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In network modeling one often needs to generate graphs without having full connectivity information. 

There are cases where only the degree sequence (         ) is available in form of data.  O(N)

Examples include 

F. Liljeros, C. Edling, L.A.N. Amaral, H. E. Stanley, Y. Åberg, Nature 411, 907908, (2001) . 

R. Anderson & R. May, Nature 333, 514 (1988). 

-  CH3(CH2)6CH3 has 18 isomers 

-  C20H42 has 366,319 isomers. 

- e.g., C4H10, butane has 2 isomers 

Note: node = atom, edge = bond, degree = valence  
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3 [note: sequence, not distribution] 

The case                   is the classical Randič index. 

M. Randič, “On characterization of molecular branching”, J. Amer. Chem. Soc. 97, 6609 (1975).  

d G(V,E)
d

Rα(G) =
�

(i,j)∈E

(didj)
α

α = −1/2
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Given a graph     , the set of non-negative integers  G d(G) = d = {d1, d2, . . . , dn}

Examples: 

d = {4, 3, 2, 2, 1}  forms the degree sequence of the simple graph 1) 

2) d = {3, 2, 1}

3) d = {5, 4, 3, 2, 1, 1}

d
d

d

(we’ll talk about labeled graphs, only) 
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Given a sequence of integers d = {d1, . . . , dn} , d1 ≥ d2 ≥ . . . ≥ dn ≥ 1

dG

d

d

d
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Some more jargon: 

i j 

Stubs 
“half-edge” 

i j 

edge 

The sequence  d  can be represented as a sequence of stubs 

… 
… … 
d1 dN−1 dNd2

When building graphs, we will always connect all the stubs of the chosen node first before 
moving on to other nodes with stubs. 



Not graphical 

d ={2,2,2}  
1 2 3

2 2 2 

d ={3,2,1}  
1 2 3

3 2 1 

Graphical 

1 

2 3
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Simple examples: 

1 
2

3
4 

5

6
d ={2,2,2,2,2,2}  

1 2 3
2 2 2 4 5 6

2 2 2 

However, not all connection sequences will result in a simple graph! 

1 2 3 
2 2 2 4 5 6 

2 2 2 Fails to create  
a simple graph 
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1)  

2) 

P. Erdős, T. Gallai. Graphs with prescribed degrees of vertices. (Hungarian) Matematikai Lapok 11, 264 (1960).   

An alternative theorem for graphical sequences, which can also be used to build a graph: 

Let 

d1 ≥ d2 ≥ . . . ≥ dN ≥ 0

d = {d1, d2, . . . , dN}  be a sequence of non-negative integers with 

Then     is graphical if and only if (conditions are necessary and sufficient): d

 is even, and 

 for all 1 ≤ k ≤ N − 1
k�

i=1

di ≤ k(k − 1) +
N�

i=k+1

min{k, di}

Note: there can be several graphs with the same degree sequence. 

d = {2, 2, 2, 2, 2, 2, 2}

Ex: 

N�

i=1

di

k = 5

i

di
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i

V. Havel. A remark on the existence of finite graphs. (Czech) Časopis Pěst. Mat. 80 477 (1955). S.L. Hakimi. On the realizability 
of a set of integers as degrees of the vertices of a simple graph. J. SIAM Appl. Math. 10, 496 (1962).  

This algorithm can be used to characterize graphical sequences: A given sequence of non-negative 
integers is graphical iff the above algorithm finishes in a simple graph. 

However, the H-H algorithm cannot construct in general all graphs realizing a sequence! 

Example: d = {3, 3, 2, 2, 2, 2, 2, 2}

A simple idea: 

(so what method can build all realizations?) 



To see why the E-G theorem is NOT sufficient consider the following example:  

d ={6,5,5,3,3,2,1,1}  
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A naïve idea: use the EG theorem on the residual sequence after the arbitrary connection has 
been made… (passing the EG test is necessary anyway). 

54 6 7 8
5 �5 � 3 � 3 � 2 � 1 �

1 2 3 
6 �

2 �5 � 3 � 3 � 1 � 1 �5 �

1 �

Passes the EG test!  But cannot finish in a simple graph due to constraints. 

54 6 7 8
5 �5 � 3 � 3 � 2 � 1 �

1 2 3 
6 � 1 �
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Star-constrained graphicality 

Let  be a sequence of non- 

 negative integers arranged non-increasingly and      be a star-constraint on node    with                                  .     Xi i |Xi| ≤ N − 1− di

Li di Xi

d : d1 ≥ d2 ≥ . . . ≥ dN ≥ 0

id Xi

 is graphical. 

d�

d�
j =






dj − 1 if j ∈ Li

0 if j = i
dj if j �∈ Li ∪ {i}

H. Kim, Z. Toroczkai, P.L. Erdös, I. Miklós and L.A. Székely. “Degree-based graph construction”  J. Phys. A: Math. Theor. 42, 392001 
(2009). 

