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Barrier penetration in one dimension

e ikx

Barrier penetration in one dimension is characterised using transmission
and reflection coefficients which can be approximated uniformly by

t ≈
e−θ−iδ√
1 + e−2θ

and r ≈
−ie−iδ√
1 + e−2θ

where

2iθ =
1
~

∮
pdq

is a complex action integral around turning points and the phase δ is
described later.



The transmission and reflection probabilities are simpler

R ≡ |r |2 ≈
1

1 + e−2θ
and T ≡ |t|2 ≈

e−2θ

1 + e−2θ

E

classical
quantum

T=1

and note also the primitive approximations

r ≈ −i and t ≈ e−θ

and
R ≈ 1 and T ≈ e−2θ

valid when E < Ebarrier and e−θ � 1.



Allowing also for waves incident on either side of the barrier, these coef-
ficients can be arranged in a scattering matrix

S =

(
r t
t r

)
Ψ Ψtransrefl

Ψin

which will have multidimensional generalisations later. Notice that the
approximations given satisfy the flux conservation condition

|r |2 + |t|2 = 1

and the scattering matrix is unitary

S†S = I .



Method I: extension to the complex plane

The standard WKB ansatz

ψ±(x) = A(x)eiS±(x ,x0)/~, S±(x , x0) = ±
∫ x

x0
p(x)dx , A(x) ∝

1√
p(x)

breaks down at turning points p(x) = 0, where A(x)→∞.

AeiS+(x ,x−) + rAeiS−(x ,x−) tAeiS+(x ,x+)



We can skirt around this by promoting x to be a complex variable.

Ψrefl

ΨtransinΨ

−xx x+

Stokes’ phenomenon elimi-
nates one of ψin, ψrefl but
the surviving term is simply
continued.

Notice that

S(x , x−) = S(x , x+) + S(x+, x−) = S(x , x+) + i~θ

so
ψin(x) = A(x)eiS(x ,x−)/~ → ψtrans(x) = tA(x)eiS(x ,x+)/~

where
t ≈ e−θ

is a primitive approximation for the transmission amplitude. A very clear
description of the mechanics of this calculation can be found in Berry and
Mount Rep. Prog. Phys. 35, 315 (1972)...



The Stokes phenomenon, briefly

... but it is now possible to give a much clearer explanation of the Stokes
phenomenon which is a manifestation of the fact that a fully developed
WKB approximation

ψ±(x) = A(x)eiS±(x ,x0)/~ → eiS±(x ,x0)/~ (a0(x) + ~a1(x) + · · · )

is divergent
error

number of terms

• Borel resummation [Eg, Balian and Bloch (1974), Ecalle, Voros (1983),
Delabære et al (1997).]
• Sum to term with least error [Eg. Stokes, Balian et al (1978), Berry
(1989).] (which can also involve Borel resummation)



Borel resummation for dummies
If the formal sum

f (~, x) = a0(x) + ~a1(x) + · · ·+ ~nan(x) + · · ·

is divergent, there is some chance that the alternative sum

f̂ (s, x) = a0(x) + sa1(x) + · · ·+ sn an(x)

n!
+ · · ·

converges for s small enough, perhaps defining in a disk in the complex
plane, for each x , an analytic function

nearest singularity

Re(s)

Im(s)
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which might even be analytically
continued beyond the disk of con-
vergence of the original series.



More generally we could make the association

ψ(~, x) = eiS0/~
∑
λ

~λaλ ∼ ψ̂(s, x) =
∑
λ

aλ(x)

Γ (λ+ 1)
(s − iS0)λ

where the connection ψ̂(s, x)→ ψ(~, x) is made using a variation of the
Laplace transform

ψ(~, x) =
1
~

∫
C

e−s/~ψ̂(s, x)ds

with an appropriately chosen contour C in the complex plane.

Im(s)

Re(s)

iS
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The path taken by the contour is a matter of convention, which is im-
portant when there are other singularities about!
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The difference is an integral of the same type
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but exponentially smaller!



Complex dynamics

The action integral S(x+, x−) = i~θ can be interpreted as a contour
integral

2iθ =
1
~

∮
pdq Im

Re

(q)

(q)

which can naturally be extended to energies above barrier:

Im (q)

Re (q)



Barrier-crossing action integrals are associated with complex dynamics.

F(x)

In dynamical equations let

t = −iτ, p = iu, q = x

then
dx
dt

= p
dp
dt

= F (x) H =
p2

2m
+ V (x)

maps to

dx
dτ

= u
du
dτ

= −F (x) H = −
u2

2m
+ V (x)



The same basic approach can be used to treat transmission across mul-
tidimensional barriers

Ψ Ψtransrefl

Ψin

with the difference that in this case transmission depends on what is
going on in transverse degrees of freedom also

such as in a scattering matrix or
a Green function.



Here the instanton orbit

ΣR

ΣP

generalising Im

Re

(q)

(q)

is a periodic orbit in the upside-down potential which can be extended
to other Hamiltonian types and to above-barrier energies

ΣR

ΣP

generalising
Im (q)

Re (q)

but which provides only part of the story.


