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Introduction

Central Questions:
1. How do neuronal correlations depend on the frequency of second

order graphical motifs?
2. Can we use linear response theory to uncover an explicit approxi-

mation of this dependency?

Setup

We consider a network of spiking model neurons driven by indepen-
dent biased Gaussian noise processes. Cells in the network are con-
nected “weakly” according to a coupling matrix W, and the shape of
the interactions is general.

Example: Exponential integrate-and-fire (EIF) model neuron with
current-based, delayed α-shaped coupling and arbitrary synaptic time
constants.

τiv̇i = −(vi + EL,i) + ψ(vi) + Ei +
√
σ2
i τiξi(t) + fi(t)

fi(t) =
∑
j

(Jij ∗ yj) Jij(t) =

{
Wijαj(t− τD,j) t ≥ τD,j
0 t < τD,j

where ψ(v) = ∆T exp [(v − vT )/∆T ]. Applying a threshold and reset
to the membrane potential of cell i yields an output spike train yi.

Cross correlation function - Describes how the outputs of a pair of
cells in the network covary at a given time offset

Cij(τ ) = cov(yi(t + τ ), yj(t))

Cross spectrum - Describes how the output of a pair of cells share
power at a given frequency

C̃ij(ω) = E
[
ỹiỹ
∗
j

]
where ỹi(ω) =

1√
T

∫ T

0
dt eiωt(yi(t)− r0)

Correlation coefficient - Defining Nyi(t1, t2) =
∫ t2
t1
yi(s)ds and

ρij(T ) =
cov(Nyi(t, t + T ), Nyj(t, t + T ))√
var(Nyi(t, t + T ))var(Nyj(t, t + T ))

to be the spike count correlation coefficient over windows of length
T . We will make use of the “long-window correlation coefficient”
ρij(∞) = limT→∞ ρij(T ) to quantify dependencies over all timescales.

Linear response theory

Firing rate response: Suppose that a noisy IF neuron receives a zero-
mean input εX(t). Linear response theory yields the firing rate to
linear order in ε:

r(t) = r0 + (A ∗ εX)(t)

whereA(t) is the linear response function. A(t) is equal to a rescaling
of the STA to first order in ε. A(t) depends on model parameters (and
is particularly sensitive to the mean potential EL,i + Ei and noise
variance σ2

i ), but is independent of the stimulus X(t) for small ε.

Linear response theory in networks: We generalize the approach
of Lindner et al[1], and make the approximation

y(t) ≈ y0(t) + (A ∗ εX)(t).

where y0(t) may be thought of as a realization of the output of the IF
cell with ε = 0.

Accounting for the full architecture: Set εX(t) = fi(t) − E [fi].
Define Kij(t) = (Ai ∗ Jij)(t). The full network structure can be
accounted for in an approximation to correlations by

C̃(ω) ≈ (I− K̃(ω))−1C̃0(ω)(I− K̃∗(ω))−1

when Ψ(K̃) < 1. By expanding these matrix inverses as power series
in K̃, cross-correlations can be expressed in terms of motifs (chain
and diverging) involving arbitrary numbers of connections. For ex-
ample, the term

K̃nC̃0K̃m∗

represents the correlating effects of diverging motifs featuring n con-
nections along one branch and m along the other. For more details,
see [2].
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Figure 1: Visualizing network motifs. A. Second order motifs. B. An
order n chain motif. C. An order n + m diverging motif.

Second Order Motifs

Let L = 1
N1N,1, where 1N,M is the N × M matrix of all ones. The

vector L is defined so that for a matrix X,

〈X〉 = LTXL,

where 〈X〉 is the average across all entries of X.

Network definition: N recurrently-coupled excitatory cells with
connection weight w and adjacency matrix W0 (so W = wW0).

Empirical connection probability p:

p = LTW0L.

Second order motif frequencies (exceeding Erdös-Rényi chance):

qdiv =
1

N
LTW0W0TL− p2, qcon =

1

N
LTW0TWL− p2,

qch =
1

N
LTW0W0L− p2.

Average correlation expansion:

〈C̃∞〉 = C̃0
∞∑
i,j=0

(Ãw)i+jLT
(
W0
)i (

W0T
)j

L.

All spectral quantities are evaluated at ω = 0 (approximating total
covariance).

Results

Terms in the expansion may be expressed linearly in the second-order
frequencies q modulo higher order terms. Define the orthogonal projec-
tion matrices

H = NLLT , Θ = I−H.

Then we may write, for example,

qdiv =
1

N
LTW0ΘW0TL.

Example: Term corresponding to length three chains:

LT
(
W0
)3

L = LT
[
W0 (H + Θ)

]2
W0L

≈ N2(p3 + 2pqch).

Linear contributions of second order motifs:

〈C̃∞〉 ≈ 1

N(1−NÃwp)2
+

N(Ãw)2

(1−NÃwp)2
qdiv +

2N(Ãw)2

(1−NÃwp)3
qch.
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Figure 2: Connection probability and second order motifs affect mean
correlation.

Nonlinear contributions of second order motifs:

〈C̃∞〉 ≈ 1

N

1 +
(
NÃw

)2
qdiv[

1−
(
NÃw

)
p−

(
NÃw

)2
qch

]2
.
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Figure 3: Chain (and to a lesser extent diverging) motifs are central in
determining the mean correlation in noisy neuronal networks.

Distance-dependent networks

The theory works well for networks with a large amount of spatial struc-
ture. We consider a 1-D ring network and a 2-D torus network with
“boxcar” connectivity.

Network type Simulation Full Theory S.O. Motifs
Circular boxcar (N = 100) 0.0332± 0.0903 0.0346± 0.1022 0.0477
Random (N = 100) 0.0402± 0.0252 0.0481± 0.0240 0.0494
Planar boxcar (N = 1000) 0.0061± 0.0415 0.0082± 0.0439 0.0084
Random (N = 1000) 0.0066± 0.0068 0.0072± 0.0060 0.0073

Table 1: Mean and standard deviation of the distribution of EE correla-
tions in structured and random networks. The approximations based on
second order motifs give only an estimate of mean correlation.

Conclusions

• Diverging and especially chain motifs are a strong determing factor
for mean correlation in noisy neuronal networks.

• Mean correlation will often be low in balanced networks because qch
is generally small in such networks.

• Question: Can a similar theory offer an approximation of the vari-
ance of correlations?
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