What we need is a theorem that can tell us whether a given degree sequence is graphical such that 
connections from a given node    to a set of nodes       are all avoided. Xii

Let us see how does this work in our previous example 

i Xi

i
For example, because there are connections already made from     to these nodes.     i

i

“Star” centered on  i



d ={6,5,5,3,3,2,1,1}  
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Passes EG, but cannot finish in a simple graph.  

54 6 7 8
5 �5 � 3 � 3 � 2 � 1 �

1 2 3 
6 �

4 � 2 � 3 � 1 � 1 �5 �

2 �5 � 3 � 3 � 1 � 1 �5 �

 We check graphicality with EG theorem (or HH), which now fails. 

1 �

i
j

i

Procedure:  

This provides us with the following method that can build all realizations of a graphical sequence: 
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Let            denote the set of all simple labeled graphs realizing    .   G(d) d

If we specify a systematic way of connecting the stubs, we obtain algorithms that will construct all 
elements of           .  G(d)

•  H. Kim, Z. Toroczkai, P.L. Erdös, I. Miklós and L.A. Székely. “Degree-based graph construction”  J. Phys. A: Math. 
Theor. 42, 392001 (2009). 
•  Z. Király. “Recognizing graphic degree sequences and generating all realizations”. TR-2011-11, Published by the 
Egervary Research Group on Combinatorial Optimization, ISSN 1587-4451.  

E.g., in: 

O(N)

•  C.I. Del Genio, H. Kim, Z. Toroczkai and K.E. Bassler. “Efficent and exact sampling of simple graphs with given arbitrary 
degree sequence.” PLoS ONE, 5(4) e10012 (2010).  

•  Z. Király. “Recognizing graphic degree sequences and generating all realizations”. TR-2011-11, Published by the Egervary 
Research Group on Combinatorial Optimization, ISSN 1587-4451.   

The paper: 

- An                            implementation of the Havel-Hakimi algorithm. 

-  Builds all elements from           with complexity                between realizations.  

O(N log log N)

G(d) O(N2)

•  P. Hell, D. Kirkpatrick. “Linear-time certifying algorithms for near-graphical sequences.” Discr. Math. 309, 5703 (2009). 

- Provides a fast algorithm that does not use multiplications. 
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William T. Tutte, 1918-2002. 

Given a simple graph                and a function: G(V,E) f : V (G)→ N ∪ {0}

G H

dH(v) = f(v) , for all v ∈ V

(A 1-factor is a matching.) W.T. Tutte. “The factors of graphs.” Canad. J. Math. 4, 314 (1952). 

When G = KN  the f-factor problem is nothing but the degree-based graph construction 
 problem ! 

We provided a greedy algorithm to construct f-factors in: KN \ Sk  where  

Sk  is a star graph of k nodes centered on some (arbitrary) node. 
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|G(d)|  is typically enormous, cannot build all realizations, one needs to sample from   G(d)

Two main approaches to graph sampling: 

1. Markov Chain Monte Carlo (MCMC): 

1 2 

3 4 

1 2 

3 4 

1 2 

3 4 

Preserves degree sequence. 

R. Taylor “Constrained switchings in graphs” SIAM J. 
ALG. DISC. METH. 3, 115 (1982)  

H.J. Ryser . “Combinatorial properties of matrices of 
zeros and ones” Canad. J. Math. 9 371 (1957). 

R. A. Brualdi “Matrices of zeros and ones with fixed 
row and column sum vectors” Lin. Alg. Appl. 33, 159 
(1980). 

If      and      are two simple graphs with 
the same degree sequence, then a 
sequence of edge swaps transforms 
one into another. 

G1 G2

Uses edge swaps (switches). 

Ryser: 

Catherine, Peter 
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2. Direct Construction: - Matching stubs 

S(d)

G(d)

 set of  all simple graphs with degree 
seq   

 set of  all graphs with degree seq   S(d) : d

G(d) :
dDisadvantage: 

- Can have many rejections 
depending on    .  d

Worst case: “a needle in the haystack” 

For those who favor tails of distributions: 

i

di

1 2 3 4 5=s 

d

{d1, d2, . . . , ds}  with 

d1 ≥ d2 ≥ . . . ≥ ds ≥ s ds+1 < s + 1, 

s 

Configuration Model (CM): -  Connect a pair of stubs uniformly at random. 
-  If multiple (parallel) edges or self-loops, reject then restart. 

B. