Complex Semiclassical Approach to Chaotic Tunneling

Akira Shudo

Department of Physics, Tokyo Metropolitan University

Confinement of classical motions

Confinement is due to energy barriers

Confinement of classical motions

Confinement is not always due to energy barriers *dynamical barriers* also restrict the classical motions

Questions we here ask are

- * essential differences between one- and multi-dimensions ?
- * dynamically disconnected regions are connected, why and how ?
- * evaluate or even define the tunneling probability in multi-dimensional systems, is it possible ?

Plan of Lectures

- 1. Time domain semiclassical approach to dynamical tunneling
- 2. Complex dynamics in one variable
- 3. Complex dynamics in two variables
- 4. How to apply general theory of complex dynamics to tunneling problems

1. Time domain semiclassical approach to dynamical tunneling

We here take *complex* semiclassical approach

- * a natural extension of semiclassical analyses in the real domain
- ***** it enables us to clarify what dynamical mechanism works
- to develop the theory in the complex domain follows original spirits of semiclassical methods

Classical paths running in the complex space connect classically inaccessible regions.

Classical dynamics :

$$F:\left(\begin{array}{c}p'\\q'\end{array}\right)=\left(\begin{array}{c}p-V'(q)\\q+T'(p')\end{array}\right)$$

where T(p), V(q) are kinetic and potential functions.

Quantum dynamics :

$$K_n(a,b) = \langle b | \hat{U}^n | a \rangle = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \prod_j dq_j \prod_j dp_j \exp\left[\frac{i}{\hbar} S(\{q_j\},\{p_j\})\right]$$

where the action $S(\{q_j\}, \{p_j\})$ is determined such that the variational condition

$$\delta S(\{q_i\},\{p_i\}) = 0$$

yields the classical map *F*.

Example 1 Quadratic map

$$F: \begin{pmatrix} p_n \\ q_n \end{pmatrix} = \begin{pmatrix} p_{n-1} - V'(q_{n-1}) \\ q_{n-1} + p_n \end{pmatrix}$$

where
$$V(q) = \frac{1}{3}q^3 + cq$$

For simplicity, instead of (q_n, p_n) , we use (q_n, q_{n+1}) as phase space variables.

Quantum propagator for the 1-step quadratic map :

$$K(q_2, q_0) = \langle q_2 | U | q_0 \rangle = \int_{-\infty}^{\infty} dq_1 \exp\left[\frac{i}{\hbar}S(q_0, q_1, q_2)\right]$$

where

$$S(q_0, q_1, q_2) = \sum_{j=1}^2 \frac{1}{2} (q_j - q_{j-1})^2 - V(q_1)$$

We here evaluate the propagator $K(q_2, q_0)$ using the *saddle point approximation*. The saddle point condition is given as

$$\frac{\partial S(q_0, q_1, q_2)}{\partial q_1} = 0$$

This yields the equation of motion in the Lagrangian form

$$(q_2 - q_1) - (q_1 - q_0) = q_1^2 + c$$

Of course, this is equivalent to the map *F*.

For given q_0 , $q_2 \in \mathbb{R}$, the saddle point equation

$$(q_2 - q_1) - (q_1 - q_0) = q_1^2 + c$$

has

2 real solutionsif $q_2 < q_2^*$ classically allowed2 complex (conjugate) solutionsif $q_2 > q_2^*$ classically fobidden

For $q_2 > q_2^*$ the initial and final coordinates $q_0, q_2 \in \mathbb{R}$, but the intermediate $q_1 \in \mathbb{C}$.

Quantum propagator for the 2-step quadratic map :

$$K(q_3, q_0) = \langle q_3 | U | q_0 \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dq_1 dq_2 \exp\left[\frac{i}{\hbar}S(q_0, q_1, q_2, q_3)\right]$$

where

$$S(q_0, q_1, q_2, q_3) = \sum_{j=1}^3 \frac{1}{2} (q_j - q_{j-1})^2 - \sum_{j=1}^2 V(q_j)$$

The saddle point condition is given as

$$\frac{\partial S(q_0, q_1, q_2, q_3)}{\partial q_1} = 0, \qquad \frac{\partial S(q_0, q_1, q_2, q_3)}{\partial q_2} = 0$$

This yields the equations of motion

$$(q_2 - q_1) - (q_1 - q_0) = q_1^2 + c,$$
 $(q_3 - q_2) - (q_2 - q_1) = q_2^2 + c$

For given q_0 , $q_3 \in \mathbb{R}$, the saddle point equation has 4 solutions.

