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Semiclassical time-dependent propagation in three dimensions for a Coulomb potential
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A unified semiclassical time propagator is used to calculate the semiclassical time-correlation function in
three Cartesian dimensions for a particle moving in an attractive Coulomb potential. It is demonstrated that
under these conditions the singularity of the potential does not cause any difficulties and the Coulomb inter-
action can be treated as any other nonsingular potential. Moreover, by virtue of our three-dimensional calcu-
lation, we can explain the discrepancies between previous semiclassical and quantum results obtained for the
one-dimensional radial Coulomb problem.@S1050-2947~99!50303-X#

PACS number~s!: 03.65.Sq, 03.65.Ge, 31.50.1w
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Semiclassical propagation in time has been studied in
sively in two dimensions@1–4#. There are by far not as man
applications to higher-dimensional problems, in particu
not in connection with the singular Coulomb potential. O
motivation for this study is threefold: First, to see if th
advanced semiclassical propagation techniques in ti
namely the Herman-Kluk propagator@5–7#, can be imple-
mented for realistic problems of scattering theory involvi
long-range forces; second, to see if we can avoid regulari
the Coulomb singularity in the classical equations of mot
if we work in three ~Cartesian! dimensions; and third, to
clarify the reason for the small, but pertinent discrepanc
with the quantum result in two previous, one-dimensio
semiclassical calculations of the hydrogen spectrum from
time domain@8,9#. As will turn out, the Coulomb problem
with the Hamiltonian~we work in atomic units unless state
otherwise!

H5
p2

2
1

Z

ur u
~1!

can be propagated in time semiclassically without taking
special care of the singularity in the potential that poses a
of difficulties for the one-dimensional radial problem ifZ
,0, i.e., if the potential is attractive, as in the case of hyd
gen (Z521), which we take as an example in the follow
ing. The relevant information in the time domain is the a
tocorrelation function
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c~ t !5^cuKuc&, ~2!

where

K~r ,r 8,t !5^r ue2 iHt /\ur 8& ~3!

is the propagator in the coordinate representation. By dia
nalizing K in Eq. ~2! one can express the autocorrelati
function with the time evolution operatorU(t),

c~ t !5^c~0!uU~ t !uc~0!&[^c~0!uc~ t !&. ~4!

This form has the obvious interpretation of correlating t
time evolving wave functionc(t) at each time with its value
at t50. The extraction of the energy spectrum from Eq.~4!
is routinely performed by Fourier transform,

s~v!5E c~ t !eivtdt. ~5!

Expanding formallyc(t) in terms of eigenfunctions

c~ t !5(
nlm

anlmFnlmeiEnt/\ ~6!

and inserting Eq.~6! into Eq. ~5!, one sees that

s~v!5(
n

d~v2En /\!bn . ~7!
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Hence, the power spectrums~v! exhibits peaks at the
eigenenergies of the system with weights given by

bn5(
lm

uanlmu2[(
lm

z^c~0!uFnlm& z2, ~8!

which are determined by the overlap with the initial wa
packet c~0!. For a finite propagation timet the peaks
will have a finite widthG. Based on an idea by Wall an
Neuhauser@10#, Mandelshtam and Taylor@11# have devised
the so-called filter-diagonalization method as an alterna
to the Fourier transform for extracting the energy spectr
from a finite-time signalc(t). Assuming a form

c~ t !5(
j

aje
iE j t/\, ~9!

with aj and Ej being complex the filter-diagonalization, a
lows one to extractEn andbn directly from Eq.~7!. We will
use this stable and accurate method to obtain the spe
information from the time signalc(t), which has been cal
culated semiclassically as follows. For the initial wave fun
tion we have taken a normalized Gaussian wave pac
c(0)5(g2/p)3/4f g(r ,r0 ,p0), with

f g~r ,r0 ,p0!5expS 2
g2

2
~r2r0!21

i

\
p0~r2r0! D , ~10!

where the inverse widthg of the wave packet and its cente
(p0 ,r0) in phase space determine with which weight the h
drogenic eigenfunctions are covered byc~0!; see Eq.~8!.

