmonic on F_{P} (Fatou set), which implies $\mu=0$ on F_{P}.
Recall $G=0$ on K_{P} (definition of G). Thus, supp $\mu \subset J_{P}$ follows.

Step $2\left(\operatorname{supp} \mu \supset J_{P}\right)$
Suppose that there exists a point $z \in J_{P}$ and its neighborhood U such that $\operatorname{supp} \mu \cap U=\emptyset$. This implies $\Delta G=0$ on U (that is, G is harmonic on U).

On the other hand, $G \equiv 0$ in ($U \cap K_{P}$) (by definition of G) and $G \geq 0$ on \mathbb{C}, thus $G \equiv 0$ on the whole U due to the principle of minimum values (since G is harmonic). This contradicts that $G>0$ on $U \cap F_{P}$ (G is positive on F_{P}).
3. The map P preserves the measure μ, and is strongly mixing.

In order to prove P is mixing, we have to show

$$
\lim _{n \rightarrow \infty} \int_{I_{P}} f\left(P^{n}(z)\right) g(z) d \mu(z)=\int_{I_{P}} f(z) d \mu(z) \cdot \int_{I_{P}} g(z) d \mu(z)
$$

Step 1
Consider the mass distribution $\left\{\mu_{n}(\cdot, w)\right\}$ produced by a starting point w. If we allow w to be a function of n, we get a sequence $\left\{\mu_{n}\left(\cdot, w_{n}\right)\right\} . \mu_{n}(z) \rightarrow \mu(z)$ (statement 1.) implies that $\mu_{n}\left(\cdot, w_{n}\right) \rightarrow \mu(\cdot)$.

Step 2
Let $\left\{Q_{j}\right\}_{j=1}^{k}$ be a finite number of boxes which cover J_{P}, then we can prove $\mu_{n}\left(Q_{j}, w_{n}\right) \rightarrow \mu\left(Q_{j}\right)(1 \leq j \leq k)$.

Step 3

For any function $g(z)$ which are constant on each box Q_{j}, then from the result of step 2 we have

$$
\lim _{n \rightarrow \infty} \sum_{\nu=1}^{d^{\nu}} \frac{1}{d^{n}} g\left(\zeta_{-n}^{(\nu)}\right)=\int_{J_{P}} g(z) d \mu(z)
$$

where $\zeta \in J_{P}$ and $\left\{\zeta_{-n}^{(\nu)}\right\}$ are preimages of ζ of order n.

Step 4

For any function $f(z), g(z)$ which is constant on each box Q_{j},

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{J_{P}} f\left(P^{n}(z)\right) g(z) d \mu(z) & =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \sum \frac{1}{d^{n+m}} f\left(\zeta_{-m}^{(v)}\right) g\left(\zeta_{-(m+n)}^{(v)}\right) \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \sum \frac{1}{d^{m}} f\left(\zeta_{-m}^{(v)}\right) \cdot \sum_{\zeta_{-m}^{(v)} \text { fixed }} \frac{1}{d^{n}} g\left(\zeta_{-(m+n)}^{(v)}\right) \\
& =\int_{J_{P}} f(z) d \mu(z) \cdot \int_{J_{P}} g(z) d \mu(z)
\end{aligned}
$$

The border of analyticity

Theorem (Milnor, Costin-Krustal , ...)

The domain of analyticity of $\psi(z)$ is K_{P}, and $J_{P}=\partial K_{P}$ is a singularity barrier (= natural boundary) of $\psi(z)$.

Theorem (Costin-Krustal , ...)
The domain of analyticity of the Böttcher function $\varphi(z)$ is F_{P} and $J_{P}=\partial K_{P}$ is a singularity barrier (= natural boundary) of $\varphi(z)$.

Note : An example of the function with a natural boundary

$$
f(z)=\sum_{k=0}^{\infty} z^{z^{k}}
$$

The radius of convergence : $r=1$

$$
\begin{aligned}
f\left(\exp \left(i m \pi / 2^{n}\right)\right)= & \exp \left(i m \pi / 2^{n}\right)+\exp \left(i m \pi / 2^{n-1}\right)+\cdots \exp (i m \pi) \\
& +\exp (i 2 m \pi)+\exp \left(i 2^{2} m \pi\right)+\cdots+\exp \left(i 2 m^{\ell} \pi\right)+\cdots \\
= & \exp \left(i m \pi / 2^{n}\right)+\exp \left(i m \pi / 2^{n-1}\right)+\cdots \exp (i m \pi) \\
& +1+1+\cdots+1+\cdots \\
= & \infty
\end{aligned}
$$

