Uniform approximation for density operators in phase space

Eduardo Zambrano

Centro Brasileiro de Pesquisas Fisica - CBPF, Rio de Janeiro, Brazil

Density operators in phase space are represented by the Wigner function and its Fourier transform, i.e, the characteristic function or chord function. The semiclassical Wigner function for a Bohr-quantized energy eigenstate is known to have a caustic along the corresponding classical closed phase space curve in the case of a single degree of freedom. Its Fourier transform, the semiclassical chord function, also has a caustic along the conjugate curve defined as the locus of diameters, i.e. the maximal chords of the original curve. If the latter is convex, so is its conjugate, resulting in a simple fold caustic. The uniform approximation through this caustic, that is here derived, describes the transition undergone by the overlap of the state with its translation, from an oscillatory regime for small chords, to evanescent overlaps, rising to a maximum near the caustic. The diameter-caustic for the Wigner function is also treated.

Back