The semiclassical propagator, according to Herman
Kluk @5#, is formulated as an integral over phase space,

Kg~r ,r 8,t !5
1

~2p\!3 E E d3qd3pRg~pt ,qt!

3expS i

\
S~pt ,qt! D f g~r ,qt ,pt! f g* ~r 8,q,p!,

~11!

whereqt5q(t) and pt5p(t) are the phase-space values
time t of the trajectory started at timet50 with ~q,p! and
propagated under the classical Hamiltonian Eq.~1!. The ac-
tion S5*(pq̇2H)dt accumulated along the trajectory ente
Eq. ~11! as well as the probability density of each trajecto
Rg(pt ,qt), which contains all four blocksMi j of the mono-
dromy matrix,

S dqt

dpt
D5S Mqq~ t ! Mqp~ t !

M pq~ t ! M pp~ t !
D S dq

dpD . ~12!

The actual form of the probability density depends on
width parameterg that determines the admixture of the d
ferent blocksMi j ,
e

ral

-
t,

-

d

t

a

Rg~pt ,qt!5U12 S Mqq1M pp2 ig2\Mqp2
1

ig2\
M pqD U1/2

.

~13!

Although this semiclassical propagator is not uniquely d
fined through its dependence from a suitable chosen par
eterg it has several important advantages over other for
First, it is globally uniformized, since at a caustic,Rg re-
mains always finite. Second, and this is of considerable
evance for practical applications, one does not have to k
track of Maslov indices. Instead one has to makeRg continu-
ous as the radicant crosses the branch cut. Inserting Eq.~11!
and Eq. ~10! into Eq. ~2! we obtain a particularly simple
form for the semiclassical correlation function if the width
of the initial Gaussian inc~0! and of the propagator itself in
Rg are chosen to be the same,

csc~ t !5
1

~2p\!3 E E d3qd3pR~pt ,qt!

3expS i

\
S~pt ,qt! Dgg~q,p,r0 ,p0!gg* ~qt ,pt ,r0 ,p0!,

~14!

where

gg~q,p,q8,p8!5expS 2
g2

4
~q2q8!22

1

4g2
~p2p8!2

1
i

2\
~p1p8!~q2q8!D . ~15!

The integrations overr andr 8 have been carried out ana
lytically, which is possible due to our choice of the initia
wave packet as a Gaussian. The remaining integral in
~14! is over the entire phase space, and in practicecsc(t) is
calculated by Monte Carlo integration where each random
chosen phase-space point~q,p! represents the initial condi
tions for a classical trajectory. It evolves in time und
Hamilton’s equations generated by the Hamiltonian of E
~1! and with the values (qt ,pt) entering Eq.~14!. The num-
ber of sampling points~trajectories to be run! to achieve
convergence depends very much on the initial wave pac
c~0!. In general it varies between a couple of thousand an
couple of million trajectories.

Our first objective is to compare our results with earl
one-dimensional calculations@8,9#. Although we work in
three dimensions we can mimic the one-dimensional res
to some extent by choosing a similar initial wave packet.

The result with parameters similar to those from@8# is
shown in Fig. 1. One sees excellent agreement concer
the positions of the peaks with quantum mechanics~crosses!
and small but noticeable deviations of the weights of
states. This observation, as the entire figure, is very simila
the findings of@8# and @9#. However, we would like to em-
phasize that our result has been obtained from a ‘‘routine
applied semiclassical propagator without explicit regulari
tion or Langer corrections or any other means implemen
to deal with the Coulomb singularity. These complication
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dealt with in @9#, occur only if one uses explicitly curve
linear coordinates where the problem of the order of ope
tors renders the classical-quantum correspondence diffi
This becomes obvious if the semiclassical propagator is
rived from Feynman’s path integral; see, e.g., Kleiner
book on path integrals@12#. Of course, the price one has
pay in order to avoid these complications in, e.g., a rad
coordinate, is to work in a higher-dimensional~Cartesian!
space, as has been done here.