Note that $z=\exp \left(i m \pi / 2^{n}\right)(n=0,1,2, \cdots ; m=0,1,2, \cdots)$ are dense on $|z|=1$, therefore $f(z)$ cannot be analytically continued beyond $|z|=1$.
(Proof for $\psi(z)$)
Since $\psi(F(z))=\lambda \psi(z)$ we have

$$
\begin{equation*}
\psi\left(F^{n}(z)\right)=\lambda^{n} \psi(z) \tag{1}
\end{equation*}
$$

Recall that $J_{P}=\partial K_{P}=\overline{\{\text { repelling fixed points }\}}$.
Assume z_{0} is a repelling fixed point of $F(z)$ of period n, and is a point of analyticity of $\psi(z)$.

- The relation (1) implies $\psi\left(z_{0}\right)=0$, since $|\lambda|<1$.
- $\left(F^{n}\right)^{\prime}\left(z_{0}\right) \psi^{\prime}\left(z_{0}\right)=\lambda^{n} \psi^{\prime}\left(z_{0}\right)$. but since $\left|\left(F^{n}\right)^{\prime}\left(z_{0}\right)\right|>1$ and $|\lambda|<1$, this implies $\psi^{\prime}\left(z_{0}\right)=0$.
- Inductively, we have $\psi^{(m)}\left(z_{0}\right)=0$ for all m.
- Since we have assumed that $\psi(z)$ is analytic, this entails $\psi(z) \equiv 0$.

Note:
What if $\lambda=e^{2 \pi i \alpha}$ where α is a Diophantine number?
3. Complex dynamics in two variables

2-dimensinal area-preserving maps

$$
F:\binom{p^{\prime}}{q^{\prime}}=\binom{p-V^{\prime}(q)}{q+H^{\prime}\left(p^{\prime}\right)}
$$

- Standard map : $\quad H(p)=\frac{p^{2}}{2}, \quad V(q)=K \cos q$
- Kicked Harper map : $\quad H(p)=K \cos q, \quad V(q)=K \cos q$
- Cubic potential map : $\quad H(p)=\frac{p^{2}}{2}, \quad V(q)=-\frac{q^{3}}{3}-c q$
"The cubic potential map" F is transformed into the Hénon map by an affine transformation $(p, q)=(y-x, y-1)$,

$$
P:\binom{x^{\prime}}{y^{\prime}}=\binom{y}{y^{2}-x+a} \quad(a=1-c: \text { nonlinear parameter })
$$

$$
n=1
$$

$$
n \rightarrow \infty
$$

Horseshoe case $\left(a>a_{f}\right)$

We have a generating partition which admits the symbolic dynamics with the binary coding $\{0,1\}$

Then the Hénon map P is conjugate to

$$
\sigma\left(\cdots s_{-1} s_{0} \cdot s_{1} s_{2} \cdots\right)=\left(\cdots s_{0} s_{1} \cdot s_{2} s_{3} \cdots\right)
$$

Parameter dependence

Hénon map :

$$
P:\binom{x^{\prime}}{y^{\prime}}=\binom{y}{y^{2}-x+a}
$$

(a : nonlinear parameter)

Depending on a, the Hénon map shows different dynamical behaviors:

1. horseshoe
2. hyperbolic (but not horseshoe)
3. mixed

As a decreases,

horseshoe broken

horseshoe broken

mixed
hyperbolic horseshoe

Hyperbolic case (not horseshoe)

Even after the horseshoe is broken, the dynamics is still hyperbolic, if all the stable and unstable manifolds intersect transversally.

mixed

hyperbolic horseshoe

Mixed phase space ($a \sim 1$)

Julia sets for 2-dimensinal maps

Classify the orbits according to the behavior of $n \rightarrow \infty$

$$
\begin{aligned}
& F^{ \pm}=\left\{(x, y) \in \mathbb{C}^{2} \mid \lim _{n \rightarrow \infty} P^{ \pm n}(x, y) \rightarrow \infty(n \rightarrow \infty)\right\} \\
& K^{ \pm}=\left\{(x, y) \in \mathbb{C}^{2} \mid \lim _{n \rightarrow \infty} P^{ \pm n}(x, y) \text { is bounded in } \mathbb{C}^{2}\right\}
\end{aligned}
$$

In particular

$$
\begin{array}{lll}
K=K^{+} \cap K^{-} & : & \text {filled Julia set } \\
J^{ \pm}=\partial K^{ \pm} & : & \text {forward (resp. backward) Julia set } \\
J=J^{+} \cap J^{-} & : & \text {Julia set }
\end{array}
$$

