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Confinement of classical motions
— 1-dimension —

Confinement is due to energy barriers




Confinement of classical motions
— 2-dimensions —

. : unstable periodic orbit
unstable periodic orbit )

X1

Confinement is not always due to energy barriers dynamical barriers also

restrict the classical motions




Questions we here ask are

+ essential differences between one- and multi-dimensions ?

+ dynamically disconnected regions are connected, why and how ?

+ evaluate or even define the tunneling probability in multi-dimensional

systems, is it possible ?




Plan of Lectures

Time domain semiclassical approach to dynamical tunneling

Complex dynamics in one variable

Complex dynamics in two variables

How to apply general theory of complex dynamics to tunneling problems




1. Time domain semiclassical approach to dynamical tunneling




We here take complex semiclassical approach

+ a natural extension of semiclassical analyses in the real domain

+ it enables us to clarify what dynamical mechanism works

+ to develop the theory in the complex domain follows original spirits

of semiclassical methods




Classical paths running in the complex space connect classically

inaccessible regions.

instanton path
/

X




Discretized dynamics — Classical and Quantum —

Classical dynamics :

r (P )P~ V@
7 q+T(p)

where T(p), V(g) are kinetic and potential functions.

Quantum dynamics :

Kn(a,b)=(blfl"la)=f f dg; | | dp;ex [iS({ 1A '})]
N _001:[‘]]1:[ Pj Ph qijs\P;j

where the action S({g;}, {p,}) is determined such that the variational condition

5S(g;} {pj}) = 0

yields the classical map F.




What is “dynamical tunneling” ?

Example1l Quadratic map
F- ( Pn ) — ( Pn-1 — V,(qn—l) )
qn qn—l + pn

where V(g) = %q"’ + cq

For simplicity, instead of (g, p,,), we use (4, 4,+1) as phase space variables.




Quantum propagator for the 1-step quadratic map :

(S ]

i
K(q2, q0) = (q2{Ulq0) = f ddq, exP[ES(qo, 91, qz)]

where

5(6]01 6]1: 6]2) — (6]] - 6];'—1)2 - V(ql)

We here evaluate the propagator K(q,, q0) using the saddle point approximation.
The saddle point condition is given as

35(6]01 6]1, 112) — 0
86]1

This yields the equation of motion in the Lagrangian form
(42—611)—(41—6]0) =6]i+C

Of course, this is equivalent to the map F.




For given gy, 4. € R, the saddle point equation
(112—111)—(6]1—170) =6]i+C
has

2 real solutions it g, <¢q, classically allowed
2 complex (conjugate) solutions if g, > g, classically fobidden

For g, > q; the initial and final coordinates gy, . € R, but the intermediate g, € C.

classically fobidden

y__*
‘qz

classically allowed




Quantum propagator for the 2-step quadratic map :

xO O i
K(q3, 6]0) — (6]3|U|q0) = f f dqldqz eXP[ES(qOr q1, 942, %)]

where

2
1
5(6]0, 6]1, 6]2, q3) — Z 5(6]] - 6]]'—1)2 - Z V(q])
: i=1

3
=1

The saddle point condition is given as

35(110, 6]1, 6]2, 6]3) — 0 35(610, 6]1, 6]2, 6]3) — 0
s aqz

86]1

This yields the equations of motion

(92— q) = (g1 = q0) = q;, + ¢, g3 —q) — (@2 —q1) =g, + c

For given gy, g3 € R, the saddle point equation has 4 solutions.




4 complex

2 real
2 complex

4 real

2 real
2 complex




one step

»
>

__-. exponéntially divergent

exponentially decaying

/ instanton

Re g,

two steps




Example 2 Standard map

F - Pn ) — ( Pn-1 — V,(qn—l) )
qn %-1 + pn

where V(g) = Kcosg

/




Quantum propagator for the 1-step standard map :

(69

1
Kgz,q0) = (:ltilgo) = [ day exp[ 5o, 1,32

-0

where

5(90, 91, 92) = (9, — q;-1* — K cos q1

2
=1

The saddle point condition yields,

(‘72 - 41) - (6]1 - 6]0) = K sin q1

For given gy, g, € R, the saddle point equation has the solutions

2 real solutions it |q.| < q,
2 complex (conjugate) solutions it |g2| > q;




classically forbidden

exponentially decaying

/- Re 6{1

~
o B

exponentially divergent

exponentially decaying




Quantum propagator for the 2-step standard map :