However, even in our approach we should regularize
jectories that hit the Coulomb singularity directly~impact-
parameter zero!. Fortunately, these ‘‘head-on’’ trajectorie
are of measure zero among all trajectories contained in
initial conditions, and with a Monte Carlo method they a
hardly ever encountered. Even if such a trajectory is sele
by chance, one can safely discard its contribution to
propagator.

The direct semiclassical integration is in principle able
reproduce the spectrum, even for low excitation, as can
seen in Fig. 2, and, less surprisingly, for medium excitat
~Fig. 3!. However, a systematic trend is apparent from th
two spectra: The agreement of the weights is much bette
the right of the largest peak than to the left. To understa

FIG. 1. Semiclassical spectrum~full curve! compared to quan-
tum spectrum~crosses! with parametersr05(0,0,6000 a.u.),p0

5(0,0,0), andg252/6002.

FIG. 2. Semiclassical spectrum~full curve! compared to quan-
tum spectrum ~crosses! with parametersr05(0,0,20 a.u.), p0

5(0,0,0), andg250.1.
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this effect we have plotted in Fig. 3 the average angu
momentum fraction

^ l &5
1

n21

(
lm

l uanlmu2

(
lm

uanlmu2
, ~16!

contained in the weightsbn , in addition. One sees that goo
agreement goes along with a large fraction of high-angu
momentum states in the initial wave packet andvice versa.

To support this finding we have prepared a different wa
packet with an additional kick~initial momentum! perpen-
dicular to the axis connecting the center of the wave pac
and the Coulomb center. This creates a large fraction
high-angular-momentum states, as can be seen in Fig. 4.

FIG. 3. Lower panel: Semiclassical spectrum~full curve! com-
pared to quantum spectrum~crosses! with parameters r0

5(0,0,2500 a.u.),p05(0,0,0) andg250.0001; upper panel: aver
age normalized angular momentum according to Eq.~16! ~circles!.

FIG. 4. Lower panel: Semiclassical spectrum~full curve! com-
pared to quantum spectrum~crosses! with parameters r0

5(0,0,6000 a.u.),p05(0,0.0075,0) andg252/6002; upper panel:
average normalized angular momentum according to Eq.~16!
~circles!.
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agreement with the quantum power spectrum is, in this c
covering the same energy window as@8,9#, and Fig. 1, much
better. Naturally, the one-dimensional radial calculations
@8,9# have onlyl 50 states, and in Fig. 1 the average angu
momentuml is also low by construction through the initia
state.

Hence, we can conclude that the power spectrum of
drogen, including the weights, can be reproduced semic
sically. While the semiclassical energiesEn are generally in
good agreement with the quantum eigenvalues, the semi
sical weightsbn are only accurate in the limit of large quan
tum numbers, i.e., if the initial wave packet contains a la
fraction of high-angular-momentum states in each dege
ate manifoldn. This reflects the larger sensitivity of th
weights described by off-diagonal matrix elements, co
pared to the~diagonal! energies. Seen in a wider context, o
result implies the consequence that a one-dimensionalradial
quantum problem is not really one dimensional. Rather, i
the limit of angular momentuml 50 in three, or at least two
dimensions. Hence, even for large quantum numbersn in the
radial problem the semiclassical limit is not reached since
angular-momentum quantum number is zero. The incomp
semiclassical limit causes, in the case of the hydrogen p
S
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y-
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s-
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-
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lem, the remaining discrepancies in the purely radial se
classical spectrum compared with the quantum spectr
One may also view the failure of the one-dimensional rad
WKB treatment forl 50, even for large quantum numbersn,
as a consequence of this incomplete semiclassical limit.

In summary, constructing the time-correlation functio
semiclassically in three Cartesian dimensions with the h
of the Herman-Kluk propagator, we have demonstrated
the singular Coulomb potential can be treated as any o
nonsingular interaction without any special precautio
Moreover, by virtue of our three-dimensional treatment,
could clarify the origin of the discrepancies between t
quantum and the semiclassical calculation restricted to
radial dynamics only. We hope that this result stimula
future applications of semiclassical propagator technique
Coulomb problems.
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