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Semiclassical time-dependent propagation in three dimensions for a Coulomb potential
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A unified semiclassical time propagator is used to calculate the semiclassical time-correlation function in
three Cartesian dimensions for a particle moving in an attractive Coulomb potential. It is demonstrated that
under these conditions the singularity of the potential does not cause any difficulties and the Coulomb inter-
action can be treated as any other nonsingular potential. Moreover, by virtue of our three-dimensional calcu-
lation, we can explain the discrepancies between previous semiclassical and quantum results obtained for the
one-dimensional radial Coulomb proble$1050-2947®9)50303-X

PACS numbegps): 03.65.Sq, 03.65.Ge, 31.50w

. Semiclassi(;al prqpagation in time has been studied inten- c(t)=(y|K|y), 2)
sively in two dimension§l—4]. There are by far not as many
applications to higher-dimensional problems, in particularwhere
not in connection with the singular Coulomb potential. Our N CiHUR L
motivation for this study is threefold: First, to see if the K(r.r,ty=(rle Ir") 3

advanced semiclassical propagation techniques in UM8s the propagator in the coordinate representation. By diago-

nmaemmeel)é ;2? rgglzrsrzs:npféléTemg%?gsi[iez]ﬁgc?hnegg Iirr?v%ﬁ/ingna“m.ng K_|n Eq. _(2) one can express the autocorrelation
i ; . ._.2function with the time evolution operatds(t),

long-range forces; second, to see if we can avoid regularizing

the Coulomb singularity in the classical equations of motion c(t)={((0)|U(1)]|(0))={(y(0)|(t)). (4

if we work in three (Cartesiah dimensions; and third, to

clarify the reason for the small, but pertinent discrepancie§his form has the obvious interpretation of correlating the

with the quantum result in two previous, one-dimensionaltime evolving wave function(t) at each time with its value

semiclassical calculations of the hydrogen spectrum from that t=0. The extraction of the energy spectrum from k).

time domain[8,9]. As will turn out, the Coulomb problem is routinely performed by Fourier transform,

with the Hamiltonian(we work in atomic units unless stated

otherwise (r(w):f c(t)e “tdt. (5)
p? Z
H= E“L I 1) Expanding formallyi(t) in terms of eigenfunctions
can be propagated in time semiclassically without taking any _ iEnt/h
special care of the singularity in the potential that poses a lot 40 ;m Anim®Pnim® ©

of difficulties for the one-dimensional radial problem 4f

<0, i.e., if the potential is attractive, as in the case of hydro-and inserting Eq(6) into Eq. (5), one sees that

gen Z=—1), which we take as an example in the follow-

ing. The relevant information in the time domain is the au- U(w):E S(w—E, I7)b, . @)
tocorrelation function n
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Hence, the power spectrum{w) exhibits peaks at the 1 ., 1 172
eigenenergies of the system with weights given by R,(Pt,G) = 5( Mgt Mpp=iyhiMg,— WMpq

(13

bﬁ% |animl?= 2 K(0)| @i 2, 8

|
" Although this semiclassical propagator is not uniquely de-

fined through its dependence from a suitable chosen param-
eter y it has several important advantages over other forms.
First, it is globally uniformized, since at a caustR,, re-

which are determined by the overlap with the initial wave
packet (0). For a finite propagation time& the peaks

will have a finite widthT'. Based on an idea by Wall and mains always finite. Second, and this is of considerable rel-
Neuhausef10], Mandelshtam and Tayldd 1] have devised ys Tinite. s
evance for practical applications, one does not have to keep

the so-called filter-diagonalization method as an aIternativ%aCk of Maslov indices. Instead one has to m ontinu-
to the Fourier transform for extracting the energy spectrum ' Ryec

from a finite-time signat(t). Assuming a form ous as the radicant crosses the branch cut. Inserting1Ep.