(&0 (S0 i
K(qs, 90) = (gs|Ulq0) = f f dqldqzexP[ES(qo,ql,qz,qs)]

where

3 1 2

5(610, qll 112, q3) - Z E(q] - qj—l)z - Z V(q])
j:l j=1

The saddle point condition yields,

(g2 —q1) — (g1 — q0) = Ksing;, (g5 —q2) — (g2 — g1) = Ksinq,

This gives

gz — 290 = g1 + 2(2g1 + K sin q;) + K sin(gy + 29, + K sin g)

For given gy, g5 € R, this has infinitely many solutions.

Note : In the case of real semiclassics, the number of stationary phase solutions is

always finite within a finite time step n.




Dynamical tunneling in mixed phase space

Classical dynamics

(P p—Vi(

‘\q q+p

Forbidden process in classical dynamics

A, N F(B,) = 0 for Yn, if A,, B,(€ R) are dynamically separated.




Dynamical tunneling in mixed phase space

Quantum dynamics

K(a, b) = (b|0"a) = f f da: T dp: expl L8Ga 1, i)
. _ool:[q]H pj Ph qdisr \Pj

Tunneling process in quantum dynamics

K(a,b) # 0 even if A,, B,(€ R) are dynamically separated.




Dynamical tunneling in mixed phase space




Dynamical tunneling in mixed phase space




Dynamical tunneling in mixed phase space

N
\ N
&\L"’/f:;\\
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Dynamical tunneling in mixed phase space




Dynamical tunneling in mixed phase space

-
‘"‘"7{4/”:\\1




Dynamical tunneling in mixed phase space




Complex Semiclassical approach to dynamical tunneling

Quantum propagator

K(a,b)=(b|lfl"|a)=f f dg; | | dp;ex [iS({ I -})]
B _OOI]I"”I]I py exp| =Staj) ip;

|la) : initial state |b) : final state

Semiclassical propagator ( &< saddle point evaluation of K(a, b) )

K*(a,b) = Y A (a, b) exp{%SLy)(a, b)}
Y

A, ={(g,p) € C*| A(g,p) = a}: initial manifold
By, ={(g,p) € C*|B(g,p) = b}: final manifold




Example The quantum propagator in p-representation
. +00 +00 1
K(pa, pp) = (pslU"| a>=f f dq; | | dpjex [—S({ 1A ~})]
ParP P P . _001:[%1:[ Pj Ph qi3r Pj

A, ={(gq,p) € C*|p = p, € R}: initial manifold

By, ={(g,p) € C*|p = p, € R}: final manifold

= A, and B, are both 1-dimesional complex lines in C>.

Note : This holds in arbitrary representations, for example in the

coherent state representation .




Problems When A, and B, are dynamically separated ,

1. how are dynamically disconnected regions A, and B, in R?

are connected under the dynamics in C*?

is it possible to relate the dynamics from ‘A, to B, to some

invariant structures in C*?
how to evaluate the tunneling probability from A, to 5,?

does some specific relevant orbit(s) (like the instanton) exclusively

control the transition from A, to 5, or are there any other principles ?




Not all the complex orbits contribute in the saddle point evaluation

Quantum propagator for the 1-step quadratic map :

(S0

dq, exP[%S(qo, q1, 6]2)]

where Rep,
2 : .
1 1 _.--- expoyéntially divergent

S(qo, qd1, l]z) = Z 5(6]]' - qj—l)z + gqi + Cq1 '23,

j=1 exponentially decaying

K(q2, 6]0) - (quUIqo) - f

The saddle point condition gives Re g,

2 real solutions if g, < ¢,
2 complex (conjugate) solutions it g, > q,

For the classically forbidden side, one solution gives exponentially decay,

but the other exponentially divergent.




