J. Phys. B: At. Mol. Opt. Phys30 (1997) 4663-4694. Printed in the UK Pll: S0953-4075(97)82346-2

TOPICAL REVIEW
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Abstract. Using theoretical results from complex rotation calculations and data from
experimental photoionization cross sections, the quantum defects, the widths, the oscillator
strengths and the shape parameter of Rydberg series of autoiorfiZhgesonances in
helium, excited with synchrotron radiation from the ground state, are reviewed and analysed
systematically. The relation of these resonance properties to the propensity rules for radiative
and non-radiative transitions in two-electron atoms is established.

1. Introduction

Ever since the discovery of strongly correlated two-electron states in early photoabsorption
experiments with helium [1] doubly excited states have been in the centre of experimental
[2—-8] and theoretical [9—-18] efforts to understand correlated two-electron dynamics. Recent
measurements of photoabsorption [19] as well as electron emission measurements following
photoabsorption [20] have reached unprecedented resolution in energy, which has been
achieved with a new generation of synchrotron radiation sources and new detector
technology. This resolution allows the determination of sensitive details of many resonances
beyond their energy position and their widths, namely the Beutler—Fano shape parameter
[21]. Simultaneously, the increasing computing power together with well adapted basis sets
for the two-electron Hamiltonian have permitted #iginitio calculation of those resonance
parameters [8, 18]. The most extensive theoretical studies have concentrated/os: the
states. For such states the existence of approximate quantum numbers [10,22] and the
existence of propensity rules for autoionization [23] and dipole transitions [13, 24] has been
confirmed by high precision calculations [25].

In this study we will discuss resonances & symmetry, which are experimentally
accessible through photoexcitation from the ground state. The experimental and theoretical
determination of the;-parameter is for many resonances still at the limit of technical fea-
sibility. Nevertheless, enough material is now available for a systematic overview of the
behaviour of they-parameter, at least for moderate excitation energies. We will explicitly
examine the behaviour of the widtisof resonances in the light of the propensity rules for
autoionization. Secondly, we will test the propensity rules for photoabsorption looking at the
dipole transition probabilityB? into the boundpart of the resonant wavefunction. We can
elucidate the mechanism of dipole absorption in more detail than in previous publications by
including the influence of the initial state in the prediction of propensities. Finally, we will
relate the behaviour of thg-parameter for individual Rydberg series to the respective quan-
tum numbers and propensity rules. It turns out thaytm@arameter is a much more sensitive
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probe of the dynamics than the resonance positions and even the widths. The increasing
sensitivity is easily understood from the nature of these quantities as we will see later.

Within the resonance spectrum, well ordered according to the approximate quantum
numbers, we have identified three mechanisms of perturbation whose effects on the reso-
nance parameters are of different strength. The regularity can be perturbed by degeneracies
between individual resonance energies from different Rydberg series. A second source of
perturbation, setting in at higher energies, comes from the so-called perturber states. Finally,
a third but rare source of exceptional behaviour is induced by the morphological similarity
of initial- and final-state wavefunctions in the dipole matrix element.

In order to render this paper as self-contained as possible and as such a helpful tool
for everybody dealing with doubly excited atomic states, we will summarize some of the
concepts and results that are important in the present context. In this spirit we also provide,
for future reference, an appendix with tables of our theoretitainitio resonance data
of the Rydberg series up to the excitation threshdld= 7 of the ion He, as far as
we have calculated them. In section 2 we review the theoretical basis of the resonance
parameters formulated within the concept of complex rotation [26—28]. Rydberg series can
be described most elegantly within the quantum-defect theory (QDT) [29], which will be
addressed briefly. Section 3 contains a review of the approximate quantum numbers and
propensity rules. In section 4 the applicability of the respective propensity rules is critically
examined by comparison with the available data that will be discussed for each manifold
N = 2—7 separately. Section 5 summarizes the results.

2. Theoretical description

2.1. Complex rotation and the photo cross section

In recent years it has become possible to calculate cross sections of two-electron processes
with a number of numerical methods. In most of them, e.g. inRkraatrix methods [30-32]

or in the hyperspherical close-coupling method [15,17] as well as in conventional close-
coupling methods [33], the cross section is computed on a mesh of enérglResonance
parameters such as resonance positigy),(width (I",,) and—in photoabsorption—the shape
parameterq,) are subsequently extracted by a fit in a similar way to that used when these
parameters are determined from experimental cross sections.

The method ofcomplex rotation[26, 27] is different in that the resonant states are
determined directly through diagonalization of a Hamilton matrix [25, 28]. This is possible
because the functions of the basis set, containing non-integrable continuum functions to
represent the resonant states, are rotated in Hilbert space by complex scaling of the radial
coordinates — r€? in a way that their norm exists and the elements of the Hamilton matrix
are well defined. As a consequence, expectation values, or, more precisely, diagonal matrix
elements of these complex scaled resonant wavefundtighsare in general complex. This
is familiar from the expectation value of the Hamiltonian itseétfy|H|ns) = E, — i, /2,
where we are used to interpreting the real parEpfas the position of the resonance and
the imaginary parfl’, /2 as its half decay width. However, the expectation values of other
operators become complex as well, and their imaginary parts can be used to gain deeper
insight into the dynamical details of a system near resonance [34].

Photoabsorption involves the dipole transition probabilfy= |(i|D|n)|?> based on the
non-diagonal dipole transition matrix element. With the complex rotated resonant state, this
probability becomesomplexagain at resonance reading [26]

D? = (i|D|ng). 1)
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The squared dipole matrix element is a result of the way in which scalar products are formed
with complex rotated wavefunctions [34]. Hence, the familiar formula for the photo cross

section,o (E) = —1/7 Im(i|DG(E) D|i), reads with complex rotated wavefunctions
(i|Dlng)?
E) = oo(E —Im —_— 2
o(E) = oo(E) — E E—E, +il,/2 2)

whereaog(E) is a smooth background coming from the continuum spectru .ofVriting
real and imaginary parts separatelit,D|ny) = B, + iC,, a simple algebraic manipulation
transforms (2) into the Fano-shape parametrization of the photo cross section [21],

o(E) = oo(E) + Y _ 0u(E), €)
where
(‘In + en)z 2 2
w(E) = ————5— U, —
o ( ) 1+€3 /"l’n I"Ln
E— En
“= T, 2
" 4
B, 4)
qn = C,
2
2 _ 2
/'Ln - 7_[1—‘” n-
Theoretically, the parameters of (4) are contained in the two matrix elements
(ng|Hl|ng) = E, —iI',/2
®)

of the complex scaled resonant wavefunctions.

To develop a deeper understandingzpfas the ratio of the real to the imaginary part of
the dipole matrix element, we assume for the moment the simple situation of two electrons
with principal qguantum numberd andn that interact with the nucleus but not with each
other. A doubly excited statgV, n) would not decay but would be degenerate at the same
energyE = Ey + E, with |[N’, ¢) (for simplicity we assume for the moment only one
continuumN’ < N). The electron—electron interaction couples these two states and the
doubly excited state becomes a true resonant state with a finite lifetime. Its complex scaled
wavefunction at the complex resonance energy reads [34]

Ing) = alN, n) + b|N'es) (6)

where|eg) is a (complex scaled) purely outgoing wave. All other wavefunctions as well
as the coefficients, b can be taken as real. If we rearrange the dipole matrix element
involving a (real) initial statgi) and the resonant wavefunction as given by (6) according
to its real and imaginary parts as in (5), we obtain:

B, =a(i|D|N,n) + b(i| D|N’, Re(es)) (7a)
C, = b(i|DIN’, Im(ep)). (7b)

Apart from the small admixture of the (irregular) continuum wavefunctiBp represents

the dipole coupling to the quasibound state n) that is responsible for the resonance. The
imaginary partC, represents the dipole coupling to the continuum. Therefore, we may say
thatg? measures the ratio between the dipole excitation probability to the quasi-bound state
and to the continuum at resonance. Very lagdevalues indicate a vanishing continuum
coupling, whileg? ~ 0 indicates dominant continuum excitation.
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Comparison between experiment and theory is possibleEforT,, ¢, and, if u?2 is
known experimentally, foC,, and B,. However, the direct experimental determination of
n?2 from a fit to the cross section may be severely hampered by a large background. In this
case it is easier to calculate the af€aunder a resonance profite,

Fo= [ouExe = 2
The last identity shows that

F, = Re(D?), 9)
in analogy to the definition of an observable fr@h= Re(ng|O|ny) from complex rotated
wavefunctions. However, (9) does not recover the positive definiteness of a transition
probability as it is familiar from square integrable wavefunctions. Negdijvindicate that
the resonance profile appears as a dip, also callgithdow resonanceFrom (9) it follows,

with |¢| < 1 (i.e.|B,| < |C,]), that a window resonance has dominant continuum excitation.
In the case of the dipole selection ruk? becomes important, which can be expressed as

2
q
B2=F, " .
n q’%_l

I,

5 (@ —1) =B}~ Cl. ®)

(10)

2.2. Representation of Rydberg series

In the limit of one electron with principal quantum numizer> N, whereN is the principal
guantum number of the other electron, we have a Rydberg series for the outer electron almost
as in the case of hydrogen. The small perturbation induced by the core electron causes a
guantum defec8(E), which is a slowly varying function of the enerdy and which shifts

the energy levels as determined by the condition

tan(z[v(E) + 8(E)]) = 0 (11a)
R
Iy —E

where R is the Rydberg constant an, is the threshold energy of the excited Hen
to which the Rydberg series converges. From the effective quantum nungBgr the
guantum defect

V(E) = : (11b)

Sy =n—v, (12)
is defined, where the resonances within a series converging to the thresteokl labelled
with increasing energy by: = nmin, min + 1,.... From (118) it is clear thatn is

only defined within integer multiples, since the quantum defect is, strictly speaking,
only defined modulo 1. We choose,, for the lowest resonance in each Rydberg
series in accordance with the historical independent electron configursifiot permits
‘intrashell’ configurationg N1, nminl’) + |nminl’, NI) with nmin = N for ‘symmetric’ states
and requires ‘intershell’ configurations with,, = N + 1 for certain "asymmetric’ states
INL, nminl’) — |nminl’, NI). We define ‘symmetric’ and ‘asymmetric’ with respect to the
electron exchange in the body-fixed frame, denoted by the quantum nutnbet1. The
definition nmin, = N for symmetric states andni, = N + 1 for asymmetric states can be
formalized asimin = N + (1 — A)/2. This definition, which provides a smooth dependence
of the quantum defect on the quantum numkein each manifoldv, only coincides with
the historical definition ofimin for L = 0 states.