Bibliography

Bedford E and Smillie J
"Polynomial diffeomorphism in $\mathbb{C}^{2} ; \mathrm{I}-\mathrm{VIII}$ "

Bedford E and Smillie J : Invent. Math. 103 (1991) 69-99
Bedford E and Smillie J : J. Amer. Math. Soc. 4 (1991) 657-679
Bedford E and Smillie J : Math. Ann. 294 (1992) 395-420
Bedford E, Lyubich E and Smillie J : Invent. Math. 112 (1993) 77-125

Morosawa S, Nishimura Y, Taniguchi M and Ueda T.
Holomorphic Dynamics
(Cambridge Univ. Press, 1999)

Green function

Define

$$
G^{ \pm}(x, y) \equiv \lim _{n \rightarrow+\infty} \frac{1}{2^{n}} \log ^{+}\left|P^{ \pm n}(x, y)\right|
$$

where $\log ^{+} t \equiv \max \{\log t, 0\}$.
$G^{ \pm}(x, y)$ is continuous and plurisubharmonic on \mathbb{C}^{2}. Thus, by identifying $(x, y)=\left(z_{1}, z_{2}\right)$, we can apply the $d d^{c}$-operator ($=$ complex Laplacian $):$

$$
d d^{c} u \equiv 2 i \sum_{j, k=1}^{2} \frac{\partial^{2} u}{\partial z_{j} \partial \bar{z}_{k}} d z_{j} \wedge d \bar{z}_{k}
$$

to $G^{ \pm}(x, y)$ in the sense of distribution so as to get the $(1,1)$-currents :

$$
\mu^{ \pm} \equiv \frac{1}{2 \pi} d d^{c} G^{ \pm}
$$

\sim Poisson equation ($\mu^{ \pm}$: charge distribution)

Remark 1 Plurisubharmonic function
"Generalization of the subharmonic function to several variables cases"

Recall that subharmonic function $f(z)$ is a function satisfying

$$
f(z) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z+r \mathrm{e}^{i \theta}\right) d \theta
$$

Definition Upper semi-continuous function $f\left(z_{1}, z_{2}\right)$ is plurisubharmonic if $f\left(z_{1}, z_{2}\right)$ is subharmonic or identically equal to $-\infty$ on any complex 1dimensional line.

Remark 2 Currents

"Differential forms whose coefficients are given by distributions"

Definition Denote the set of differential (p, q)-forms whose coefficients are contained in C_{0}^{∞} (distributions) by $\mathcal{D}^{p, q}(\Omega)$:

$$
\mathcal{D}^{p, q}(\Omega) \equiv\left\{\sum_{|I|=p,|| |=q} u_{I, J} d z_{i_{1}} \wedge \cdots d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d z_{j_{q}} \mid u_{I, J} \in C_{0}^{\infty}(\Omega)\right\}
$$

Then, linear functionals on $\mathcal{D}^{2-p, 2-q}(\Omega)(=$ elements of the dual space of $\left.\mathcal{D}^{p, q}(\Omega)\right)$ are called (p, q)-currents. Here $I=\left(i_{1}, \cdots, i_{p}\right), \quad J=\left(j_{1}, \cdots, j_{q}\right)$.

Note: (2,2)-currents whose coefficients have compact supports can be identified with the measures on Ω.

An alternative definition for the Green function $G(x, y)$

Recall also that in 1-dimensional cases we can define the Green function as

$$
G(z) \equiv \log |\varphi(z)|
$$

where $\varphi(z)$ denotes the Böttcher function.
In the same way, for 2-dimensional cases, we define as

$$
G(x, y) \equiv \log |\varphi(x, y)|
$$

where $\varphi(x, y)$ is a 2 -dimensional analog of Böttcher function, which is constructed to satisfy

$$
\varphi(P(x, y))=\{\varphi(x, y)\}^{2}
$$

Note : $G(x, y)$ also satisfies the functional relation: $G(z)=\frac{1}{2^{n}} G\left(P^{n}(z)\right)$

Theorem (Bedford-Smillie)

$$
\operatorname{supp} \mu^{ \pm}=J^{ \pm}
$$

where $J^{ \pm}$is the forward (resp. backward) Julia set.
Note: $\operatorname{supp} \mu(z)=J_{P}$ for 1-dimensional polynomial maps (Brolin)

(Proof)