Example 2 Standard map

$$F:\left(\begin{array}{c}p_n\\q_n\end{array}\right)=\left(\begin{array}{c}p_{n-1}-V'(q_{n-1})\\q_{n-1}+p_n\end{array}\right)$$

where $V(q) = K \cos q$

Quantum propagator for the 1-step standard map :

$$K(q_2, q_0) = \langle q_2 | U | q_0 \rangle = \int_{-\infty}^{\infty} dq_1 \exp\left[\frac{i}{\hbar}S(q_0, q_1, q_2)\right]$$

where

$$S(q_0, q_1, q_2) = \sum_{j=1}^2 \frac{1}{2} (q_j - q_{j-1})^2 - K \cos q_1$$

The saddle point condition yields,

$$(q_2 - q_1) - (q_1 - q_0) = K \sin q_1$$

For given q_0 , $q_2 \in \mathbb{R}$, the saddle point equation has the solutions

 $\begin{cases} 2 \text{ real solutions} & \text{if } |q_2| < q_2^* \\ 2 \text{ complex (conjugate) solutions} & \text{if } |q_2| > q_2^* \end{cases}$

Quantum propagator for the 2-step standard map :

$$K(q_3, q_0) = \langle q_3 | U | q_0 \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dq_1 dq_2 \exp\left[\frac{i}{\hbar}S(q_0, q_1, q_2, q_3)\right]$$

where

$$S(q_0, q_1, q_2, q_3) = \sum_{j=1}^3 \frac{1}{2} (q_j - q_{j-1})^2 - \sum_{j=1}^2 V(q_j)$$

The saddle point condition yields,

$$(q_2 - q_1) - (q_1 - q_0) = K \sin q_1, \quad (q_3 - q_2) - (q_2 - q_1) = K \sin q_2$$

This gives

$$q_3 - 2q_0 = q_1 + 2(2q_1 + K\sin q_1) + K\sin(q_0 + 2q_1 + K\sin q_1)$$

For given q_0 , $q_3 \in \mathbb{R}$, this has infinitely many solutions.

Note : In the case of **real semiclassics**, the number of stationary phase solutions is always finite within a finite time step *n*.

Classical dynamics

$$F:\left(\begin{array}{c}p'\\q'\end{array}\right)=\left(\begin{array}{c}p-V'(q)\\q+p'\end{array}\right)$$

Forbidden process in classical dynamics

 $\mathcal{A}_a \cap F^{-n}(\mathcal{B}_b) = \emptyset$ for $\forall n$, if $\mathcal{A}_a, \mathcal{B}_b (\in \mathbb{R})$ are dynamically separated.

Quantum dynamics

$$K(\boldsymbol{a},\boldsymbol{b}) = \langle \boldsymbol{b} | \hat{\boldsymbol{U}}^{n} | \boldsymbol{a} \rangle = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \prod_{j} dq_{j} \prod_{j} dp_{j} \exp\left[\frac{i}{\hbar} S(\{q_{j}\},\{p_{j}\})\right]$$

Tunneling process in quantum dynamics

 $K(a, b) \neq 0$ even if $\mathcal{A}_a, B_b \in \mathbb{R}$ are dynamically separated.

Complex Semiclassical approach to dynamical tunneling

Quantum propagator

$$K(\boldsymbol{a},\boldsymbol{b}) = \langle \boldsymbol{b} | \hat{\boldsymbol{U}}^{n} | \boldsymbol{a} \rangle = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \prod_{j} dq_{j} \prod_{j} dp_{j} \exp\left[\frac{i}{\hbar} S(\{q_{j}\},\{p_{j}\})\right]$$

 $|a\rangle$: initial state $|b\rangle$: final state

Semiclassical propagator (\Leftarrow saddle point evaluation of K(a, b))

$$K^{sc}(\boldsymbol{a},\boldsymbol{b}) = \sum_{\gamma} A_n^{(\gamma)}(\boldsymbol{a},\boldsymbol{b}) \exp\left\{\frac{\mathrm{i}}{\hbar} S_n^{(\gamma)}(\boldsymbol{a},\boldsymbol{b})\right\}$$