In the framework of QDT multiple Rydberg series which perturb each other can also be
treated. However, we do not attempt to describe this theory here, which is well documented
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in the original research papers [29] as well as for example in the book by Friedrich [35].
With the help of QDT, we will only motivate the scaling of the resonance parameters from
(4) belonging to a given Rydberg series. Conditiona)ldefines bound-state energies, but
it can easily be extended to resonances in the spirit of complex rotation by introducing a
complex quantum defeét= §,+i8; in (11a). Neglecting terms of ordeY; /v? and smaller,
the complex resonance energies fulfilling §Ltead as
. 1 .2
E,—il,=Iy-R5 —iR—.
Vv Vv

Accordingly, the reduced width* /2 = T',v3/2 = R§,; should vary slowly along a Rydberg
series forn — oo. Similarly, we may define reduced parameters for photoabsorption that
approach a constant value for—> oco. In summary we describe photoabsorption to Rydberg
series with the following reduced quantities:

E, . §,=n—v

r,:Tf=T,°

B?: B*? = B%®

C%:.C2=C%3
From (4) it is clear that the,-parameter is already a reduced quantity that will approach a
constant value fon — oo [36]. This is also true fop2.

(13)

(14)

2.3. The molecular approximation

The fact that all the quantities of (14) change smoothly with the excitationf the
outer electron indicates the possibility of adiabatic approximations. In 1968 Macek
[37] introduced the adiabatic hyperspherical approximation to this problem. Lin [38]
considerably advanced this approach by showing that one can attach quantum labels to
the adiabatic hyperspherical potential curves consistent with the nodal pattern found in
numerically computed resonant wavefunctions. Later the hyperspherical treatment was
stepwise turned into a quantitative numerical tool for the computation of resonances by
Sadeghpour and Greene [13], and more recently by coupling adiabatic hyperspherical
channels in the hyperspherical close coupling method [15].

In 1986 Feagin and Briggs introduced another adiabatic approach similar to the Born—
Oppenheimer approximation for a diatomic molecule, namely but with reversed roles
of electrons and nuclei: for doubly excited states in helium theefgetronicaxis R is kept
fixed to generate adiabatic potential curéé&R) as a function ofR. The spatial adiabatic
wavefunction is a product of a rotational pam,ﬁ,’ni”(\y, 0, ¢), a vibrational partf’ (R)
and a molecular orbital (MO®! (p, z; R) (see [14])

i (R)

R
where (I_é,F) are a set of Jacobi coordinates with connecting the two electrons and
F = (p, z, ¢) pointing from the middle of the two electrons to the nucleus. In the body-
fixed frame, connected to the laboratory-fixed frame by the Euler anle3, ¢, the
interelectronic vectoR is parallel to thez-axis. In contrast to [14] the azimuthal angular
dependence on is described by the rotational wavefuncti@ﬁ,’j’(\ll, 0, ¢) and the MO
is a wavefunction for the centre-of-mass motion of the nucleus in the coordipateat
fixed internuclear distanc® and for a given quantized azimuthal motien The indexi
counts the quantized states(p, z). The potential for this motion (witlh = 0) is shown
in figure 1.

W} (7, R) = Dyin' (¥, 0, ¢) @ (p,z: R), (15)
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Figure 1. The two-centre Coulomb potentiat2/r; — 2/r, is shown at fixed interelectronic
distance of 2 au for two-electron motion in helium. Theuxis is parallel toR, the p-axis
perpendicular to it, see text.

The wavefunction (15) has been constructed to respect all the two-electron symmetries.
In particular the rotational part consists of a symmetry adapted linear combination of Wigner
D-functions for the Euler angles which transform from a body-fixed to a laboratory-fixed
coordinate system,
Dyin' (¥, 0,¢) = D, (W, 0,¢) + (=D 4Dl (v,0,¢).  (16)

m

Hence, the wavefunction (15) is an eigenfunction of the permutation opefaidor the
(identical) electrons;, : R — —R, ¥ — 7 with eigenvalug—1) wheres is the spin of the
electron pair, either singléss = 0) or triplet (S = 1). Furthermore, it is an eigenfunction of
the parity operatot : R — —R,7 — —7 with eigenvaluer and therefore of the product
operatorP P, with eigenvalug(—1)" = (—1)Sn;The remaining quantum number is the
eigenvalue of the projection operatbrwhere! = —i¥ AV, and also of the body-fixed
componentZ, of the total angular momenturh.

It can be shown that the wavefunction (15) approximately diagonalizes the two-electron
Hamiltonian [14] if its parts are constructed as follows. For fixedhe molecular orbital
vi..(p.z; R) is an eigenfunction of the two-centre Hamiltoniat £ 2 for helium)

192 1 9?2 1 1 m?
P e S A e R 17
2022 2 /p 3,02\/5 ror + 2r2 (17)

with the Born—Oppenheimer eigenvaléig,(R). The vibrational wavefunctiorf’ (R) is an
eigenstate of the adiabatic potentlaf (R) = &, (R) + CL (R) + 1/R, where

m

% 1 L(L+1) — 2m2 + 2
CE(R) = (®ip| — 5 + S V?
im (R = (Pl = s + 4V R?
is the expectation value af — h,,, the part of the Hamiltonian not diagonalized by, .
Due to the contribution of kinetic energies which enter with different sign in (A@}) is
small for almost all values oR.
The most important feature of the molecular approximation is the fact that the two-centre

|(Dim> (18)
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Hamiltonian (17) is separable in prolate spheroidal coordinates [47]

L_itre Vo2 + (24 R/22?+/p?+ (z — R/2)?
R R (19)
ri—ra _ PP+ @+ R/2P—Vp?+ (z — R/2)?
R R ’
The separability implies a product form for the MO with quantum numbers:, which
count the nodes along the respective coordinates,

Individual resonances are obtained by computing vibrational eigenstates in these potential
curves according to the Sdidinger equation

32
(_aR2 + U (R) = E) fi(R) =0. (21)

The vibrational quantum numbérspecifies the excitation of one electron along a Rydberg
series where fonn — oo the inner electron remains in an excited 'Hon. Physically,
n counts the same states amsn (12) and the relation between both quantum numbers is
n=n— N, whereN is the principal quantum number of the H&v) hydrogenic level for
n — oo. For all distances of the electrons, or similarly, for any excitatianof the outer
electron, the state of the inner one and the corresponding potential G¢Rjeis defined by
the molecular quantum numbers, n,,, m. However, in the ‘separated atom’ limit, when the
outer electron has been removed to infinity, it is more convenient to express these quantum
numbers in terms of Stark quantum numb#fis No, m and A for the inner electron in the
field of the remote outer electron, where one has dire€th N1+ No,+m +1. Since Stark
and molecular quantum numbers are in one-to-one correspondence (see the next section)
they are equivalent and we will use the Stark notation in the following since it is closer to
other classifications which exist in the literature.

The exact quantum numberis, M, S, Mg, = and the approximate quantum numbers
n, A, N1, N2, m constitute a complete classification of doubly excited states. Moreover, they

0.0 —
01" 1
02 ) 1
S F n=1 - N —
g :
o 04+ -
05} po (n, =0, n=2, m=1)-
—06 L L L L TR S [ L J
20 40 60 80 100

R (au.)

Figure 2. Schematic representation of doubly excited states in helium in an adiabatic
approximation. The resonances appear as vibrational eigenstates (the first two are shown) in
a potential curve which is constructed from an eigenfunction of all exact symmétriés”

and of the two-centre Coulomb problem with the respective quantum numberts , m, see

text. The stateg form a Rydberg series with the limiting energy of the excited H€) ion for

n — oQ.
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imply an approximate nodal structure of the wavefunctions which in turn leads to propensity
rules for radiative transitions involving doubly excited states as well as autoionization.
Figure 2 illustrates schematically the calculation of a doubly excited two-electron state with
all its quantum numbers in the molecular approximation.

The most recent activity concerning adiabatic approaches to the two-electron problem
has led to a merging of the molecular and hyperspherical adiabatic approach with the
formulation of so calledhyperspherical elliptic coordinates They preserve, to a good
extent, the structure of the two-centre molecular Hamiltonian, however, they do not for
fixed interelectronic axisR, only for fixed hyper-radiuge [39].

In the next section we will briefly review how the different Rydberg series can
be characterized according to the respective approximate quantum numbers of the inner
electron, which again remain approximately constant along a given Rydberg series.

3. Approximate quantum numbers and propensity rules

If the two electrons in a two-electron atom moved independently of each other in the field

of the nucleus with charg&, the spectrum would consist of energy levels described by
individual quantum numberglm andnr’l’'m’. The high degeneracy of the spectrum of two
independent electrons is lifted if the electron—electron repulsion is included. Moreover, as a
‘good’ quantum number (corresponding to an operator that commutes with the Hamiltonian)
only the total angular momentum operatdrsand L, survive, apart from (trivial) discrete
symmetries such as parity and electron exchange as described above (16). These facts have
motivated the adiabatic approximations discussed above.

3.1. Approximate classification schemes

Herrick and co-workers [10, 40, 42—44] approached the correlated motion of two electrons
from the ‘planetary atom’ [45] limit where one electron is much further apart from the
nucleus than the othenoyer = 7 > ninmer = N. They deduced algebraically several
multiplet structures of the resonant states and revealed an approximate set of quantum
numbers for the inner electron which are just the Stark quantum numNeMNy#:], or in
alternative notationy (K, T) with K = N, — N; andT = mt}. The parabolic quantum
numbers characterize the dynamics correctly if the second electron is so far away that it
merely creates a (constant) electric field for the inner one. Herrick was surprised that the
new classification scheme remained valid even whea N, that is, when both electrons

are approximately equally distant from the nucleus [10].

Within the molecular approach as described in section 2.3 Feagin and Briggs [11, 22]
later showed that Herrick’s classification scheme could be justified with the exact dynam-
ical symmetries (quantum numbers) of the two-centre Coulomb problem, best known from
the Hj molecular ion. This dynamical symmetry helped to explain why Herrick’s asymp-
totic quantum numbersR( — oo) are also valid for smalleR. Moreover, it turned out
that the nodal lines corresponding to the prolate spheroidal coordihatiesy, in which
the two-centre Coulomb problem is separable, are really present in wavefunctions of two-
electron resonant states [48]. Recently, Starace and co-workers [41] showed that this re-
mains true even for doubly excited states of multi-electron atoms if the two excited electrons
do not interact strongly with the core electrons. The corresponding nodes, andm

1 The relation to the spherical quantum numbaisn is simply N = N1 + N2 +m + 1,1 = N2 + m and the
azimuthal quantum numbet is the same. Note that in early textbooks of quantum mechanies—K was
introduced as ‘electric’ quantum number in the context of the Stark effect [46].
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are uniquely related to the asymptotic (parabolic) classification and to Herrick's quantum
numbers through

Parabolic Molecular Herrick

N1 = n, = IN-K-1-T)

N> = [n,/2] = g(N +K-1-T) (22)
[m| = m = T

A = (=™ (=) A.