K(g, q0) can be transformed into a canonical form of the Airy integral

Ai(x):fdéexpi[1§3+x€] =f +f
C 3 a Jo

where C; and C, denote the steepest descent contours passing respectively

1 lio

through the saddle points & = i|x|zez? and & = —ilx|2e?




Saddle point method in multiple integrals

— Stokes phenomenon in multidimensions —

Quantum propagator for the 2-step quadratic map :

(6.0 (6.0 i
K(gs, 90) = {(g5|Ulg0) = f f dqqdq; eXP[£5(40141142,43)]

where

3 2
1
5(q0, 91, 92, 93) = Z E(qj - qj—l)z - Z Vig;)
j=1

=1

- Steepest descent surfaces ?
- Uniqueness ?

- Practical recipe ?

We do not discuss the issue of Stokes phenomena in our lectures




2. Complex dynamics in one variable




For the moment, we forget about

- boundary conditions (initial and final)

- Stokes phenomenon (non-contributing complex orbits)

just focus on the dynamics in C or C=.

Why the dynamics in C? (our interest is the dynamics in C?)

- not so familiar even in C
- better understood in C than C?

- need technically hard tools in C>




1-dimensinol polynomial maps and the Julia set

Consider 1-dimensinol polynomial maps with degree d

P:zm P(2)
where
PZ)=z"+az" '+ - + ay (d > 2)

Classify the orbits according to the behavior of n = oo

Fp={z€C| lim P"(z) = oo } : Fatou set

n—oo

Kp ={z € C]| lim P"(z) is bounded } : Filled Julia set

n—» 00

Kp =C - Pp
In particular

Jp = 0Kp : Julia set




Example 1 P(z) = z*

It is easy to show that

FP={|Z|>1}I KP={|Z|S1}I ]P={|Z|=1} /

- z = oo is an attracting fixed point of P.

The points z € Fp tend to co montonically.

- z = 01is also is an attracting fixed point of P.

The points z € Kp — Jp converge to z = 0 monotonically.

- The orbits z € | are chaotic.

Putting z = ¢*™?, then the map on Jp can be reduced to 0 — 20 (mod 1).

Note: Kp has interior points and Area(Kp)> 0.




Example 2 P(z) = 2z° -1

It is also easy to show that

PP=C_[_111]I KP=]P= [_111]

- Since P(cos 0) = co0s(20), we generally have P"(cos 0) = cos(2"0).
- Then the iteration on z € [—1,1] is described by 0 - 20 (mod 1).

- One can show thatif z € C — [-1,1], P"(z) > oo asn — oo.

Note: Kp has no interior points and Area(Kp)= 0.




Properties of the Julia set

“P is chaotic on Jp”

1. Sensitive dependence on initial conditions
there exists 6 > 0 such that, for any z € Jp and any nbd U of z,
there exists ¢ € U and n > 0 such that |P"(z) — P*(C)| > 6

2. Density of repelling periodic orbits

Jp = dKp = { repelling fixed points }

3. Topological transitivity

For any open sets U, V C Jp, there exists k > 0 such that P*(L) NV £ @




Why polynomial maps ?

- Polynomial maps have “filtration property”.

For sufficiently large R, one can show that P(V) c Vwhere V = {|z| > R}.

Hence,

(S,

Fp = JP(v)

n=1
- Transcendental maps do not have.
ex) P(z) = z+sin(@nz), P(z) =z+e* +1,---

V+




Why polynomial maps ?

- Polynomial maps do not have “wandering domain”.

Theorem (Sullivan) for any component of € in the Fatou set Fp,
Q, P(QQ), P>(Q), - - - is eventually periodic.

- Transcendental maps can have.

ex) P(z) = z + sin(2mz)

Definition A component  in the Fatou set Fp is:
(a) periodic if A n > 0 such that P"(Q2) = Q,
(b) eventually periodic if 4 m > 0 such that P"(Q) is periodic,

(c) wandering if the sets P"(Q) for n > 0 are pairwise disjoint.




The dynamics around z = 0 or z = oo

Suppose

P:zb a1z + ayz> +++-ayz" (a1 #0)

Then, z = 0 and z = oo are attracting fixed points.

The dynamics around z = 0 and z = oo are rather simple.

P(z) ~z aroundz =0

P(z) ~ z% around z = oo