 $\mathcal{A}_a = \{ (q, p) \in \mathbb{C}^2 \mid A(q, p) = a \}: \text{ initial manifold}$ $\mathcal{B}_b = \{ (q, p) \in \mathbb{C}^2 \mid B(q, p) = b \}: \text{ final manifold}$

Example The quantum propagator in *p*-representation

$$K(\boldsymbol{p}_a,\boldsymbol{p}_b) = \langle \boldsymbol{p}_b | \hat{U}^n | \boldsymbol{p}_a \rangle = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \prod_j dq_j \prod_j dp_j \exp\left[\frac{i}{\hbar} S(\{q_j\},\{p_j\})\right]$$

 $\mathcal{A}_{a} = \{ (q, p) \in \mathbb{C}^{2} \mid p = p_{a} \in \mathbb{R} \}: \text{ initial manifold}$ $\mathcal{B}_{b} = \{ (q, p) \in \mathbb{C}^{2} \mid p = p_{b} \in \mathbb{R} \}: \text{ final manifold}$

- $\Rightarrow \mathcal{A}_a$ and \mathcal{B}_b are both 1-dimesional complex lines in \mathbb{C}^2 .
 - Note : This holds in arbitrary representations, for example in the *coherent state representation* .

Problems When \mathcal{A}_a and \mathcal{B}_b are dynamically separated,

- 1. how are dynamically disconnected regions \mathcal{A}_a and \mathcal{B}_b in \mathbb{R}^2 are connected under the dynamics in \mathbb{C}^2 ?
- 2. is it possible to relate the dynamics from \mathcal{A}_a to \mathcal{B}_b to some invariant structures in \mathbb{C}^2 ?
- 3. how to evaluate the tunneling probability from \mathcal{A}_a to \mathcal{B}_b ?
- 4. does some specific relevant orbit(s) (like the instanton) exclusively control the transition from \mathcal{A}_a to \mathcal{B}_b , or are there any other principles ?

Quantum propagator for the **1-step** quadratic map :

$$K(q_2, q_0) = \langle q_2 | U | q_0 \rangle = \int_{-\infty}^{\infty} dq_1 \exp\left[\frac{i}{\hbar}S(q_0, q_1, q_2)\right]$$
where
$$S(q_0, q_1, q_2) = \sum_{j=1}^{2} \frac{1}{2}(q_j - q_{j-1})^2 + \frac{1}{3}q_1^3 + cq_1$$

$$Re q_n$$
The saddle point condition gives
$$Re q_n$$

 $\begin{cases} 2 \text{ real solutions} & \text{if } q_2 < q_2^* \\ 2 \text{ complex (conjugate) solutions} & \text{if } q_2 > q_2^* \end{cases}$

For the classically forbidden side, one solution gives exponentially decay, but the other exponentially divergent. $K(q_2, q_0)$ can be transformed into a canonical form of the Airy integral

Ai(x) =
$$\int_C d\xi \exp i \left[\frac{1}{3} \xi^3 + x \xi \right] = \int_{C_1} + \int_{C_2} \xi^3 + x \xi = \int_{C_1} + \int_{C_2} \xi^3 + x \xi = \int_{C_2} \frac{1}{3} \xi^3 + x \xi = \int_{C_2}$$

where C_1 and C_2 denote the steepest descent contours passing respectively through the saddle points $\xi_1 = i|x|^{\frac{1}{2}}e^{\frac{1}{2}i\theta}$ and $\xi_2 = -i|x|^{\frac{1}{2}}e^{\frac{1}{2}i\theta}$

Saddle point method in multiple integrals — Stokes phenomenon in multidimensions —

Quantum propagator for the **2-step** quadratic map :

$$K(q_3, q_0) = \langle q_3 | U | q_0 \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dq_1 dq_2 \exp\left[\frac{i}{\hbar}S(q_0, q_1, q_2, q_3)\right]$$

where

$$S(q_0, q_1, q_2, q_3) = \sum_{j=1}^3 \frac{1}{2} (q_j - q_{j-1})^2 - \sum_{j=1}^2 V(q_j)$$

- Steepest descent surfaces ?
- Uniqueness?
- Practical recipe ?

We do not discuss the issue of Stokes phenomena in our lectures

2. Complex dynamics in one variable

For the moment, we forget about

- boundary conditions (initial and final)
- Stokes phenomenon (non-contributing complex orbits)

just focus on the dynamics in \mathbb{C} or \mathbb{C}^2 .