The notation f] stands for the closest lower integer o

Since the information of even and odd nodgs is lost in the parabolic/Herrick’s
classification, an additional quantum number must be introduced, which has already been
given by Herrick [43]. Today it is commonly denoted by, as coined by Lin who used
A as a label to characterize hyperspherical potential curves for two-electron atoms with the
valuesA = +/—1 for an antinodal/nodal line of the corresponding adiabatic wavefunctions
atr; = rp. Lin [38] used the labeld = 0 for no apparent symmetry with respect to the
line r; = ro. In the two-centre adiabatic approach,s indeed the eigenvalue of thmedy-
fixed electron exchange operator with valués= +1 from A = (—1)"». A = 0 does not
occur in this description. This is why we put the last equality of (22) in parentheses. The
correspondence to a hyperspherical potential curve with the empirical AabelD would

Table 1. Equivalent quantum numbers f&F° resonances of helium in the manifolds= 1-7.

Parabolic Herrick Molecular Parabolic Herrick Molecular
[MiNam]A N(K,m)* (p,ngom)  [N1Nom]? N(K.m)A (na,ny,m)

[oo0] 10,0~ (0,1,0) [041} 64D (0,8,1)
[131]* s2 Dt (1,6,1)
[oo1y+ 20, D) (0,0,1) [221F 60, D (2,4,1)
[o10]- 21,0~ (0,3,0) [311} (=2, D+ (3,2,1)
[100]- 2(=1,0°  (1,1,0) [401} 6(—4, D+ (4,0,1)
[050]~ 6(5.0-  (0,11,0)
[o11}*+ 3L DY (0,2,1) [1401 63,0~  (1,9,0)
[o1J* (=1L D* (1,0,1) [2301 (L0~  (2,7,0)
[020] 32,0-  (0,5,0) [320F 6(-1,0)~ (3,5,0)
[110]- 30,0~  (1,3,0) [4101 6(=3,0"  (4,3,0)
[200] 3(=2,0°  (2,1,0) (5001 6(=5,0° (5,1,0)
[o21]* A2, D (0,4,1) [051F 25, D (0,10,1)
[ 40D (1,2,1) (141} 6.t (1,8,1)
[201]* A(=2, D% (2,0,1) [231} ALDY  (2,6,1)
[030] 43,0  (0,7,0) [3211 (=L D*  (3,4,1)
[120]- 410~  (1,5,0) [411} 2(=3, D+ (4,2,1)
[210] 41,0~ (23,0 (501} 7(=5, D% (4,0,1)
[300] 4(=3,0° (3,1,0) [060T 76,0~ (0,13,0)
[150]~ 24,0 (1,11,0)
[o31]* 53Dt (0,6,1) [2401 72,07 (2,9,0)
121+ sLDY (1,4,1) [330F 700,00~ (3,7,0)
[211]* s-L D+ (2,2,1) [420F 7(=2,0"  (4,5,0)
[301]*+ 5(-3, D+  (3,0,1) (5101 74,0~ (5,3,0)
[040] 54,0  (0,9,0) [600 7(—=6,0°  (6,1,0)
[130] 52,0  (1,7,0)
[220] 50.0-  (2,5,0)
[310] 5(-2,0"  (3,3,0)

[400]~ 5(—4,00°  (4,1,0)
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be a linear combination of several molecular potential curves of different symmetafl
states of theV = 2—7 manifolds with their respective quantum numbers are listed in table 1.

On each stateN; Nom]4, ny, ny,m,ory(K, T)4 of the inner electron a whole (Rydberg)
series of resonances is built with increasing excitation of the outer electron indicated by
its principal quantum number (see also figure 2). Fot — oo the two-electron atom
is ionized and the He remains in the excited state of the inner electron. To describe the
Rydberg series the additional indexcan be added so that a correlated two-electron state
has the complete classificatioi{N,m]4 or y(K,m)%. In the special case of states with
1P symmetry (with which we deal here exclusively since this is the symmetry populated
by photoabsorption from théS® ground state of helium) we may simplify the notation.

As can be easily verified only the combinatioms= 0,A = —1 andm = 1, A = +1

are possible. Hence it is not necessary to speagifgxplicitly. Moreover, provided only

m = 0, 1 occur (for'P° states) it is not even necessary to statexplicitly if N is known.
FromN — K = 2N1 +m + 1 follows thatm = 0 for N — K odd andm =1 for N — K

even. Hence, for photoabsorption from the ground state of helium one can use the short
notation N, K, to label resonant states [8]. An equivalent abbreviation for the parabolic
classification isV, N3 and for the molecular quantum numbe¥sn,, .

Depending on the aspect of two-electron correlation one is interested in one or another
set of these equivalent designations of the approximate constants of motion is of advantage.
In this paper we will mostly use the parabolic set of quantum numbésa/{m]* and the
short versionN2' for states of'!P° symmetry. It provides all quantum numbers separately
and, nevertheless, withh. = N; + N, + m + 1, the correspondingy manifold is easily
read from this classification. Also, the physical interpretation ¥fN,m]* as the levels
of the inner electron in the field of the (distant) outer electron is intuitively clear: nodes in
N, locate charge density of the inner electron towards the outer one (both electrons are on
the same side of the nucleus) while nodesvinindicate that the electrons are located on
opposite sides of the nucleus. Finally, the parabolic quantum numbers are in between the
(more physical) spheroidal two-centre quantum numhbgrs,,, m and the (more commonly
used) quantum numbe(&, 7). For the radiative propensity rules yet another combination
of the described quantum numbers plays an important role.

3.2. Propensity rules for radiative and non-radiative transitions

3.2.1. Autoionization. The approximate constants of motion for correlated two-electron
dynamics imply a nodal structure for the respective resonant states [48]. In turn this nodal
structure leads to preferences for autoionization [23]. They are easily understood in the
molecular language of adiabatic potential curves for He identified by aNgetopn]* of
guantum numbers. A small subset of such potential curves as a function of the adiabatic
interelectronic distanc® is shown in figure 3. The most obvious features in figure 3 are
avoided crossings between the two potential curves respectively. Their locus as a function
of R (indicated by full squares in figure I3)) follows closely the saddle point of the two-
centre Coulomb potential that plays a crucial role for the three-body Coulomb problem.
The saddle point for fixeR (see figure 1) is defined by + 7, = 0, where the’; are the
two electron—nucleus vectors.

The avoided crossings may be interpreted in the following way: to the right of such
a crossing, the adiabatic two-electron wavefunction has its main contribution in one of the
Coulombic wells separated from the other well by a classically forbidden region, with the
probability density at the saddle point being small. To the left of the avoided crossing, the
wavefunction has its main contribution at the saddle point. Hence, the avoided crossings
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Figure 3. Adiabatic molecular potential curves for two-electron doubly excited states as a
function of the interelectronic distand®. The resonances appear as vibrational eigenstates in
the potential curves. The energy is plotted as effective quantum nuRRr = (—2/¢(R))/2

with N(R — o0) = 2, 3,4, ... indicating directly the H&(N) ionization thresholds. a) This

shows potential curves which carry the resonances of the principal series with quantum numbers
[0,N —1,1]", N = 2,...,10 from below. b) This shows resonances df = —1 symmetry
forN=1,..., 9 corresponding to the quantum numbersNO— 1, 0]~ from below. To guide

the eye the full squares indicate the locus of the avoided crossing, see text.

separate two regions iR in which the wavefunction has different character. As can be seen
in figure 3, potential curves whose quantum numbers differAllyy = 1 (i.e. An, = 2)
display avoided crossings, which are narrower do= +1 states (whose wavefunction has
an antinode on the saddle) than far= —1 states (with a node on the saddle, compare
figure 3@) with figure 3p)). In the latter case the change in character of the wavefunction
as a function ofR passing an avoided crossing is not so dramatic, since for reasons of
symmetry the wavefunction is zero exactly at the saddle point for all

The mechanism of autoionization relies on non-adiabatic transitions in this description,
in full analogy to electronic transitions in molecules, as explained in [14, Z3jdial
transitions are sensitive to the change of the wavefunction as a functiBn dence, they
occur preferentially through an avoided crossing of two potential curves. The second kind
of non-adiabatic transition is due totational coupling Am = 1 between potential curves.
Finally, there is no explicit mechanism to chanyye (n;). Hence, decay witlAN; £ 0
is strongly suppressed. From these observations one can extract three propensity rules for
autoionization [23], which are labelled according to the relative efficiency of the underlying
decay mechanism:

(A) ANy = —1 (231)
(B) Am = -1 (2%)
(C) AN; # 0. (2%)
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Figure 4. Decay modes indicated by arrows with the respective rule from (16) for the lowest
resonances in the manifoldé = 2—4. Each box represents a continuum channel and the lowest
resonance in this channel where the quantum numbéra’{m] and N, K are given together

with the theoretical and experimental width in meV (uncertainty in parentheses). The diagonal
(broken) separated = +1 andA = —1 states.

In general, states with = +1 have larger widths than those with = —1. The decay
systematics for the lowest resonamce- N in each seriesN; Nom] is visualized in figure 4.
Each box contains the width of the lowest resonance of the respective series with quantum
numbers N1 Nom]. The box also represents the continuuiy Nom] into which a higher
lying resonance may decay as indicated by the arrows and the respective mechanism (A),

(B) or (C).

In the upper right triangle the states with= +1 are located. Those which can decay
according to rule (A) have the largest widths (of the order of m@V). The arrows point
to quantum numbers of the continuum into which these states decay according to rule (A).
Close to the (broken) diagonal line separatitg= +1 and A = —1 states we see those
resonances that cannot decay by (A). Instead, they decay according to (B) by changing their
rotational quantum number. Since this change also implies a changetbé decay arrow
has to cross the diagonal and points to a continuum state Avith —1. The rotational
decay of thesed = 41 states is only slightly less effective (by about a factor of 5) than
the decay of theA = +1 states according to (A). Hence, we combine Al= +1 states
located in the upper triangle to ‘I-class’ states with the relatively largest widths.
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Figure 5. Parameters of resonances in tfie= 2 manifold; @) quantum defects,, (b)) reduced

widths T'*, (c) reduced dipole probabilities*2 and () g-parameter are shown as a function

of the effective quantum number (11b) for photoexcitation from the ground state. The lines
connect theoretical values, while the symbols indicate experimental results. Thereby, full lines
(full symbols for experimental values) refer to I-class series, broken lines (open symbols) refer
to ll-class series, and dotted lines (crosses) indicate lll-class series. Each series is labelled
uniquely by its quantum numbe’W{. The chain lines ind), marked with(NzA), show the
quantum defect modulo one to highlight almost degenerate energies between resonances of two
series. In {) the left scale refers toQ the right scale to 0 and I".

The A = —1 states below the diagonal that can decay according to (A) define the ‘lI-
class’ states. Their widths (of the order of°IdieV) are one to two orders of magnitude
smaller than the widths of the I-class states. Among4he —1 states are also ‘lll-class’
states located directly below the diagonal. They can only decay according to (C) along the
diagonal and their widths (168-10"? meV) are more than two orders of magnitude smaller
than those of ll-class resonances.

To summarize, the propensity rules (A), (B) and (C) group R resonant states
of helium into three classes I-lll with typical widths separated by at least two orders
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of magnitude,I", : I'y : Ty ~ 10* : 107 : 1. Since the propensities depend on the nodal
structure Ny Nom], they should not only hold for the intrashell states- N as demonstrated

in figure 5, but also for entire series characterized by a singleVfm] configuration. I1lI-
class states fotP° resonances are restricted to thé { 1,0, 0]~ configurations, which
enforce decay through anN; # 0 transition (C). The special character of these states
is also highlighted in Lin’s classification where they are the ol states withA = 0
(see table 1). To this class belong states of theN,m]4 = [100]~ Rydberg series, with
very small widths as a consequence (figure)b(In contrast the I-class series [001has

an allowed transition4m = —1, rule (B)) into the (only available) continuum channel
[000]~ and the widths are correspondingly large. The [0186¢ries is of lI-class and has
correspondingly smaller widths. Figureb}(clearly demonstrates the three classes and large
differences of the widths between these classes inMhe 2 manifold. The widths of the
Rydberg series in the manifoldé = 3—7 will be discussed in section 4.

3.2.2. Dipole transitions. Propensity rules for radiative transitions can be derived by
analysing the dipole matrix elements according to the nodal structure of the resonant
wavefunctions, which is a simple analytical task on the potential saddle feri2 +7, = 0.

This region in configuration space is most relevant for symmetrically excited electrons with
N = n. It corresponds to the equilibrium geometry of a linear ABA molecule [49]. Not
surprisingly, the relevant quantum number

v = 2N1+m (24)

for radiative propensities quantizes the two-fold degenerate bending motion of tri-atomic
molecules and can be derived by normal mode analysis about the saddle point [14, 24].
Dipole matrix elements within the saddle approximation follow the selection rule

(D)  Av,=0,+1 (25)

that survives for the entire dynamics as a propensity rule. Rule (D) has been derived from

properties of the doubly excited state involved in the dipole transition. A preference among

the possible transitions according to (D) can be induced by the second state of the dipole

matrix element. For instance, in radiatigecay of doubly excited!S® (i.e. A = +1)

states, rule (D) has been confirmed with a preferencenfgr= 0 transitions [24]. This is

because the wavefunction of a true resonant state designated by the approximate quantum

numbers [V;, N, m]* contains an admixture of the channel§;[j, m]* with j < Na.

The admixture has the effect that the wavefunction of the doubly excited state has a tail

of amplitude at smaller electron—nucleus distances. Hence, it enhances the overlap with

spatially less extended (less excited) states. However, the tail is largdr for-1 states

than for A = —1 states due to larger coupling indicated by the narrower avoided crossings

between theA = +1 potential curves (see figure 3). Therefore, among the transitions

according to (D), a preference exists for the transition which has the least number of avoided

crossings between the two states involved in the dipole matrix elementA aad+1 for

the higher excited state. Hence, there is a preferencaAfgr= 0 for radiative decay ofS®

(i.e. A = +1) states. In this way one could also view the propensity (A) for autoionization.
Here, we are interested in photoabsorption into doubly excited states from the ground

state of helium. The finah = +1 states with the admixture of lower channels for the

relatively best overlap with the ground state can onlysbe= +1 states due to théP®

symmetry. Therefore, we expect a preference for

Avp, =1 (26)
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transitions (i.e.Am = 1). In each manifoldv there is only one series [&/ — 2, 1]t
fulfilling this condition. We will call this series th@rincipal seriesas it is commonly
referred to in literature.

Propensity rule (D) refers to the bound p&rt (see (8)) of the dipole matrix elements
D2. The propensities hold, as for autoionization, for the Rydberg series built on respective
configurations N1Nom]“. Figure 5¢) shows absorption from the ground state [00@jto
the N = 2 manifold. As expected, the principal series [00Has the largestB*)? values,
those of [010F and [100}, not supported by (26), are much smaller. A systematic overview
for higher manifoldsV will be given in the next section.

4. Systematics ofP° resonances and their propensities in the manifoldgV = 2—7

In this section, we will analyse the parameters of the Fano parametriZgtiap, and also

B? as well as the quantum defegt in their reduced form according to (14) for a large
number of Rydberg series. We will check the propensities for autoionization and dipole
excitation as described in the previous section and we will also identify three different
sources of irregular behaviour. Each subsection highlights one special feature described in
the heading. All theoretical data are given in the form of tables in the appendix.

4.1. N = 2: almost vanishing decay leads to large fluctuationg iof [100]~

Autoionization and dipole propensities for the= 2 manifold have already been discussed.
A closer inspection of the widths of the [100Feries reveals that they are close to zero
aroundv = 5. As can be seen from the quantum defects (figusd aad table 2), the
resonances [01Q] and [100]_, (chain) have almost degenerate energies. This leads to
strong interference and in turn to almost vanishing widths for some of the T¥88pnances
(figure 5p)). An exact ‘bound state in the continuum’ with, = 0 would imply an infinite

Table 2. Asymptotic quantum defect[],n — oo modulo one for Rydberg series fitted to
complex rotation calculations and experiment. The numbers in parentheses give the uncertainty
in the last digits.

[6c0] [8c0]
N [Ni1N2m] Theory Experiment
2 [001] 0.174 0.174(10)
[010] 0.723 0.719(10)
[100] 0.750 0.746(15)
3 [011] 0.844 0.85(5)
[101] 0.748(3) 0.83
[020] 0.302 0.25
[110] 0.502(6)
[200] 0.407
4  [021] —
[111] 0.732 0.71(3)
[201] 0.370(2)
[030] 0.859
[120] 0.128
[210] 0.260(3)
[300] 0.028

a Experimentally indistinguishable frody, of the [011] series.
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g, according to (4). Hence, the very small widthis ~ 1071° au lead to large fluctuations
in g, of the [100T series (figure ).

4.2. N = 3: interference between [011]and [101]" induces fluctuations ig of [101]"

The widths (figure @f)) are in perfect agreement with the autoionization propensities: large
widths for the I-class series [0I1and [101}, smaller widths for the Il-class series [020]

and [110}, and very small width for the Ill-class series [200kithout the preferred decay
channel (rule (C)). Behaviour as expected according to the propensities is also found for the
dipole transition probability to the bound part of the resonance wavefundifpras shown

in figure 6€). The dipole-favoured principal series [011k stronger than all other series.
However, the [101} series shows rather strong variationsBifiand also ing (figure 6¢)).

The reason for this is an interaction between the [01did [101] series, made possible

by similar quantum defects (see the chain li@&) in figure 6@) and table 2). Again, as
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Figure 6. Same quantities as in figure 5 for the five Rydberg series ofMhke 3 manifold.
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in the N = 2 manifold, the energetically almost degenerate resonant states belonging to
two different Rydberg series interfere leading to the irregular patterBZimnd g,. Note

that an interference of two Rydberg series with= +1 andA = —1 due to their almost
degenerate quantum defects cannot occur in the spectra of doubly excited states with angular
momentumL = 0 most extensively studied by theory.

4.3. N = 4: exceptional behaviour of the [111]series

Looking first at the widths (figure B}), we see a grouping according to the propensities
into three blocks, where the first onE*(~ 5 x 1072 au) contains the I-class series [02]]
[111]* and [201}. The second blockl™ & 5 x 10~3 au) is built from the lI-class series
[030]~, [120]" and [210f, and the third group contains the only lll-class series [300]
(I'* ~ 5 x 10°° au).

The dipole propensities predict a dominant absorption into the principal series[021]
which is confirmed by the calculation (figurec]). The series [201] is strongly modulated.
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Figure 7. Same quantities as in figure 5 for the seven Rydberg series adf tae4 manifold.
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The reason for this is the same mechanism a®' ia= 3 and N = 2. Almost degenerate
states of different series interfere, namely members of the {28a{l [210] series, as the
quantum defects reveal (chain lig@") in figure 7@) and table 2). We also know that these
interferences lead to modulations 4nfor the respective series, which is indeed the case
(seegq, for the [210] series in figure ®)).

However, there is a new, unusual behaviour: The series {1ld$orbs almost as much
oscillator strength as the principal series [021Moreover, [111] has the largest widths
in the N = 4 manifold. The anomaly cannot be explained with the interference mechanism
introduced so far. It is a very special case, where the resonant wavefunctiorf [id4]a
character similar to that of the ground-state wavefunction of helium: the respective charge
densities have an almost isotropic angular distribution denoted by the same correlation
guantum number& = N, — N; = 0 andA = +1 for both states. An overlap that is larger
than with other wavefunctions in the same manifdld= 4 is the consequence. This large
overlap results in comparatively large widths for the members of the {14éfies and an
enhanced ability to absorb light from the ground state. Note that it is importanktlaatd
A of the initial and final state coincide. For [110§.g.K is also zero bud = —1, and the
series behaves regularly. Note thzt as well asq, are very sensitive, and we have only
obtained converged numerical values for a few resonances of the weaker Rydberg series of
class Il and llI.

4.4. N = 5: the effect of perturber states

So far we have dealt with Rydberg series whose irregularities were caused by interactions
with resonances belonging to other Rydberg series of the same manifotdoy properties
of the initial state. In theV = 5 manifold, the influence of a so call@@rturberor intruder
becomes visible. A perturber is a state that belongs from its quantum numbers to a Rydberg
series of a higher manifold, e.g. in the present cas® te 6. However, its energy, is
so low that it lies below the energy of a lower threshold, h€re- 5. Hence, energetically,
this state can perturb all the series of tNe= 5 manifold. However, according to the
mechanism which also leads to the autoionization propensities, Rydberg series which differ
by AN, = £1 are most strongly coupled (through avoided crossings), which means that
a perturber with quantum numbers/[N,m]* has the strongest influence on the series
[N1, No — 1, m]*. The perturber state itself no longer exists as a true resonance. Instead,
the perturbed Rydberg series contains one state more leading to a jump of the quantum
defect near the energy of the perturber [50]. If this jump is unity, the perturber state is
entirely absorbed into the respective Rydberg series. This is almost the caseNn=He
manifold indicating how effective the coupling mechanism of the avoided crossings is, since
energetically the perturber state could influence all the series ivtke 5 manifold and
not just the one to which it is connected N, &+ 1. In the energy range of figure &(
we have one perturber state from [044}hich leads to a jump of the quantum defect for
[031]" aroundv = 7. The second perturber from [131jnduces a jump in, for the
[121]+ series. The corresponding reduced widths (figut®)8{lso show a modulation near
the location of the perturbers. A position and width can be assigned to a perturber state
by analytically detuning the basis-set for the diagonalization so that the perturbed Rydberg
series remains unresolved. Numerical results for the perturber states obtained in this way
are labelled by ‘PT’ in the tables in the appendix.

