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t = 0 t = 100µs t = 150µs t = 250µs

t = 350µs t = 400µs t = 550µs

Collapse and revival of coherent matter waves

M. Greiner  et al., Nature 2002
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T. Kinoshita et al., Nature 440, 900 (2006).

Lack of thermalization in 1D traps

momentum momentum

Exciting the system and allowing it to evolve in time, the momentum

distribution function remains non-Gaussian up to long time scales
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Electronic correlations out of equilibrium 
Response to pulsed bias

Elzerman et al., Nature (2005)

Single-shot readout of the spin state of a
quantum dot from real-time dynamics
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Nonequilibrium: A theoretical challenge

The Goal: The description of nanostructures at nonzero bias,

Required: Inherently nonperturbative treatment of nonequilibrium

Problem: Unlike equilibrium conditions, density operator is not

Most nonperturbative approaches available in equilibrium

known in the presence of interactions

are simply inadequate

nonzero driving fields, and/or quench dynamics
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Brief division of theoretical approaches

Steady state

Scattering Bethe ansatz
(Andrei et al.)

Keldysh diagrammatics

Nonequilibrium variants of perturbative RG
Poor-man’s scaling (Rosch et al.)
Flow equations (Kehrein)
Real-time diagrammatics (Schoeller et al.)
Functional RG (Meden et al.)

Exactly solvable models:
Toulouse limit (AS & Hershfield)
Extension to double dots (Sela & Affleck)
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Evolution in time

Time-dependent DMRG
(White, Schollwoeck,…)

Keldysh Quantum Monte Carlo
(Werner, Muehlbacher,…)

Nonequilibrium variants of perturbative RG
Flow equations (Kehrein)
Real-time diagrammatics (Schoeller et al.)

Brief division of theoretical approaches

Keldysh diagrammatics

Time-dependent NRG
(Anders & AS)
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Time-independent formulation: the Lippmann-Schwinger equation

Incoming state: decoupled leads Scattered state: entangled system

Divide H into H0+H1, where                        and Η1 contains all terms
that drive the system out of equilibrium.

φφ ||0 EH =

Assume approach to steady state
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Because of the approach to steady state, one can “smear” the initial time:

Since                        , we arrive at the Lippmann-Schwinger equation0|)( 0 =− φEH
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Gell-Man and Goldberger, 1953
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Time-independent formulation: the Lippmann-Schwinger equation

Important points to take note of:

H and H0 must therefore have continuous overlapping spectra,
which implies the limit           ∞→L
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The nonequilibrium steady-state density operator

Starting from                              , where pi are typically equilibrium
Boltzmann factors, one formally has that

∑=
i

iiip ||ˆ0 φφρ

∑=→
i

iiip ||ˆˆ0 ψψρρ

with

i
i

ii H
iHE

φ
η

φψ |1|| 1+−
+=

Assuming the approach to steady state, the form of the
nonequilibrium density operator is formally known
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ρ
Trace

with                     [ ] 0, 00 =YH

In practice, the initial density matrix generically takes the form

Zubarev, 1960’s, Hershfield 1993, Doyon & Andrei 2006

Indeed, in many cases one takes

∑ ∑
=
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Hershfield’s mapping onto equilibrium form
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Zubarev, 1960’s, Hershfield 1993, Doyon & Andrei 2006
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Hershfield’s mapping onto equilibrium form

{ })(

)(

ˆ
YH

YH

e
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−−
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= β

β

ρ
Trace

with

[ ] 0)(, 0 →−= YYiHY η

Zubarev, 1960’s, Hershfield 1993, Doyon & Andrei 2006

The steady-state density operator takes an equilibrium-
like form!
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Generalized fermionic scattering states

with

The steady-state density operator can be represented in terms of
generalized fermionic scattering states:

[ ] )(, ++++ −+−= σασασαασα ψηψεψ kkkkk ciH

Hershfield 1993, Han 2007

∑ ∑
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with

The steady-state density operator can be represented in terms of
generalized fermionic scattering states:

[ ] )(, ++++ −+−= σασασαασα ψηψεψ kkkkk ciH

Hershfield 1993, Han 2007

∑ ∑
=

+=−
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, ,α σ
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In general          is a complicated many-body operator:

+++= ∑∑ +++++

kji
lji

k
ijl

i
i

k
ikk cccBcAc

,,

αα
σασαψ

+
σαψ k

Generalized fermionic scattering states
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In the absence of interactions ψαkσ reduce to the familiar
single-particle scattering states

∑ +++ +=
i

i
k

ikk cAc α
σασαψ

and one recovers the Landauer-Buttiker formulation

Hershfield 1993

Generalized fermionic scattering states
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{ }),(ˆ),(ˆ)(ˆ
000 ttUAttUtA += ρTrace

Starting from                               at time t0, expectation values are

explicitly propagated in time:

∑=
i

iiip ||ˆ0 φφρ

Time-dependent formulation
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{ }),(ˆ),(ˆ)(ˆ
000 ttUAttUtA += ρTrace

Starting from                               at time t0, expectation values are

explicitly propagated in time:

∑=
i

iiip ||ˆ0 φφρ

t

A(t)
Steady state value

Recurrence

Time-dependent formulation
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A challenge when the system features small energy

Scales such as the Kondo temperature!

Time-dependent formulation
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Selected review of theoretical approaches

Scattering Bethe ansatz

Keldysh Quantum Monte Carlo

Time-dependent NRG

Will not addressed:

Keldysh-based approaches (Hans Kroha’s talk)

Theories based on Fermi-liquid theory       (weak nonequilibrium)

Time-dependent DMRG

Nonequilbrium variants of perturbative RG
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Mehta & Andrei, 2005

Impurity states

General form of N-electron wave function:



Avraham Schiller / QIMP11

Scattering Bethe ansatz

Mehta & Andrei, 2005

General form of N-electron wave function:



Avraham Schiller / QIMP11

Scattering Bethe ansatz

Mehta & Andrei, 2005

General form of N-electron wave function:

where F obeys the Schroedinger-type equation



Avraham Schiller / QIMP11

Scattering Bethe ansatz

Mehta & Andrei, 2005

General form of N-electron wave function:

where F obeys the Schroedinger-type equation

Within each sector where x1,…, xN, and x0 = 0 obey some fixed ordering,

F has solutions in terms of plane waves
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Projection onto the ordering affiliated with P
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Mehta & Andrei, 2005

The Bethe ansatz then seeks solutions of the form

The existence of such solutions is highly nontrivial, and requires
special conditions known as the Yang-Baxter equations
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Scattering Bethe ansatz

Mehta & Andrei, 2005

The main sources of difficulty:

Remarkably

Mehta and Andrei succeeded in obtaining an exact solution for
the interacting resonant-level model, though even there the limit
was not worked out analytically

Expectation values of the current operators are extremely difficult
to evaluate with respect to the Bethe ansatz wave function
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The basic idea is to systematically reduce the energy scale by
integrating high-energy excitations, thus generating a sequence
of Hamiltonians for each energy scale

Interactions correspond to irreducible vertices, whose evolution
one tracks 
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Perturbative RG has become one of the key concepts in analyzing
correlated electron systems in thermal equilibrium

The basic idea is to systematically reduce the energy scale by
integrating high-energy excitations, thus generating a sequence
of Hamiltonians for each energy scale

Interactions correspond to irreducible vertices, whose evolution
one tracks 

Generic example in equilibrium – the Kondo model

D

D

D - δD

D - δD

Nonequilibrium variants of perturbative RG
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+ +    …=δ J

In equilibrium only J(ω = 0) is important for thermodynamics

Out of equilibrium one needs to keep track of  J(ω) , as transport properties
are determined by a window of energies

Different strategies have been put forward to implement these RG ideas out
of equilibrium

Nonequilibrium variants of perturbative RG
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Rosch et al., 2003

D

D

D - δD

D - δD

D

D

Yields and RG-type differential equation for  J(ω = 0)

Nonequilibrium variants of perturbative RG
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Rosch et al., 2003

D

D

D - δD

D - δD

D

D

Yields and RG-type differential equation for  J(ω = 0)

The logarithmic singularities at µL and µR are cut off by the effective

spin-flip rate, which is inserted by hand

Nonequilibrium variants of perturbative RG
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Example: The singlet-triplet transition in carbon nanotube quantum dots
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Time-dependent numerical RG

Consider a quantum impurity (e.g., quantum dot) in equilibrium, to which a
sudden perturbation is applied at time t = 0

{ } { }OeeOtO iHtiHt

t
ˆˆTraceˆ)(ˆTraceˆ

00
ρρ −

>
==

Perturbed Hamiltonian

Initial density operator
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Wilson’s numerical RG

-1 1-Λ-1 -Λ-2 -Λ-3 Λ-1Λ-2Λ-3

ε/D

Logarithmic discretization of band: 1>Λ

ξ0 ξ1 ξ2 ξ3
imp

After a unitary transformation the bath is represented by a semi-infinite
chain
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Why logarithmic discretization?