9 ' 9 and Eqg.(10) into Eq. (2) we obtain a particularly simple
form for the semiclassical correlation function if the widths
()= ajeiEjt/ﬁ’ (9) of the initial Gaussian in(0) and of the propagator itself in

] R, are chosen to be the same,

with a; andE; being complex the filter-diagonalization, al- _ 1 J' f 343

lows one to e]xtracEn andb,, directly from Eq.(7). We will Csclt) (2mh)3 d“qdpR(p.a)

use this stable and accurate method to obtain the spectral .

information from the time signat(t), which has been cal- ><eXr<l—S(pt,qt))g (G,P,T0,Po) g% (Tt ,PrsT o Po)s
culated semiclassically as follows. For the initial wave func- h ’ i

tion we have taken a normalized Gaussian wave packet, (14)

$(0)=(v?m)¥* (r,ry,pp), With
where

2 i

fy(r,ro,po):eXF<_%(r_ro)2+%Po(r_ro) , (10) 2

’ "o _’y_ o~ Z_L _ n’\2
9,(9,p,q ,p)—exp< 7 (a-a) 4y2(p p’)

where the inverse widtly of the wave packet and its center
(po.ro) in phase space determine with which weight the hy-
drogenic eigenfunctions are covered §§0); see Eq.(8).
The semiclassical propagator, according to Herman and
Kluk [5], is formulated as an integral over phase space, The integrations over andr’ have been carried out ana-
Iytically, which is possible due to our choice of the initial
1 wave packet as a Gaussian. The remaining integral in Eq.
Ky(r,r',t)= Wf f d*qd®pR,(p;,qy) (14) is over the entire phase space, and in praaticét) is
calculated by Monte Carlo integration where each randomly
i . chosen phase-space poigtp) represents the initial condi-
Xexp(gs(pt,m))fy(r,%,pt)fy(f'7qyp): tions for a classical trajectory. It evolves in time under
Hamilton’s equations generated by the Hamiltonian of Eq.
(1D (1) and with the valuesd,p,) entering Eq(14). The num-
ber of sampling pointgtrajectories to be runto achieve
whereg;=q(t) and p,=p(t) are the phase-space values atconvergence depends very much on the initial wave packet
time t of the trajectory started at time=0 with (g,p) and  (0). In general it varies between a couple of thousand and a
propagated under the classical Hamiltonian B¢. The ac- couple of million trajectories.
tion S= [(pg—H)dt accumulated along the trajectory enters  Our first objective is to compare our results with earlier
Eqg. (12) as well as the probability density of each trajectory one-dimensional calculation8,9]. Although we work in
R,(pt,0r), which contains all four block#;; of the mono-  three dimensions we can mimic the one-dimensional results
dromy matrix, to some extent by choosing a similar initial wave packet.
The result with parameters similar to those fr¢8] is
shown in Fig. 1. One sees excellent agreement concerning
(5%) (qu(t) qu(t)) ( 6q> the positions of the_ peaks with.qgantum mecha(ﬁmssse}:
= (120 and small but noticeable deviations of the weights of the
Mpg(t)  Mpp(1) op states. This observation, as the entire figure, is very similar to
the findings of[8] and[9]. However, we would like to em-
phasize that our result has been obtained from a “routinely”
The actual form of the probability density depends on aapplied semiclassical propagator without explicit regulariza-
width parametery that determines the admixture of the dif- tion or Langer corrections or any other means implemented
ferent blocksMj; , to deal with the Coulomb singularity. These complications,

i
+ﬁ(p+p )(d—q ))- (15

Py
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FIG. 1. Semiclassical spectruffull curve) compared to quan-
tum spectrum(crossey with parametersr,=(0,0,6000 a.u.),po
=(0,0,0), andy?=2/60C.

FIG. 3. Lower panel: Semiclassical spectrdull curve) com-
pared to quantum spectrunicrosses with parameters r,
=(0,0,2500 a.u.) po=(0,0,0) andy?=0.0001; upper panel: aver-
age normalized angular momentum according to (&) (circles.

dealt with in[9], occur only if one uses explicitly curved

linear coordinates where the problem of the order of operathis effect we have plotted in Fig. 3 the average angular-
tors renders the classical-quantum correspondence difficulniomentum fraction

This becomes obvious if the semiclassical propagator is de-
rived from Feynman's path integral;, see, e.g., Kleinert's
book on path integralgl2]. Of course, the price one has to
pay in order to avoid these complications in, e.g., a radial
coordinate, is to work in a higher-dimension@artesian
space, as has been done here.