Otherwise, the widths are still regular enough to recognize the familiar pattern of the
three classes. The four series of I-class have widths approximately larger by a factor of 10
than the four series of ll-class, whose widths in turn are an order of magnitude larger than
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Figure 8. Quantum defects, (a), and reduced widthE*/2 (b), for the nine Rydberg series of
the N = 5 manifold. The data are coded as in figure 5.

those of the llI-class series [40Q] Note, however, that the reduced widths of the three
classes are much less separated (by a factor of 10) than i¥ tae8 manifold (by a factor
of 100). This is a sign of the increasing instability of the resonances and the increasing
number of possible decay channels.

It is not surprising that the dipole excitation probabiliti#$, which are more sensitive
to details of the dynamics than the widths, show very large variations over seven orders of
magnitude (see table A4 in the appendix). Note tAat> of the principal series [031]is
strongly modulated in the vicinity of the perturber. Overall, the absolute valugs:gf
have already become quite small as compared withiAthe 2 manifold.

4.5. N = 6, 7: the beginning loss of propensities

As can be seen in figures 9 and 10, the resonanceé ef 6 and N = 7 are no longer
clearly organized in well separated series for< 20. This indicates the beginning of

a loss of approximate quantum numbers and consequently of propensitiesN Ehes
manifold contains 11 Rydberg series, seven of them have assimilated a total number of nine
perturber states from higher manifolds. In the= 7 manifold, 18 perturber states have been
assimilated by 10 out of 13 Rydberg series. In both cases, only some of the perturbers are
visible in figures 9 and 10. These numbers show two facts. Firstly, more and more Rydberg
series become perturbed, 63% in tNe= 6 manifold, and 77% in thev = 7 manifold

which demonstrates the loss of approximate quantum numbers. Secondly, the perturbers
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Figure 9. Same quantities as in figure 8 for the 11 Rydberg series oMke 6 manifold.

influence only selected Rydberg series, namely those to which they are connected by a
guantum number difference &N, = 1. This shows that the mechanism which controls
the coupling between channel§[N,m]* and which is responsible for the propensity rules
(see section 3.2) is still operative.

For increasingly higher excitation, even this rule seems to break down, since a perturber
state couples to more than one Rydberg series, as indicated by a jump of less than unity
in the quantum defect of a single Rydberg series due to a perturber. However, there is an
alternative and consistent interpretation of this observation: very high-lying Rydberg series
are composed of several purg;[N,m]4 ‘channels’ which reflect the loss of the approximate
guantum numbers. Assuming that a perturber with quantum numbgréf:]* connects
only to the component which fulfildA N, = 1, one can conclude that all Rydberg series
which are perturbed by the specific perturber contain fitg N> — 1, m]* channel. This
interpretation has been worked out up to much higher manifoldsSostates of helium in
[25]. ThelP° resonances are different from th&® states sincel = +1 andA = —1 states
are not separated by an exact symmetry. However, for the manifolds2—7 discussed
here, all the propensity rules and quantum numbers have been demonstrated to hold to the
same accuracy as in the case of S symmetry.
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Figure 10. Same quantities as in figure 8 for the 13 Rydberg series ofMhe 7 manifold.
The extremely small width[{* = 2.9955x 10~° au) of the [060]; state at = 9.586 55 is not
shown.

5. Summary

We can summarize that helium resonances, photoexcited from the ground state, are organized
in regular series roughly up to thé = 5 threshold of H&. The mechanisms, which cause
limited violations of the propensity rules for autoionization and for dipole absorption, are (i)
interference ofA = 41 andA = —1 channels within one manifold due to similar quantum
defectss,, (ii) morphological similarity of the resonant wavefunction with the initial-state
wavefunction, expressed by identical correlation quantum numkees N; — N, = 0

and A = +1, and finally (iii) the perturber states which begin to dissolve the regular
spectrum starting in th& = 5 manifold. Furthermore, we may group the quantities that are
relevant to photoabsorption according to their sensitivities on details of the dynamics. The
sensitivities follow from the nature of the quantities and can clearly be seen by comparing
the presented figures. Least sensitive is the energy poditias thereal part of adiagonal
matrix element. More sensitive is the widlly as theimaginary part of a diagonal matrix
element, followed byB,, which is thereal part of anoff-diagonal matrix element. The most
sensitive parameter in photoabsorptioryjs which is theratio of the real and imaginary

part of anoff-diagonal matrix element. If in the future even higher resonance data should
become available, both experimentally and theoretically, we will see if a mixing between
A = +£1 has a significant effect on the spectrum at higher energies. Furthermore, it will be
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very interesting to monitor experimentally with ultrahigh resolution the loss of the regular
resonant structure for higher excitatioNsand to observe and analyse a qualitatively new
regime of overlapping resonances [51-53]. This regime will coexist with regular tails of
Rydberg series which should prevail for planetary configurations N > 1 and might
open a completely new perspective on highly correlated electron dynamics.

Acknowledgments

This work would not have been possible without Dieter Wintgen’s input. He lead the

numerical part of this project before his tragic death in August 1994. JMR acknowledges
gratefully support by the Deutsche Forschungsgemeinschaft (DFG) within the SFB 276
located at Freiburg University and under the Gerhard Hess-program. The work in Berlin

was supported by the DFG, project Do 560/1-1.

Appendix

In the appendix we list theoretical parameters of helti#h resonances converging to the
thresholdsV = 2—7. Similar tables fotS® resonances can be found in [25].

Table Al. Theoretical resonance parameter as defined in section 2 in atomic units converged to
the given digits, 7.698e—-05 stands fo698 x 10795,

N.K
[NiNom]A n —E r/2 v r* (B*)? q
2,0 2 0.693134920 6.86625e-04 1.6090 5.7202e—03 2.38e—022.77
[oo1y* 3 0.564085188 1.50594e-04 2.7932 6.5638e—03 2.10e-022.58
4 0534363144 6.4173e-05  3.8145 7.1235e-03 2.15e—022.55
5 0.521504666 3.2898e-05  4.8219 7.3766e—03 2.17e-022.54
6 0514733994 1.8998e-05 5.8254 7.5112e-03 2.19e-022.53
7 0510726795 1.1926e-05  6.8273 7.5906e-03 2.19e—022.52
8 0.50815854 7.96e—06 7.8285 7.6380e-03 2.25e-022.58
9 050641384 5.59e-06 8.8293 7.6952e-03 2.24e-022.5
10 0.505175 4e-06 9.829 7.5966e—03
2,1 3 0.597073804 1.923e—06 2.2695 4.4958e—05 4.00e—044.25
[010] 4 0.546493257 1.014e—06 3.2794 7.1522e—05 3.67e-043.32
5 0.527297770 4.91e-07 4.2798 7.6980e—05 3.83e—043.31
6 0.517937328 2.67e—07 5.2797 7.8589e-05 3.88e—043.31
7 0512679987 1.60e—07 6.2795 7.9237e—05 3.89e—043.32
8 0.509435853 1.03e-07 7.2794 7.9460e-05 3.94e-043.3
9 0507294315 6.8e-08 8.2793 7.7182e-05
10 0.50580696 1.0e-07 9.2792 1.5979e-04
2,-1 3 0.547092709 5e—09 3.2584 3.4596e-07 9.29e—023.4
(1001~ 4 0527616338 7e-11 4.2550 1.0785e-08758+ 00—133
5 0518118268 1.7e-11 5.2532 4.9290e-09 8.66e-05 197
6 0512791034 4.7e-11 6.2522 2.2973e-08 8.66e-05 91
7 0.509508462 4e—11 7.2515 3.0506e-08 8.65e-05 72
8 0.507344240 5e-11 8.2511 5.6174e-08
9 0.50584269 9.2509
10 0.5047590 10.250
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Table A2. Theoretical resonance parameter defined as in table Al.

