# **Robust Detection of Hierarchical Communities from** Escherichia coli Gene Expression Data<sup>1</sup>



Santiago Treviño III<sup>+</sup>, Yudong Sun<sup>+</sup>, Tim F. Cooper<sup>‡</sup> and Kevin E. Bassler<sup>+</sup>

<sup>†</sup>Department of Physics, University of Houston, Houston TX, USA <sup>‡</sup>Department of Biology and Biochemistry, University of Houston, Houston TX, USA

# Background

One of the fundamental themes in biology is the hierarchical organization of its constituents. At higher levels of a hierarchy new properties emerge due to the complex interaction of constituents at lower levels. Determining if and how genetic regulatory networks are hierarchically structured would aid in understanding the properties and functional processes of the networks. With the increasing availability of genetic expression data, developing methods to infer and detect functional communities within the network is an important goal of systems biology. Unfortunately, noise in expression data creates variability in the inferred network and the stochastic nature of community detection creates variability in the functional communities detected with existing methods.



## Inferring gene relatedness networks from expression data

Correlation matrix showing community structure found in the E. *coli* network with relatedness threshold values  $f_{min} = 2,4$ , and 6. The matrix element in position (X,Y) is colored blue, red, or green if genes X and Y are in the same communities at threshold values 2, 4 or 6, respectively. The density of the color indicates the strength of the correlation in the ensemble. Additionally if two genes are found together at multiple threshold values the element is a combination of the colors assigned at each threshold value.

We used the CLR algorithm infer direct and indirect regulatory interactions between genes based on the similarity of their expression 0.2⊢ response in 466 experiments in the M<sup>3D</sup>. To create a network a link was placed between two genes if their



Distribution of gene relatedness and size of the largest connected component in the *E. coli* CLR network

corresponding relatedness value was greater than a chosen threshold value, f<sub>min</sub>. We considered networks inferred from threshold values of  $f_{min} = 2, 4, and 6$ . These values correspond to points below, at, and above the *critical threshold value* at which the network is no longer one fully connected component.

### Identifying communities and their hierarchical organization with an ensemble approach

To identify communities in each network we used an extension of the leading eigenvalue method that aims to identify a partitioning of nodes into a disjoint set that maximizes Modularity Q. Our extension of the LEM [2] uses a novel variant of the Kernighan – Lin algorithm. At each f<sub>min</sub> value an ensemble of multiple network partitions was analyzed and a correlation matrix was created to visualize the overall hierarchical organization of the network. This ensemble allows overlapping communities to be identified. We define sets of genes that are always found in the same community as a core community.

#### **Community structure is robust to experimental noise**

To test the effect of noise on community structure we created several noisy datasets. Each experiment in the noisy dataset contained an expression level for gene X chosen randomly from a normal distribution with mean m(X) and standard error  $c_{\sigma}(X)$ . A correlation matrix for an ensemble of 10 community partitions detected at each noise level c and threshold  $f_{min}$  = 2 was created. We found that noise acts conservatively, decreasing the size of each core community rather than causing association of genes into new communities.



Change in core community structure as noise is increased from c=0 to c=4

#### **Communities enrich for functionally related genes**

| P value    | GO term num | Com size | GO size | In common | Description                         |
|------------|-------------|----------|---------|-----------|-------------------------------------|
| 8.41e-42   | 9288        | 72       | 24      | 24        | bacterial-type flagellum            |
| 9.57e-39   | 6826        | 53       | 37      | 25        | iron ion transport                  |
| 8.22e-38   | 1539        | 72       | 28      | 24        | ciliary or flagellar motility       |
| 3.67 e- 35 | 6412        | 826      | 101     | 79        | translation                         |
| 6.51e-34   | 3735        | 826      | 56      | 54        | structural constituent of ribosome  |
| 3.08e-31   | 3723        | 826      | 105     | 77        | RNA binding                         |
| 1.73e-29   | 6935        | 72       | 22      | 19        | chemotaxis                          |
| 4.30e-29   | 3774        | 72       | 17      | 17        | motor activity                      |
| 5.38e-29   | 9425        | 72       | 17      | 17        | bacterial-type flagellum basal body |
| 2.06e-25   | 19861       | 72       | 15      | 15        | flagellum                           |
| 5.61 e- 25 | 5506        | 53       | 210     | 31        | iron ion binding                    |
| 3.72e-24   | 19843       | 826      | 42      | 40        | rRNA binding                        |
| 6.99e-22   | 30529       | 826      | 36      | 35        | ribonucleoprotein complex           |
| 1.72e-21   | 5840        | 826      | 38      | 36        | ribosome                            |
| 6.62 e- 21 | 8652        | 247      | 62      | 32        | cellular amino acid biosynthetic    |
|            |             |          |         |           | process                             |
| 4.11e-17   | 5506        | 139      | 210     | 39        | iron ion binding                    |
| 6.66e-16   | 9055        | 139      | 116     | 29        | electron carrier activity           |
| 7.30e-15   | 51539       | 139      | 98      | 26        | 4 iron, 4 sulfur cluster binding    |
| 8.22e-15   | 15453       | 300      | 15      | 15        | oxidoreduction-driven active trans- |
|            |             |          |         |           | membrane transporter activity       |
|            |             |          |         |           | light-driven active transmembrane   |
|            |             |          |         |           | transporter activity                |
| 1.85e-13   | 6865        | 247      | 70      | 27        | amino acid transport                |
| 6.13e-13   | 45272       | 300      | 13      | 13        | plasma membrane respiratory chain   |
|            |             |          |         |           | complex I                           |
| 9.19e-13   | 30964       | 300      | 13      | 13        | NADH dehydrogenase complex          |
| 1.97e-12   | 9060        | 300      | 21      | 16        | aerobic respiration                 |
| 2.15e-12   | 5515        | 826      | 875     | 251       | protein binding calmodulin binding  |

Top 25 statistically significant matches for  $f_{min} = 4$ 

To test the biological relevance of the core communities found we compared the overlap of each core community to terms in the gene ontology using a hypergeometric test with Benjamini-Hochberg correction. We found 147, 239, and 288 statistically significant matches between were and a statistically significant matches between were a statistically significant matches between statistically significant matches between statistically significant matches between statistically significant matches between statistically statistically significant matches between statistically core communities and Gene Ontology (GO) terms for communities identified at f<sub>min</sub> values of 2, 4, and 6, respectively. Additionally core communities can be analyzed to identify candidate regularity interactions. For example, in the  $f_{min}$ =6 core community at right we found a high proportion of ppGpp sensitive promoters suggesting this molecule as a good candidate for regulating the remaining interactions.



#### **Publications and Support**

[1] S. Trevino III, Y. Sun, T.F. Cooper, and K.E. Bassler, "Robust detection of hierarchical communities from Escherichia coli gene expression data," PLoS Comput. Biol. 8, e1002391 (2012).

[2] Y. Sun, B. Danila, K. Josic, and K.E. Bassler, "Improved community structure detection using a modified fine-turning strategy" EPL 86, 28004 (2009).

The work of ST, YS, and KEB was supported by US NSF grant DMR-0908286, and the work of TC was supported by US NSF grant IOS-1022373 and DARPA grant HR001-09-1-0055.