However, even in our approach we should regularize tra-
jectories that hit the Coulomb singularity directlympact-
parameter zepo Fortunately, these “head-on” trajectories
are of measure zero among all trajectories contained in the

Ik?;trlgll Cg\?s;té?’]r::%uirt]gr(\a’\(ljlthEse'\rf(i)l‘nsfﬁc(rizglgamei'{tg(r)di;hsgleegt?a contained in the weights,,, in addition. One sees that good
Y ' J y greement goes along with a large fraction of high-angular-

by chance, one can safely discard its contribution to the}nomentum states in the initial wave packet afie versa

pro‘lPr?egzti(r)er.ct semiclassical integration is in principle able to To support this finding we have prepared a different wave
reproduce the spectrum, even g;or low excitpationpas can b acket with an additional kickinitial momentum perpen-
P P ' ' icular to the axis connecting the center of the wave packet

seen in Fig. 2, and, less surprisingly, for medium exC'tatlonand the Coulomb center. This creates a large fraction of

(Fig. 3). However, a systematic trend is apparent from these. ) -
two spectra: The agreement of the weights is much better t?])'gh angular-momentum states, as can be seen in Fig. 4. The

the right of the largest peak than to the left. To understand
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FIG. 2. Semiclassical spectrutfull curve) compared to quan-
tum spectrum (crosses with parametersry,=(0,0,20 a.u.), po
=(0,0,0), andy?=0.1.

FIG. 4. Lower panel: Semiclassical spectrgfull curve) com-
pared to quantum spectrunicrossey with parametersr,
=(0,0,6000 a.u.)po=(0,0.0075,0) and/?>=2/60F; upper panel:
average normalized angular momentum according to @6)

(circles.
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agreement with the quantum power spectrum is, in this caséem, the remaining discrepancies in the purely radial semi-
covering the same energy window [@s9], and Fig. 1, much classical spectrum compared with the quantum spectrum.
better. Naturally, the one-dimensional radial calculations ofOne may also view the failure of the one-dimensional radial
[8,9] have onlyl =0 states, and in Fig. 1 the average angulatWKB treatment forl =0, even for large quantum numbers
momentum/ is also low by construction through the initial as a consequence of this incomplete semiclassical limit.
state. In summary, constructing the time-correlation function
Hence, we can conclude that the power spectrum of hysemiclassically in three Cartesian dimensions with the help
drogen, including the weights, can be reproduced semicla®f the Herman-Kluk propagator, we have demonstrated that
sically. While the semiclassical energigs are generally in  the singular Coulomb potential can be treated as any other
good agreement with the quantum eigenvalues, the semiclaronsingular interaction without any special precautions.
sical weightsb,, are only accurate in the limit of large quan- Moreover, by virtue of our three-dimensional treatment, we
tum numbers, i.e., if the initial wave packet contains a largecould clarify the origin of the discrepancies between the
fraction of high-angular-momentum states in each degenequantum and the semiclassical calculation restricted to the
ate manifoldn. This reflects the larger sensitivity of the radial dynamics only. We hope that this result stimulates
weights described by off-diagonal matrix elements, com{uture applications of semiclassical propagator technigues to
pared to thédiagonal energies. Seen in a wider context, our Coulomb problems.
result implies the consequence that a one-dimensiaakdl
guantum problem is not really one dimensional. Rather, itis We would like to thank Frank Grof3mann for helpful dis-
the limit of angular momenturh=0 in three, or at least two, cussions on semiclassical initial value methods. J.M.R. ac-
dimensions. Hence, even for large quantum numbensthe  knowledges the hospitality of the Institute for Advanced
radial problem the semiclassical limit is not reached since th&tudy, Berlin, where part of this work has been completed.
angular-momentum quantum number is zero. The incomplet&his work has been supported by the DFG within the Ger-
semiclassical limit causes, in the case of the hydrogen prodiard Hess Programm.
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