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Method Il: comparison equations

Given a barrier potential V/(x), look for a coordinate transformation

x=s(x) P(x) = e(s) = (X(s))w(x(s))

which transforms the Schrodinger equation into a “similar” solvable one
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V(X) u(s)
This works (approximately) provided we choose s(x) so that
pdx =wds, p=+/2m(E—-V(x)), w=+2m(€ - U(s)).

In a region where V/(x) and U(s) have the same turning point structure,
the transformation x — s can be made smooth.



Observation: The Schrodinger equation for the inverted harmonic oscil-

lator
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is in terms of parabolic cylinder functions
o(s) = aDy_1 (V25) + bD; 3 (~v/2s) .

From the known asymptotics of these functions we deduce that
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The comparison method is attractive because it demands nothing beyond
differential equations but is restricted to (a) Hamiltonians of type kinetic
+ potential (b) one dimension.



Method Ill: transformations in phase space

In classical mechanics it is common to use the canonical transformation
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to swap between the Hamiltonians
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Suggests using, as a model for barrier penetration,

noo o

In a representation where

the Schrodinger equation /:/’(/J = £ becomes
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This first-order ODE is very easily solved!
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e Creagh, Nonlinearity 18, 2089 (2005).
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For example, if we define

Q) = [ U@ a¥(a)dg

where

U(Q, q) = - 6271__eiF(Q,q)/ﬁ F(Q.q) =
’ V2rih \| 0Q0q ' ’

defines a unitary operator quantising (g, p) — (Q, P) then it is easily
seen that (exercise!)

(Q*—2¢Q + ¢°)
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transforms to



Two fundamental solutions are

P+(Q)=0(Q)Q™VZ/M and  ¥_(Q) = ¥+(-Q)

respectively representing waves incident on the two sides of the barrier:

products out

reactants in products out

reactants in

q

products in

reactants out products in

reactants out

But how do we get information about tunnelling from this solution???



Generalised flux

It will help to be able to measure flux across surfaces in phase space, and
not just in configuration space.

Y =0V
pv = (V| Py V)

: _dpv
Ehrenfest’s theorem: T <\U|[PV Hlw) = (v // W)

In general we will define the flux across the surface ¥ to be
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In the special case H = %ﬁz + U(q) and PyV¥(q) = ©(q — qo0)V¥(q)
then
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so, in one dimension,
Fe(V) = (W//s¥)

— %[\U*(GO)(—/h\U’(qo))+(—/h‘|’/(qo))*w(C70)]
— % [W*(q0)¥'(q0) — V" (q0)¥(q0)]

and in more dimensions (exercise!)

h
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Exercise: For H = —%(Q/AD + PQ), show that the state

V-(Q) = O(~Q)(~Q) V22

is normalised so as to have unit incoming flux from the left.

Solution: Choose jL
/ljvw(Q) — @(Q — QO)’()D(Q), QO < O reactants in .
Then ﬁr

SRV Al = o (QO(Q - Qo). Pl +[0(Q — Qo). PIQ)
= -Q¥(Q -~ Q)

and

W //s¥) = / ~Q5(Q—Qo)|¥—(Q)PdQ = — Qo|(— Qo) /27 ¢/2)2 = 1.



Exercise: Get the outgoing fluxes.

Solution: Here we need to measure flux across a momentum. Fourier
transform the wavefunction
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Upwards flux: let the projection operator ﬁ’v
act on @(P) according to

Pvo(P) = ©(Po — P)p(P), Po >0

Then
1.« 1 R R
S[Pv ] =~ ([@(Po —P), QP + P[O(Py — P), Q])

— P§(P — Po)

and
ewg/ﬁ

W //s9) = Polp(Po)” = T

Similarly, the downwards flux (across Py < 0))
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Technicalities

For a detailed calculation of amplitides (or the scattering matrix, in-
cluding phase information) it is necessary to investigate more fully the
nature of the transformation

w(x) v, »(Q)
| solve A= L(&P+PQ)
= <; f) for V(x) +—— ' = (;, f,) for %(Q)

(see, for example, Waalkens et al, Nonlinearity 21 (2008) R1).

For transmission and reflection probabilities, on the other hand, which

are measured invariantly by fluxes, the details of this transformation are

not needed, except to note that (Creagh, Nonlinearity 18 (2005) 2089)
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Higher-dimensional barriers

The advantage of the phase-space version of the comparison method is
that it generalises to higher-dimensional barriers.
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The starting point is a multidimensional version of
H(x, p) — QP

(the normal form transformation).



The transition state

The transition state is a set of configurations dividing reactants from
products.
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For a collinear reaction

X y X y
- -— <
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AB + C — A + BC

the classical transition state is identified with a periodic-orbit dividing
surface, or PODS [eg, Pollak, Child and Pechukas,(1979)],

reactants . . . .
(eliminates multiple crossings ).
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Phase space geometry

The PODS has a stable manifold W* which divides reactants from pro-
ducts.

o Jaffé et al PRA 60, 3833 (1999); PRL 84, 610 (2000).
e Uzer et al, Nonlinearity 15, 957 (2002).
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Reacting fraction

pf://f(q,P)dqdp:L xv(a,p)f(q. p)dadp = (xv)



The classical normal form
[Uzer et al, Nonlinearity 15, 957 (2002)]
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H =508 — a3) + D _wi(a + pf) + host.
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With | = (g2 — p3)/2 and Ho(q, p) = 30, wi(g? + p?) + h.o.t. then

H(qo0.pPo. q.p) = —>\l+Ho(q,p)+lHl(q,p)+/2H2(q,p)+...
= H(q.p. 1)



The quantum normal form

A==+ Ho(g. D) + TH1(4. B) + 12Ha(@, ) + - - -

where

and

Stationary states:

V7 (90, 9) = ¥z(90)ez.x(q).

where A
Iz(q0) = Zvz(q0)

and

H(@, b, )¢z k(q) = Ex(T)@z.k(q).



Transmission rate of NF scattering states
Relabel states using Ex(Z) = E = 7 = Z\(E),
Ve k(g0 9) = ¥z, (£)(90) 0z, (£).£()-
Then (despite (¢g k|0e k) # Okkr),

out
p (VE //zi’;.\UE,k) = Ok

(Ve //z%uth,k> = Tk(E)Okk



An operator for uniform transmission probablities

Identify a basis AL

lk) ~ Ve k(q0. q) l

for the space HIZ(E) incoming states subject to
R

the inner product —
(k|K') = (Ve « //):i;wE,k’> = O

Transmission probabilities from (k|R|k), where
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R(E) = Zm|k><|

A

e—27rh/ﬁ T(E)
14e-2mh/h 14 T(E)

where h = ZIk ) |k)(k| and T(E) = e 2mh/h
K




This operator can be related to the scattering matrix

5:<r t) R~ tht
t r

and can be represented in phase space using the Wigner-Weyl corre-
spondence:

E > Ebarrier




This operator can be related to the scattering matrix

t r

and can be represented in phase space using the Wigner-Weyl corre-
spondence:

E % Ebarrier




This operator can be related to the scattering matrix

S = (r t) R~ tht
t r
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and can be represented in phase space using the Wigner-Weyl corre-
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Conclusion

e A variety of methods are available to treat barrier-transmission pro-
blems.

e All of them are useful

e Phase-space based methods are particularly powerful in dealing with
multidimensional problems.