Wilson’s numerical RG

ξ0 ξ1 ξ2 ξ3
imp

Hopping decays exponentially along the chain: 1,2/ >ΛΛ∝ −n
nξ

Iterative solution, starting from a core cluster and enlarging the chain
by one site at a time. High-energy states are discarded at each step,
refining the resolution as energy is decreased.

To properly account for the logarithmic infra-red divergences

Exponentially small energy scales can be accessed, limited by T only
Separation of energy scales along the chain
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Equilibrium NRG:

Problem: Real-time dynamics involves all energy scales

Resolution: Combine information from all NRG iterations

Geared towards fine energy resolution at low energies 

Discards high-energy states 

Wilson’s numerical RG
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Time-dependent NRG

ξ0 ξ1
imp ⊗

r e

Basis set for the “environment” statesNRG eigenstate of relevant iteration

For each NRG iteration, we trace over its “environment”

(Anders & AS, PRL’05, PRB’06)
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Time-dependent NRG

∑∑
=

−=
N

m

trun

rs

tEEi
sr

m
rs

m
r

m
semOtO

1 ,

)(red
,, )()( ρ

Sum over discarded NRG states
of chain of length m

Matrix element of O
on the m-site chain

Reduced density 
matrix for the
m-site chain

∑=
e

sr mesmerm ;,;,)( 0
red
, ρρ

(Hostetter, PRL 2000)

Sum over all chain lengths
(all energy scales)

Trace over the environment, i.e., sites
not included in chain of length m 
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Fermionic benchmark: Resonant-level model

∑∑ ++++ +++=
k

kkd
k

kkk cddcVddtEccH )()(ε

0)0( =<tEd

We focus on )()( tddtnd
+= and compare the TD-NRG to exact

analytic solution in the wide-band limit (i.e., for an infinite system)

Basic energy scale: 2Vπρ=Γ

0)0( 1 <=> dd EtE
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Fermionic benchmark: Resonant-level model

T = 0

T > 0

Relaxed values
(no runaway!)

The deviation of the relaxed T=0 value from the new thermodynamic value
is a measure for the accuracy of the TD-NRG on all time scales

For T > 0, the TD-NRG works well up to Tt /1≈
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T = 0 Ed (t < 0) = -10Γ     Ed (t > 0) = Γ Λ= 2

TD-NRG is essentially exact on the Wilson chain

Source of inaccuracies

Main source of inaccuracies is due to discretization
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Bosonic benchmark: Spin-boson model

∑∑ ++
∆

−= ++
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22
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iicJ ωωπαωωδλπωω 12 2)()( −=−=< ∑

Setting ∆=0, we start from the pure spin state

BathThermalxxt −⊗==== ρσσρ ˆ11)0(ˆ

and compute { } 1)(ˆ1)(01 −=== zBathz tTrt σρσρ
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Bosonic benchmark: Spin-boson model

)(01 tρ

Excellent agreement between TD-NRG (full lines) and the
exact analytic solution (dashed lines) up to Tt /1≈
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For nonzero ∆ and s = 1 (Ohmic bath), we prepare the system such
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Bosonic benchmark: Spin-boson model

For nonzero ∆ and s = 1 (Ohmic bath), we prepare the system such
that the spin is initially fully polarized (Sz = 1/2)

Damped oscillations
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Bosonic benchmark: Spin-boson model

For nonzero ∆ and s = 1 (Ohmic bath), we prepare the system such
that the spin is initially fully polarized (Sz = 1/2)

Monotonic decay
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Bosonic benchmark: Spin-boson model

For nonzero ∆ and s = 1 (Ohmic bath), we prepare the system such
that the spin is initially fully polarized (Sz = 1/2)

Localized phase
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Anderson impurity model
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Anderson impurity model:  Charge relaxation

Charge relaxation is governed by tch=1/Γ1

TD-NRG works better for interacting case!

Exact new
Equilibrium

values
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Anderson impurity model:  Spin relaxation

Spin relaxes on a much longer time scale

Spin relaxation is sensitive to initial conditions!

chsp tt >>

Starting from a decoupled impurity, spin relaxation approaches a
universal function of t/tsp with tsp=1/TK

KTt ∗1Γ∗t
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On-going projects:

Eliminating discretization errors 

Extending approach to multiple switching events
New hybrid 

approach
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