4685

N, K
[NiNom]A n —E r/2 v r* (B*)? q
3,1 3 0.335625935 3.511869e-03 2.0990 6.4955e-02 1.82e-03 1.25
[011]* 4 0.271193403 1.448131e-03 3.1943 9.4397e-02 3.47e-03 1.64
5 0.250773561 6.50018e-04 4.1840 9.5218e-02 3.64e-03 1.53
6 0.240948845 3.81019e-04 5.1664 1.0508e-01 4.02e-03 1.88
7 0.235381267 2.45901e-04 6.1633 1.1514e-01 3.56e-03 1.58
8 0.231969855 1.60266e—-04 7.1613 1.1772e-01 3.54e-03 1.50
9 0.229730760 1.09106e-04 8.1597 1.1855e-01 3.56e-03 1.47
10 0.22818257  7.734e-05 9.1584 1.1882e-01
11 0.227068 5.6e-05 10.157 1.1736e-01
3,-1 3 0.282828970 7.31040e-04 2.8721 3.4639e-02 3.50e-07 0.04
[101]* 4 0.251578561 2.60089e-04 4.1269 3.6561e-02 2.68e-04 12.8
5 0.240848064 1.11798e-04 5.1811 3.1098e-02 1.66e-04 0.52
6 0.235242888 4.8022e-05 6.1968 2.2854e—-02 4.18e-04 1.80
7 0.231855536 2.8170e-05 7.2044 2.1067e-02 4.74e-04 3.67
8 0.229642356 1.8608e-05 8.2088 2.0586e-02 4.88e-04 7.33
9 0.228114738 1.3098e-05 9.2116 2.0476e-02
10 0.2270153 9.5e-06 10.2135 2.0243e-02
3,2 4 0.285950743 1.704 6e-05 2.8010 7.4921e-04 3.12e-06 3.33
[020]~ 5 0.257432288 1.1017e-05 3.7683 1.1791e-03 4.00e-06 4.52
6 0.244412373 6.559e-06 4.7468 1.4031e-03 4.07e-06 5.74
7 0.237433023 4.058e-06 5.7334 1.5296e-03 4.00e-06 7.35
8 0.233279233 2.642e-06 6.7246 1.6068e—-03 3.87e-06 8.68
9 0.230614628 1.801e-06 7.7187 1.6564e-03 3.78e-06 10.3
10 0.228806184 1.278e—06 8.7145 1.6916e-03
11 0.2275238 8e-07 9.7114 1.4654e-03
3,0 4 0.267644001 1.134e-05 3.3178 8.2833e-04 2.61e-07 0.44
[110]~ 5 0.248224394 5.362e-06 4.3851 9.0427e-04 2.10e-07 0.77
6 0.239292313 2.997e-06 54121 9.5021e-04 1.73e-07 0.90
7 0.234331075 1.844e-06 6.4259 9.7857e-04 1.43e-07 0.92
8 0.231269832 1.213e-06 7.4339 9.9665e-04 1.20e-07 0.89
9 0.229242993 8.39e-07 8.4390 1.0085e-03
10 0.227830076 6.04e-07 9.4425 1.0170e-03
3,-2 4 0.245517652 6.8e-08 4.6329 1.3523e-05 5.26e-08 0.69
[200]~ 5 0.238061744 1.06e-07 5.6184 3.7599e-05 1.38e—1709
6 0.233663277 1.02e-07 6.6108 5.8937e-05 2.18e-1733
7 0.230864587 8.6e-08 7.6062 7.5689e-05 2.82e—1746
8 0.228977474 6.9e-08 8.6033 8.7876e-05
9 0.227646123 5.5e-08 9.6013 9.7360e-05
Table A3. Theoretical resonance parameter defined as in table Al.
N, K
[NtNom]* n —E r/2 v r* (B*)? q
4,2 4 0.194512131 1.787174e-03 2.6813 6.8903e-02 6.77e-05 0.29
[021]* 5 0.161251205 1.0839e-03 3.7126 1.1093e-01 2.99e-04 0.47
6 0.148049432 6.03197e-04 4.6563 1.2179e-01 3.64e-04 0.49
7 0.140850169 3.32216e-04 5.6156 1.1766e—01 3.43e-04 0.48




4686

Topical review

Table A3. (Continued)

N, K
[Ni1Nom]* n  —E r/2 v r* (B*)? q
8 0.136528961 1.91047e-04  6.5848 1.0909e-01 3.15e-04 0.48
9 0.133746663 1.13664e-04  7.5602 9.8234e-02 3.44e-04 0.47
10 0.131859129 6.817 1e-05 8.5376 8.4846e-02
11 0.130522475 4.0842e-05 9.5150 7.0366e—02
12 0.12954254  2.388e-05 10.4914 5.5152e-02
13 0.1288034  1.31e-05 11.4656 3.9490e—02
4,0 4 0178798722 2.386550e-03 3.0463 1.3494e-01 7.69e-05 2.47
[111]* 5 0.152734009 1.131881e-03 4.2433 1.7296e-01 9.99e-05 2.29
6 0.142629121 7.03336e-04  5.3224 2.1209e-01 1.64e—04 3.88
7 0.137451388 4.50529e-04  6.3338 2.2895e-01 1.85e-04 4.20
8 0.134288843 2.98427e-04  7.3339 2.3544e-01 2e-04 4
9 0.132200330 2.04658¢-04  8.3306 2.3664e-01
10 0.130745628 1.44973e-04  9.3264 2.3521e-01
11 0.129691063 1.05707e-04 10.3221 2.3251e-01
12 0.12890207  7.904e-05 11.3180 2.2919e-01
4,-2 4 0150557131 3.90874e-04  4.4227 6.7630e-02 2.26e408
[201]+ 5 0.141252456 1.17707e-04  5.5465 4.0168e-02 9.79e0075
6 0.136539778 6.697 4e—05 6.5823 3.8201e-02 2.19e-06 0.47
7 0.133661140 4.2682e-05 7.5979 3.7442e-02
8 0.131750537 2.9682e-05 8.6062 3.7841e-02
9 0.130412715 2.1493e-05 9.6111 3.8164e-02
10 0.129438038 1.6058e-05  10.6142 3.8405e-02
11 0.12870543 1.231e-05 11.6162 3.8590e-02
4,3 5 0.168846093 2.3060e—05 3.3769 1.7760e-03 9.30e-08 1.00
[030]" 6 0.151832846 1.8339e-05 43167 2.9503e-03 1.35e-07 1.28
7 0.142992362 1.2411e-05 52716 3.6363e-03 1.42e-07 1.53
8 0.137840402 8.336e-06 6.2402 4.0511e-03
9 0.134596793 5.737e-06 7.2181 4.3150e-03
10 0.132432020 4.069e-06 8.2022 4.4907e-03
11 0.130919534 2.970e-06 9.1905 4.6112e-03
12 0.12982309 2.23e-06 10.1817 4.7076e-03
13 0.1290039  2.1e-06 11.175 5.8613e-03
4,1 5 0.160689529 5.2718e-05 3.7429 5.5288e-03 1.98e1(86
[120]" 6 0.146733780 3.5345e-05 4.7964 7.8003e-03 4.19e0080
7 0.139754471 2.2789e-05 5.8213 8.9913e-03 1e—090.07
8 0.135701425 1.5139e-05 6.8354 9.6698e-03
9 0.133126050 1.0455e-05 7.8441 1.0092e-02
10 0.131383962 7.481e-06 8.8499 1.0371e-02
11 0.130149302 5.519e-06 9.8540 1.0561e-02
12 0.129241900 4.178e-06 10.8569 1.0693e-02
4,-1 5 0.149763990 7.594e-06 4.4934 1.3779e-03 3.56e4007
[210]" 6 0.140969138 4.243e-06 55956 1.4867e-03 2.45e-07 3.05
7 0.136349933 3.129e-06 6.6372 1.8298e-03 7e-076.7
8 0.133523369 2.348e-06 7.6591 2.1099e-03
9 0.131648243 1.780e-06 8.6722 2.3219e-03
10 0.130335158 1.368e-06 9.6808 2.4823e-03
11 0.129378050 1.068e-06 10.6867 2.6070e-03
12 0.12865820 8.5e-07 11.6910 2.7165e-03
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Table A3. (Continued)
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N, K
[NiNom]* n  —E r/2 v r* (B*)? q
4, -3 5 0.138613869 4.12e-07 6.0603 1.8340e-04 4.40e-08 0.81
[300]~ 6 0.135102260 1.54e-07 7.0352 1.0725e-04 2e-08 0.4
7 0.132774213 5.9e-08 8.0197 6.0863e-05
8 0.131159886 3.2e-08 9.0095 4.6803e-05
9 0.129997623 2.5e-08  10.0024 5.0036e-05
10 0.129134285 2.3e-08  10.9973 6.1180e-05
11 0.12847602  1e-08 11.9934  3.4503e-05
Table A4. Theoretical resonance parameter defined as in table Al.
N, K
[NiNom]* n —E r/2 v r* B2 ¢
5,3 5 0.126398689 1.088654e—-03 3.2820 7.6975e-02 1.51e-@207
[031]* 6 0.107287651 7.80776e-04 42793 1.2237e-01 3.59e-0D22
7 0.098616265 4.62287e-04 5.1813 1.2861e-01 2.93e-0806
8 0.093446374 2.27996e-04 6.0973 1.0336e-01 2.34e-08 0.006
9 0.090235128 5.5505e-05 6.9893 3.7902e-02 9.88e-07 0.067
10 0.088491985 6.4588e-05 7.6731 5.8357e-02 9.25e-05 0.538
11 0.087300171 2.18446e-04 8.2732 2.4740e-01 6.65e-05 0.190
12 0.085995647 1.44735e-04 9.1300 2.2030e-01 3.55e-06 0.046
13 0.084918985 9.2098e-05 10.0807 1.8869e-01 6e-07 0.02
14 0.084091661 6.2894e-05 11.0534 1.6987e-01
15 0.083452 4.6e-05 12.034 1.6033e-01
51 5 0.119233456 1.628873e-03 3.5676 1.4793e-01 8.9e-06 0.44
[121]F 6 0.102150534 1.052069e-03 4.7471 2.2509e-01 3.69e-05 0.71
7 0.095189318 7.00204e-04 5.7328 2.6385e-01 4.67e-05 0.70
8 0.091137537 4.13142e-04 6.6968 2.4816e-01 4.09e-05 0.63
9 0.088537716 2.05050e-04 7.6510 1.8368e-01 8.39e-06 0.24
10 0.086770197 7.9981e-05 8.5933 1.0151e-01 2.20e-05 0.99
11 0.085550431 1.1814e-05 9.4912 2.0202e-02 1.6e-06 0.7
12 0.084669506 1.5324e-05 10.3478 3.3958e-02
13 0.083966869 5.6842e-05 11.2261 1.6084e-01
14 0.08338954 8.250e-05 12.1428 2.9542e-01
5 -1 5 0.109097499 9.20979e-04 41438 1.3106e-01 4.54e296
[211]* 6 0.096547358 4.07284e-04 5.4957 1.3521e-01 2.95e-06 1.93
7 0.091523508 2.68169e-04 6.5857 1.5320e-01 4.50e-06 1.88
8 0.088632704 1.91307e-04 7.6091 1.6856e-01 8.03e-07 0.40
9 0.086748626 1.48913e-04 8.6059 1.8983e-01
10 0.085427964 1.07406e-04 9.5963 1.8983e-01
11 0.084463776 7.9689e-05 10.5823 1.8887e-01
12 0.083737043 5.9688e-05 11.5659 1.8470e-01
13 0.08317501 4.498e-05 12.5482 1.7774e-01
5,-3 5 0.093685604 1.31190e-04 6.0442 5.7936e-02 1.38e-07 0.68
[301]F 6 0.090127327 7.2517e-05 7.0263 5.0310e-02 1.03e-06 2.38
7 0.087751551 4.8256e-05 8.0313 4.9996e-02 1.42e-0B4
8 0.086123429 3.9851e-05 9.0361 5.8805e-02
9 0.084961197 3.0868e-05 10.0389 6.2459e-02
10 0.084102891 2.4771e-05 11.0391 6.6646e-02
11 0.083449134 2.0201e-05 12.0399 7.0514e-02




4688

Topical review

Table A4. (Continued)