(supp $\mu^{+} \subset J^{+}$)
Since G^{+}is pluriharmonic on F^{+}(Fatou set), that is $d d^{c} G^{+}=0$, which implies $\mu^{+}=0$ on F^{+}. Recall that $G^{+}=0$ on $K^{+}\left(\right.$by definition of $\left.G^{+}\right)$. Thus, $\operatorname{supp} \mu^{+} \subset$ J^{+}.
$\left(\operatorname{supp} \mu^{+} \supset J^{+}\right)$
Suppose that there exist a point $z \in J^{+}$and its neighborhood W such that $\operatorname{supp} \mu \cap W=\emptyset$. This implies $d d^{c} G^{+}=0$ on W (that is, G^{+}is pluriharmonic on W). On the other hand, $G^{+} \equiv 0$ in ($W \cap K^{+}$) (by definition of G^{+}) and $G^{+} \geq 0$ on \mathbb{C}^{2}, thus $G^{+} \equiv 0$ on the whole W due to the principle of minimum values (since G^{+}is pluriharmonic). This contradicts that $G>0$ on $W \cap F^{+}$ (G^{+}is positive on K^{+}).

Complex equilibrium measure

Theorem (Bedford-Smillie)

1. $\mu=\mu^{+} \wedge \mu^{-}$is an invariant measure of the map P
2. Define

$$
J^{*} \equiv \operatorname{supp} \mu
$$

where μ is the potential theoretic invariant measure defined in 1.
Then we can prove

$$
J^{*} \subset J=\partial J^{+} \cap \partial J^{-}
$$

In particular, if P is hyperbolic, then

$$
J^{*}=J
$$

Stable and unstable convergent theorem

Theorem (Bedford-Smillie) Let M be an algebraic variety, then there is a constant $c>0$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left[P^{\mp n} M\right]=c \mu^{ \pm}
$$

in the sense of current, where $[M]$ is the current of integration of M.

Note 1:
For $u \in \mathcal{D}^{1,1}(\Omega)$, the current of integration of M is defined by $\int[M] \wedge u=\int_{M} u$
Note 2 :
An algebraic variety is given as the zero set of polynomials
Ex) Line $\left(z_{1}+z_{2}-1=0\right)$, Sphere ($\left.z_{1}^{2}+z_{2}^{2}-1=0\right)$, and so on.

Some important properties derived from the convergent theorem

Theorem (Bedford-Smillie)

1. For any unstable periodic orbit $p, \overline{W^{s}(p)}=J^{+}, \overline{W^{u}(p)}=J^{-}$
2. μ satisfies the mixing property and is hyperbolic measure, where supp $\mu=J^{*}$
3. $\{$ Unstable periodic points $\}=J^{*}$

Note : The measure μ is said to be hyperbolic measure, if characteristic exponents satisfy $\lambda_{1}>0>\lambda_{2}$.

Hénon map $\quad P: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$

$$
P:\binom{x^{\prime}}{y^{\prime}}=\binom{y}{y^{2}-x+a}
$$

For the horseshoe case, we can prove the followings :

1. For any unstable periodic orbit $p, \overline{W^{s}(p)}=J^{+}, \overline{W^{u}(p)}=J^{-}$
2. The measure on the invariant set satisfies the mixing property and is hyperbolic measure,
3. $\left\{\begin{array}{l}\text { Unstable periodic points }\} \\ =J^{*}\end{array}\right.$

What does the convergent theorem tell us?

Since supp $\mu^{ \pm}=J^{ \pm}$, any (algebraic) manifold $M \rightarrow J^{-}=\overline{W^{u}(p) \quad(n \rightarrow+\infty)}$

Interior points of $K^{ \pm}$and K

- 2-dimensional area preserving maps -

1. Linearization around a fixed point

Linearization around a fixed pont is not possible in the area preserving map because the non-resonant condition for eigenvalue of the linearized matrix A is be satisfied.
\Rightarrow Siegel disks cannot appear in 2-dimensional area preserving maps

We say that the matrix A satisfies the non-resonant condition if we have

$$
\prod_{i=1}^{2} \lambda_{i}^{k_{i}}-\lambda_{j} \neq 0
$$

for any $j=1,2$ and $\left(k_{1}, k_{2}\right) \in \mathbb{N}^{2}$ with $\left|\sum_{i=1}^{2} k_{i}\right| \geq 2$.

However, for an elliptic fixed point of 2-dimensional area preserving maps, we necessarily have a pair of eigenvalues $\lambda=\mathrm{e}^{i \alpha}$ and $\lambda^{-1}=\mathrm{e}^{-i \alpha}$ with $\alpha \in \mathbb{R}$ which clearly breaks the non-resonant condition.