Why the dynamics in \mathbb{C} ? (our interest is the dynamics in \mathbb{C}^2)

- not so familiar even in ${\mathbb C}$
- better understood in C than C²
- need technically hard tools in \mathbb{C}^2

1-dimensinol polynomial maps and the Julia set

Consider 1-dimensinol polynomial maps with degree *d*

$$P: z \mapsto P(z)$$

where

$$P(z) = z^d + a_1 z^{d-1} + \dots + a_d$$
 $(d \ge 2)$

Classify the orbits according to the behavior of $n \rightarrow \infty$

$$F_P = \{ z \in \mathbb{C} \mid \lim_{n \to \infty} P^n(z) = \infty \} :$$
Fatou set
$$K_P = \{ z \in \mathbb{C} \mid \lim_{n \to \infty} P^n(z) \text{ is bounded } \} :$$
Filled Julia set
$$K_P = \mathbb{C} - F_P$$

In particular

 $J_P = \partial K_P \quad : \qquad \text{Julia set}$

Example 1 $P(z) = z^2$

It is easy to show that

 $F_P = \{ |z| > 1 \}, K_P = \{ |z| \le 1 \}, J_P = \{ |z| = 1 \}$

- $z = \infty$ is an attracting fixed point of *P*. The points $z \in F_P$ tend to ∞ montonically.
- z = 0 is also is an attracting fixed point of *P*. The points $z \in K_P - J_P$ converge to z = 0 monotonically.
- The orbits $z \in J$ are chaotic.

Putting $z = e^{2\pi i\theta}$, then the map on J_P can be reduced to $\theta \mapsto 2\theta \pmod{1}$.

Note: K_P has interior points and Area(K_P)> 0.

Example 2 $P(z) = 2z^2 - 1$

It is also easy to show that

 $F_P = \mathbb{C} - [-1, 1], \quad K_P = J_P = [-1, 1]$

- Since $P(\cos \theta) = \cos(2\theta)$, we generally have $P^n(\cos \theta) = \cos(2^n \theta)$.
- Then the iteration on $z \in [-1, 1]$ is described by $\theta \mapsto 2\theta \pmod{1}$.
- One can show that if $z \in \mathbb{C} [-1, 1]$, $P^n(z) \to \infty$ as $n \to \infty$.

Note: K_P has no interior points and Area(K_P) = 0.

Properties of the Julia set

"P is chaotic on *J_P "*

- 1. Sensitive dependence on initial conditions there exists $\delta > 0$ such that, for any $z \in J_P$ and any nbd U of z, there exists $\zeta \in U$ and $n \ge 0$ such that $|P^n(z) - P^n(\zeta)| > \delta$
- 2. Density of repelling periodic orbits

 $J_P = \partial K_P = \{ \text{ repelling fixed points } \}$

3. Topological transitivity

For any open sets $U, V \subset J_P$, there exists k > 0 such that $P^k(U) \cap V \neq \emptyset$

Why polynomial maps?

- Polynomial maps have "filtration property".

For sufficiently large *R*, one can show that $P(V) \subset V$ where $V = \{ |z| > R \}$. Hence,

$$F_P = \bigcup_{n=1}^{\infty} P^{-n}(V)$$

- Transcendental maps do not have.

ex)
$$P(z) = z + \sin(2\pi z), P(z) = z + e^{z} + 1, \cdots$$

Why polynomial maps?

- Polynomial maps do not have "wandering domain".

Theorem (Sullivan) for any component of Ω in the Fatou set F_P , Ω , $P(\Omega)$, $P^2(\Omega)$, \cdots is eventually periodic.

- Transcendental maps can have.

ex) $P(z) = z + \sin(2\pi z)$

Definition A component Ω in the Fatou set F_P is:

(a) *periodic* if $\exists n > 0$ such that $P^n(\Omega) = \Omega$,

(b) eventually periodic if $\exists m > 0$ such that $P^m(\Omega)$ is periodic,

(c) *wandering* if the sets $P^n(\Omega)$ for $n \ge 0$ are pairwise disjoint.

Suppose

$$P: z \mapsto a_1 z + a_2 z^2 + \cdots + a_d z^d \qquad (a_1 \neq 0)$$

Then, z = 0 and $z = \infty$ are attracting fixed points.

The dynamics around z = 0 and $z = \infty$ are rather simple.

```
P(z) \sim zaround z = 0P(z) \sim z^daround z = \infty
```