N, K
[NyNom]* n  —E r/2 v r* (B*)? q
5,4 6 0.111743628 2.4754e-05 3.9688 3.0949e-03 1.27e-09 0.24
[040] 7 0.100909544 2.2579e-05 4.8900 5.2805e-03 3.28e-09  0.41
8 0.094736906 1.6822e-05 5.8248 6.6489e-03 4.57e-09 0.59
9 0.090891352 1.2084e-05 6.7755 7.5175e-03 8.16e-09 0.70
10 0.088348875 8.796e-06 7.7387 8.1532e-03 3.4e-1D.01
11 0.086589702 6.417e-06 8.7107 8.4824e-03
12 0.085325948 4.808e-06 9.6892 8.7469e-03
13 0.084389840 3.674e-06  10.6724 8.9320e-03
14 0.08367830 2.87e-06 11.6590 9.0970e-03
5,2 6 0.107476720 5.4525e-05 4.2658 8.4651e-03 5.54e-07  1.50
[130] 7 0.097887683 4.5698e-05 5.2870 1.3507e-02 5.98e—(806
8 0.092629436 3.3073e-05 6.2920 1.6477e-02 2.61e-02 0.12
9 0.089399031 2.3582e-05 7.2936 1.8299e-02 3.84e-0913
10 0.087268098 1.7562e—05  8.2942 2.0041e—02
11 0.085788056 1.2761e-05  9.2943 2.0491e-02
12 0.084718712 9.738e-06  10.2937 2.1243e-02
13 0.083919479 7.597e-06  11.2946 2.1892e-02
14 0.0833079  6.0e-06 12.2944 2.2300e-02
5,0 6 0.101938432 6.4196e-05 4.7740 1.3969e-02 8.38e—0336
[220] 7 0.094300364 3.9374e-05 5.9130 1.6281e-02 1.54e—0878
8 0.090252625 2.6141e-05 6.9834 1.7805e-02 2.64e-09  0.50
9 0.087764354 1.9031e-05 8.0247 1.9669e-02 1.8e-07  6.02
10 0.086107301 9.328e-06 9.0482 1.3820e-02
11 0.084938504 6.758e-06  10.0621 1.3769e—02
12 0.084078611 5.837e-06  11.0721 1.5845e—02
13 0.08342624  4.92e-06 12.0802 1.7347e-02
5 -2 6 0.095008763 1.4040e-05 5.7718 5.3993e-03 5.11e-09 31.6
[310] 7 0.090610992 1.5508e-05 6.8645 1.0032e-02 4.31e-09%67
8 0.088002165 1.2546e-05  7.9046 1.2393e-02 2.58e-09 1.45
9 0.086273922 9.620e-06 8.9272 1.3688e-02
10 0.085059034 7.385e-06 9.9415 1.4512e-02
11 0.084169144 5.772e-06 10.9512 1.5161e-02
12 0.083496539 4.592e-06  11.9582 1.5705e-02
5, —4 6 0.088845250 2.921e—06 7.5185 2.4829e-03 9.47e-08 6.43
[400] 7 0.086939055 1.712e-06 8.4886 2.0943e-03 1.6e-08 1.9
8 0.085578293 1.323e—06 9.4675 2.2454e—03
9 0.084576520 4.70e-07 10.4524 1.0734e-03
10 0.083819758 3.21e-07 11.4411 9.6147e-04
11 0.083234874 2.21e-07 12.4324 8.4936e-04

Table A5. Theoretical resonance parameter defined as in table Al. Perturber states as explained

in section 4.4 are denoted by ‘PT'.

N, K
[NiNom]A n —E r/2 v r* (B*)? q
6.4 6 0.0886028  7.465e—04 3.88899 8.7815e-02 PT
[o41]+ 7 0.076648564 5.93082e-04 4.86729 1.3677e-01 6.72e005%
8 0.070757965 3.57664e—04 573375 1.3484e-01 6.15¢008
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Table A5. (Continued)
N, K
[NiNom]A n —E r/2 v r* (BH? ¢
9 0.067072296 1.05357e-04  6.58880 6.0272e-02 1.68e033
10 0.065291914 9.617 7e-05 7.16590 7.0780e-02 2.21e00B0
11 0.063941556 2.57144e-04  7.71888 2.3652e-01 6.89¢3.29
12 0.062332268 1.6338le-04  8.58778 2.0695e-01 4.48¢3:020
13 0.061052043 8.3338e-05 9.53685 1.4457e-01 3.60e040
14 0.060095673 4.9054e-05  10.49379 1.1337e-01
15 0.05936536 2.801e-05 11.45579 8.4221e-02
16 0.0587985  1.43e-05 12.4170 5.4754e-02
17 0.058356 7e-06 13.363  3.3407e-02
6,2 6 0.08482459 1.08347e-03  4.13102 1.5276e-01 PT
[131]* 7 0.073645119 8.29397e-04  5.25326 2.4048e-01 1.2e-07 0.04
8 0.068622411 5.5688le-04  6.18164 2.6309e-01 1.5e-07 0.04
9 0.065512641 2.16889e-04  7.08503 1.5427e-01 4.39¢0083
10 0.063587132 5.808e-06 7.89014 5.7057e-03 4.94e006
11 0.062334868 1.74421e-04  8.58587 2.2079e-01 6.08e-04 8.6
12 0.061285986 3.05229e-04  9.33104 4.9596e-01 1.63e-05 0.27
13 0.060358493 2.01516e-04 10.19636 4.2724e-01
14 0.059576796 1.24023e-04 11.1468 3.4354e-01
15 0.05895754  7.993e-05 12.1207  2.8466e-01
16 0.0584673  5.33e-05 13.102  2.3976e-01
6,0 6 0.079999302 1.255933e-03 4.51827 2.3169e-01 PT
[221]* 7 0.070199995 8.26531e-04  5.83621 3.2861e-01 2.23e-06 1.38
8 0.066203931 7.43663e-04  6.83992 4.7595e-01
9 0.063773028 4.66195e-04  7.79099 4.4094e-01
10 0.062119713 1.85324e-04  8.72501 2.4618e-01
11 0.060956027 2.1519e-05 9.62203 3.8340e-02
12 0.060128380 1.8864e-05  10.45657 4.3135e-02
13 0.059415603 6.9053e-05  11.37985 2.0353e-01
14 0.05882315 1.0608e-04  12.36514 4.0111le-01
15 0.0583329  1.265e-04 13.407  6.0970e-01
6,2 6 0.072692534 6.02213e-04  5.39904 1.8955e-01
[311]* 7 0.066231347 1.61997e-04  6.84301 1.0382e-01
8 0.063474312 1.09833e-04  7.94557 1.1019e-01
9 0.061773868 1.03957e-04  8.96609 1.4986e-01
10 0.060564586 9.6857e-05 9.98958 1.9311e-01
11 0.059686733 8.1515e-05  10.9998 2.1698e-01
12 0.059031037 6.7085e-05  11.9927 2.3142e-01
13 0.05852757 5.759e-05 12.96877 2.5123e-01
14 0.058132 5.3e-05 13.929  2.8646e-01
6, —4 6 0.063897456 3.6370e-05 7.74193 3.3754e-02
[401]* 7 0.062332355 5.0767e-05 8.58941 6.4343e-02
8 0.061057904 3.6015e-05 9.53244 6.2392e-02
9 0.060057477 2.7672e-05  10.53853 6.4775e-02
10 0.059321103 2.5934e-05  11.52294 7.9358e-02
11 0.058747779 2.1710e-05  12.51500 8.5110e-02
12 0.05829545 1.859e-05 13.50861 9.1652e-02
13 0.057933 1.6e-05 14502  9.7596e-02
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Table A5. (Continued)

