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Neuronal Correlations Depend on Second Order Motifs

Introduction

Central Questions:
1. How do neuronal correlations depend on the frequency of second
order graphical motifs?

2. Can we use linear response theory to uncover an explicit approxi-
mation of this dependency?

Setup

We consider a network of spiking model neurons driven by indepen-
dent biased Gaussian noise processes. Cells in the network are con-
nected “weakly” according to a coupling matrix W, and the shape of
the interactions 1s general.

Example: Exponential integrate-and-fire (EIF) model neuron with
current-based, delayed a-shaped coupling and arbitrary synaptic time
constants.
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where Y(v) = Apexp [(v — vp)/A7|. Applying a threshold and reset
to the membrane potential of cell 7 yields an output spike train ;.

Cross correlation function - Describes how the outputs of a pair of
cells in the network covary at a given time offset

C;i(1) = cov(y;(t + 7),y;(t))

Cross spectrum - Describes how the output of a pair of cells share
power at a given frequency
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Correlation coefficient - Defining Ny, (t1,19) = j;ﬁQ y;(s)ds and

cov(Ny,(t,t +T), Ny (t,t +T))
pi;(T) =
\/var(NyZ.(t, t+ T))var(Ny (¢, ¢ + T))

to be the spike count correlation coefficient over windows of length
T'. We will make use of the “long-window correlation coefficient”

pi;j(00) = limp_,, p;;(T') to quantify dependencies over all timescales.

Linear response theory

Firing rate response: Suppose that a noisy IF neuron receives a zero-
mean input €X (¢). Linear response theory yields the firing rate to
linear order in e:

r(t) = 1o+ (A eX)(t)

where A(t) is the linear response function. A(?) is equal to a rescaling
of the STA to first order in €. A(t) depends on model parameters (and
is particularly sensitive to the mean potential £y ; + F; and noise

variance 02-2), but is independent of the stimulus X (¢) for small e.
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Linear response theory in networks: We generalize the approach
of Lindner et al!l, and make the approximation

y(t) ~ y(t) + (A x eX)(8).

where y'(¢) may be thought of as a realization of the output of the IF
cell with e = 0.

Accounting for the full architecture: Set eX (t) = f;(t) — E|[f;].
Define K;;(t) = (A; * J;;)(t). The full network structure can be
accounted for in an approximation to correlations by
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when V(K) < 1. By expanding these matrix inverses as power series
in K, cross-correlations can be expressed in terms of motifs (chain
and diverging) involving arbitrary numbers of connections. For ex-

ample, the term o

represents the correlating effects of diverging motifs featuring n con-
nections along one branch and m along the other. For more details,
see [2].
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Figure 1: Visualizing network motifs. A. Second order motifs. B. An
order n chain motif. C. An order n + m diverging motif.

Second order motif frequencies (exceeding Erdos-Rényi chance):

1 1
Qv = L' WWHL = p%, geon = L WH WL = 7,
1
Qe = NLTWOWOL — .
Average correlation expansion:
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All spectral quantities are evaluated at w = 0 (approximating total
covariance).

Results

Terms in the expansion may be expressed linearly in the second-order
frequencies ¢ modulo higher order terms. Define the orthogonal projec-
tion matrices

m—2bm—1 bm—1j

Second Order Motifs

Let L = +1 N.1» Where 1 77 1s the NV X M matrix of all ones. The
vector L is defined so that for a matrix X,

(X) = LI XL,

where (X) is the average across all entries of X.

Network definition: /N recurrently-coupled excitatory cells with

connection weight w and adjacency matrix WY (so W = wWV).

Empirical connection probability p:

p=L'W'L.

H=NLL!, ©e=1-H.

Then we may write, for example,

|
iy = NLTWO@WOTL.

Example: Term corresponding to length three chains:
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Linear contributions of second order motifs:
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Figure 2: Connection probability and second order motifs affect mean
correlation.

Nonlinear contributions of second order motifs:
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Figure 3. Chain (and to a lesser extent diverging) motifs are central in
determining the mean correlation in noisy neuronal networks.

Distance-dependent networks

The theory works well for networks with a large amount of spatial struc-
ture. We consider a 1-D ring network and a 2-D torus network with
“boxcar” connectivity.

Network type Simulation Full Theory  S.O. Motifs

Circular boxcar (/N = 100)|0.0332 + 0.0903 0.0346 £ 0.1022  0.0477
Random (/N = 100) 0.0402 = 0.0252 0.0481 = 0.0240  0.0494
Planar boxcar (N = 1000) 10.0061 £ 0.0415 0.0082 £ 0.0439  0.0084
Random (/N = 1000) 0.0066 £ 0.0068 0.0072 £ 0.0060  0.0073

Table 1: Mean and standard deviation of the distribution of EE correla-
tions in structured and random networks. The approximations based on
second order motifs give only an estimate of mean correlation.

Conclusions

* Diverging and especially chain motifs are a strong determing factor
for mean correlation 1n noisy neuronal networks.

* Mean correlation will often be low 1n balanced networks because g,
1s generally small in such networks.

* Question: Can a similar theory offer an approximation of the vari-
ance of correlations?
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