KAM curves in \mathbb{C}^{2}

For a given rotation number ω, the motion on the KAM curve C_{ω} is expressed as a constant rotation in a sutable coordinate θ :

$$
\sigma: \theta \mapsto \theta+2 \pi \omega(\bmod 2 \pi)
$$

In order to have such a coordinate θ, the conjugation function φ satisfying

has to be analytic with respect to θ.
Assume

$$
\varphi(\theta, \omega)=\sum_{n} a_{n}(\omega) \mathrm{e}^{i n \theta}
$$

KAM theorem claims $\varphi(\theta, \omega)$ converges on the strip $|\operatorname{Im} \theta|<\rho_{c}$ for sufficiently irrational $\omega \Rightarrow$ Complexfied KAM curves.

KAM curves in \mathbb{C}^{2}

For a given rotation number ω, the motion on the KAM curve C_{ω} is expressed as a constant rotation in a sutable coordinate θ :

$$
\sigma: \theta \mapsto \theta+2 \pi \omega(\bmod 2 \pi)
$$

In order to have such a coordinate θ, the conjugation function φ satisfying

has to be analytic with respect to θ.
Assume

$$
\varphi(\theta, \omega)=\sum_{n} a_{n}(\omega) \mathrm{e}^{i n \theta}
$$

KAM theorem claims $\varphi(\theta, \omega)$ converges on the strip $|\operatorname{Im} \theta|<\rho_{c}$ for sufficiently irrational $\omega \Rightarrow$ Complexfied KAM curves.

How fat are KAM curves in \mathbb{C}^{2} ?

1. For a given $\omega \in \mathbb{R}, \theta$ can be complexified as $\theta=\theta^{\prime}+i \theta^{\prime \prime}$
\Longrightarrow 2-dim
2. KAM theorem claims that the measure of $\omega \in \mathbb{R}$ with $\rho_{c}>0$ is positive, but KAM curves do not exist for rational ω, which also have positive measure: $\Longrightarrow \alpha$-dim $(0<\alpha<1)$
3. If there exist rotation domains with $\omega=\omega^{\prime}+i \omega^{\prime \prime}$, which are not necessarily KAM curves
\Longrightarrow 1-dim

In total, the (Hausdorff) dimension of rotational domains associated with the convergent conjugating function $\varphi(\theta, \omega)=\sum_{n} a_{n}(\omega) \mathrm{e}^{i n \theta}$ is at most $(3+\alpha)$.

2-dimensional slice of K^{+}

- Hénon map -

2-dimensional slice of K^{+}

- Hénon map -

2-dimensional slice of K^{+}

- Hénon map -

2-dimensional slice of K^{+}

- Hénon map -

Speculations on

1. Linearization around a fixed point
2. Complexified KAM curves and

3. Numerical observations
lead us

Vacant interior conjecture
The filled Julia sets of the area-preserving map have no interior points :

$$
J^{ \pm}=K^{ \pm} \quad \text { hence } J=K
$$

Fundamental working hypothesis

1. Vacant interior conjecture $\left(J^{ \pm}=K^{ \pm}\right.$and $\left.J=K\right)$
2. $J^{*}=J$

Note : $J^{*} \subset J$ for generic cases and $J^{*}=J$ for hyperbolic cases.

"Dynamics" connecting KAM curves

"KAM curves are no more dynamical barriers in $\mathbb{C}^{2 \prime}$
More precisely, for arbitrary neighborhoods $U\left(z_{1}\right)$ and $U\left(z_{2}\right)$ of any two points z_{1} and z_{2} in \{KAM curves (either real or complex)\}, there exists n such that $U\left(z_{1}\right) \cap P^{n}\left(U\left(z_{2}\right)\right) \neq \emptyset$.
(Proof)
$-\operatorname{supp} \mu=J^{*} \quad(\Leftarrow$ Bedford-Smille)

- μ is mixing and ergodic (\Leftarrow Bedford-Smille)
- $K=J=J^{*} \quad$ (\Leftarrow working hypothesis)
- $\{$ KAM curves (either real or complex) $\} \subset K$

An orbit itinerating among different complex KAM curves

Summary of part II

1. The Hénon map in \mathbb{R}^{2} has three characteristic parameter regimes: full horseshoe, hyperbolic but not horseshoe, mixed
2. Julia sets and Fatou sets are introduced in \mathbb{C}^{2} as well as \mathbb{C}
3. Techniques using the Green function are explained in analogy with that in \mathbb{C}.
4. Convergent theorem (Bedford-Smillie) and some important properties derived from it are shown.
5. On the basis of the vacant interior conjecture together with the assumption $J=J^{*}$, it is shown that KAM curves do not any more play the role of barriers in the complex plane.