N, K
[NyNom]* n  —E r/2 r* (B? ¢
6,5 7 0.079515759 2.4694e-05 456814  4.7080e—03
[050]~ 8 0.072223314 2.4771e-05 547704  8.1398e-03
9 0.067779451 1.9827e-05 6.39558  1.0374e—02
10 0.064861167 1.5003e-05  7.33014  1.1818e-02
11 0.062851836 1.1216e-05 8.27816  1.2725e-02
12 0.061416692 8.381e—06 9.23621  1.3207e-02
13 0.060361885 6.141e-06  10.19948  1.3032e-02
14 0.05960694  1.51e-06 11.10921  4.1405e-03
15 0.05945934  4.13e-06 11.31727  1.1973e-02
16 0.0589293 4.5e-06 12.1738 1.6238e-02
17  0.058449 5e—06 13.146 2.2719e-02
6,3 7 0.077020444 4.9639e-05 4.82636  1.1161e-02
[140] 8 0.070308609 4.7446e-05 5.82160  1.8722e-02
9 0.066351579 3.7352e-05 6.80536  2.3545e—02
10 0.063793922 2.8314e-05 7.79045  2.6774e-02
11 0.062044175 2.1189e-05 8.77823  2.8666e—02
12 0.060796106 1.5990e-05 9.76776  2.9803e-02
13 0.059875541 1.2173e-05 10.75827  3.0315e—02
14 0.059177745 9.349e-06  11.74893  3.0324e-02
15 0.0586382 7.0e-06 12.7358 2.8921e-02
6,1 7 0.073892177 7.4210e-05 522183  2.1133e-02
[230] 8 0.068065139 6.4580e-05 6.32207  3.2637e-02
9 0.064750545 4.9026e-05  7.37403  3.9316e-02
10 0.062631764 3.6535e-05  8.40583  4.3399e-02
11 0.061181674 2.7280e-05 9.42707  4.5709e-02
12 0.060143275 2.0009e-05 10.43959  4.5531e—02
13 0.059367776 1.6197e-05 11.45231  4.8657e—02
14 0.058776356 1.2689e-05 12.45950  4.9086e—02
15 0.0583135 9.9e-06 13.465 4.8338e-02
6, —1 7 0.069975284 5.1741e-05 5.88850  2.1129e-02
[320] 8 0.065657455 4.1590e-05  7.03527  2.8964e—02
9 0.063153276 3.0859e-05 8.11224  3.2948e-02
10 0.061521397 2.3124e-05 9.15475  3.5484e-02
11 0.060379345 1.7615e-05 10.18096  3.7177e—02
12 0.059542663 1.3648e-05 11.19835  3.8332e-02
13 0.058909058 1.0748e-05 12.21052  3.9135e-02
14 0.05841674  8.59e—06 13.21937  3.9688e—02
6, -3 7 0.065179472 2.907e-06 7.20791  2.1772e-03
[410] 8 0.062833968 4.059e—06 8.28832  4.6222e-03
9 0.061301429 4.726e-06 9.32839  7.6726e-03
10 0.060221156 4.856e-06  10.35216  1.0775e-02
11 0.059424516 4.633e-06  11.36809  1.3613e-02
12  0.058818481 4.095e-06  12.37887  1.5536e-02
13 0.05834572  3.60e-06 13.3866 1.7272e-02
6, —5 7 0.061734162 7.671e-06 8.99579  1.1169e-02
[500] 8 0.060593300 6.363e—06 9.96246  1.2583e-02
9 0.059735205 4.050e-06  10.93742  1.0598e—02
10 0.059075368 3.092e-06  11.91860  1.0470e-02
11 0.058558161 2.715e-06  12.90434  1.1668e-02
12 0.05814565  2.48e-06 13.894001 1.3303e-02
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Table A6. Theoretical resonance parameter defined as in table Al.
N, K
[NiNom]A  n —-E r/2 r+ (B*)? q
7,5 7 0.065509 5.76e-04 4.499 1.0491e-01 PT
[051]F 8 0.05754182 4.7157e-04 5.46596 1.5402e-01 PT
9 0.053403165 2.79157e-04 6.30154 1.3971e-01 1.04e—-02191
10 0.050846 476 1.203 0e-05 7.06043 8.4682e-03 3.63e—dB92
11 0.049772857 2.40087e-04 7.469 61 2.0012e-01 1.17e-®162
12 0.048273635 1.92402e-04 8.18626 2.1110e-01 1.57e-®@190
13 0.046 881 956 8.924 8e—-05 9.07845 1.3356e-01 9.52e—0h84
14 0.045826 586 3.1333e-05 9.98961 6.2471e-02
15 0.045069 341 9.619999e-07 10.84268 2.4525e-03
16 0.044568 703 7.859 3e-05 11.54145 2.4165e-01
17 0.044 18963 1.1537e-04 12.1693 4.1583e-01
18 0.0437626 6.21e-05 13.0251 2.7445e-01
19 0.043377 3.5e-05 13.972 1.9093e-01
7,3 7 0.063276 7.75e-04 4714 1.6237e-01 PT
[141]" 8 0.055640773 6.529 96e-04 5.80337 2.5526e-01 1.00e—-@50
9 0.051999577 4.317 76e-04 6.682 80 2.5773e-01 1.56e—dkB52
10 0.049 698 068 6.1319e-05 7.50288 5.1798e-02 1.97e-0r.10
11 0.048398011 1.84852e-04 8.11905 1.9787e-01 2.68e—@H33
12 0.047 315073 3.55456e-04 8.76161 4,7815e-01 1.19e-@529
13 0.046 226671 1.82188e-04 9.60922 3.2331e-01
14 0.045308 782 8.4408e-05 10.54838 1.9814e-01
15 0.044598 224 3.3557e-05 11.49787 1.0202e-01
16 0.044 050636 6.928e-06 12.43350 2.6633e-02
17 0.04362829 4.49e-06 13.33460 2.1292e-02
18 0.0432832 3.07e-05 14.236 1.7715e-01
7,1 7 0.0604734 8.900e-04 5.0396 2.2783e-01 PT
[231]F 8 0.053382783 6.979 38e-04 6.30053 3.4912e-01 1.6
9 0.050 346 398 5.32024e-04 7.23486 4,0295e-01 1.6
10 0.048 436998 1.492 33e-04 8.098 90 1.5855e-01 1.7
11 0.047 144 965 1.497 7e-05 8.88851 2.1035e-02 1.7
12 0.046 103722 1.88036e-04 9.71982 3.4534e-01 1.7
13 0.045265 429 3.629 85e-04 10.57471 8.5847e-01 1.7
14 0.044741749 2.866 90e-04 11.26356 8.1935e-01 1.7
15 0.044 150384 1.094 74e-04 12.24117 4.0161e-01
16 0.043 685458 5.9238e-05 13.19898 2.7243e-01
17 0.043 30286 3.116e-05 14.1795 1.7767e-01
7,-1 7 0.057 027 662 6.473 05e-04 5.5503 2.2135e-01
[321]F 8 0.050951085 2.607 09e-04 7.02216 1.8055e-01 14
9 0.048701167 4.291 66e-04 7.954 39 4.3199e-01 14
10 0.047111742 2.516 84e-04 8.906 62 3.5565e-01 15
11 0.045976 755 8.197 6e-05 9.842 40 1.5632e-01 1.6
12 0.045 147690 4.336e-06 10.744 16 1.0756e-02
13 0.044510533 1.864 0e-05 11.63376 5.8700e-02
14 0.044099816 1.922 33e-04 12.324 24 7.1968e-01 1.6
15 0.043752832 2.599 28e-04 13.01065 1.142@e 1.6
16 0.043420702 1.14093e-04 13.84589 6.0569e-01
17 0.0430824 6.04e-05 14.8504 3.9562e-01
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Table A6. (Continued)

N, K
[N1Nm]A n —E r/2 r* (B*)?
7,-3 7  0.051934994  581427e-04 6.69906  3.4960e-01 1.2
[411]* 8  0.048177509  9.0858e-05 824112  1.0171e-01 1.4
9  0.046584530  5.8660e-05 9.30996  9.4671e-02 15
10  0.045477218  6.2000e-05 10.35671  1.3775e-01 1.4
11 0.044702926  8.7597e-05 11.34011  2.5549e-01 15
12 0.043983281  3.4495e-05 1256449  1.3684e-01 1.7
13 0.043552663  3.0401e-05 1351700  1.5016e-01
14  0.043196604  2.6912e-05 14.49273  1.6384e-01
7,-5 7 0.046430995  1.6230e-05 943673  2.7278e-02 1.2
[501]* 8  0.045608223  2.5086e-05 10.21473  5.3474e-02 1.4
9  0.044867976  2.7370e-05 11.10866  7.5039e-02 15
10  0.044260825  2.392e-05 12.04798  8.3663e-02
11 0.043768404  1.9843e-05 13.01409  8.7474e-02
12 0.043369211  1.6539e-05 13.99467  9.0662e—02
13 0.04304364 1.410e-05 1498261  9.4844e-02
7,6 8 0059511072  2.3915e-05 517160  6.6157e-03  PT
[060]~ 9 0054376728  2.5722e-05 6.07223  1.1518e-02
10  0.051085674  2.1740e-05 6.97771  1.4772e-02
11 0.048832517  1.7059e-05 7.89769  1.6807e-02
12 0.047230682  1.2737e-05 8.82893  1.7532e-02
13 0.046256910  1.7e-08 9.58655  2.9955e—05
14  0.046007995  1.1366e-05 9.81365  2.1485e-02
15  0.045145907  8.509e-06 10.74636  2.1120e-02
16  0.044464425  6.678e-06 11.70715  2.1430e-02
17 0.0439283 5.3e-06 12.6756 2.1588e-02
18  0.043502 5e-06 13.65 2.5433e-02
7.4 8  0.057930646  4.4171e-05 540510  1.3950e-02
[150] 9  0.053095634  4.6228e-05 6.38110  2.4023e-02
10  0.050082739  3.8863e-05 7.34558  3.0807e-02
11 0.048050964  3.0520e-05 8.31330  3.5070e-02
12 0.046617513  2.3121e-05 9.28376  3.7001e-02
13 0.045582296  1.5156e-05 10.24254  3.2571e-02
14  0.045160140  2.090e-06 10.72876  5.1621e-03
15  0.044742758  1.6302e-05 11.28452  4.6851e-02
16  0.044146533  1.2515e-05 12.25313  4.6047e-02
17 0.04366973 9.93e-06 13.239 4.6083e—-02
18  0.043287 8e—06 14.226 4.6065e—02
7,2 8  0.056006139  6.7420e-05 573727  2.5464e-02
[240] 9  0.051607785  6.6336e-05 6.80673  4.1840e-02
10  0.048956548  5.4730e-05 7.83717  5.2691e-02
11 0.047195603  4.2880e-05 8.85303  5.9506e—02
12 0.045957794  3.3292e-05 9.86131  6.3852e-02
13 0.045053447  2.5243e-05 10.86285  6.4715e-02
14  0.044380808  1.7682e-05 11.84357  5.8750e-02
15  0.043958694  9.343e-06 12.61406  3.7504e-02
16  0.043762163  1.4961e-05 13.02796  6.6164e—02
18  0.04339304 1.516e-05 13.92984  8.1954e-02
19 0.043064 1.3e-05 14.916 8.6284e—02
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Table A6. (Continued)

N, K
[N1Nm]A n —E r/2 v r* (B*)? q
7,0 8 0.053654 151 7.6293e-05 6.24070 3.7086e-02
[330] 9 0.049908783 6.6335e—05 7.41542 5.4098e-02
10 0.047726 990 5.2432e-05 8.505 81 6.4532e-02
11 0.046 288081 4.0820e-05 9.559 00 7.1308e-02
12 0.045272791 3.2084e—05 10.59208 7.6254e-02
13 0.044523737 2.5438e-05 11.61293 7.9678e-02
14 0.043948 045 1.1356e-05 12.63547 4.5817e-02
15 0.043506 179 1.6224e—05 13.63374 8.2231e-02
16 0.04315133 1.301e-05 14.6331 8.1530e-02
7,-2 8 0.050781353 3.3743e-05 7.08344 2.3985e-02
[420] 9 0.048126 949 2.9262e-05 8.26999 3.3102e-02
10 0.046 531975 2.6966e—05 9.35295 4.4126e-02
11 0.045 436 240 2.0352e-05 1040315  4.5828e-02
12 0.044 642517 1.6391e-05 11.43138 4.8970e-02
13 0.044 038062 1.3957e-05 12.45768 5.3968e—02
14 0.043570979 1.1850e-05 13.47251 5.7955e—-02
15 0.043200258 9.257e-06 14.48224 5.6235e-02
7, -4 0.047 465 145 1.519e-06 8.67187 1.9812e-03
[620] 9 0.046118172 1.059e-06 9.71117 1.9397e-03
10 0.045160758 3.186e-06 10.72799 7.8674e-03
11 0.044 434270 1.224e-06 11.75585 3.9772e-03
12 0.043883227 1.202e-06 12.76836 5.0043e-03
13 0.043450 804 1.186e-06 13.776 46 6.2019e-03
14 0.043104559 1.129e-06 14.78206 7.2934e-03
7,—6 8 0.045366 336 2.763e-06 10.48284 6.3657e—03
[600]~ 9 0.044626424  4.312e-06 11.45557 1.2965e—02
10 0.044 056 650 3.576e-06 12.42197 1.3709e-02
11 0.043601 101 2.570e-06 13.39954 1.2366e—02
12 0.043233831 2.285e-06 14.38140 1.3593e-02
13 0.04293372 2.33e-06 15.366 81 1.6910e-02

The values forE, I'/2, andg are numerically converged to the digits shown. All
data are in atomic units; energies are measured against the double ionization thrfgshold
at E = 0. From the theoretical resonance positiahsthe photon energies at which the
resonances appear are obtained as

EexpleV] = I — 2RyeE[au],

with the Rydberg constarRye = 13.60383 eV aa® and the double ionization threshold
of I = 79.0052 eV.
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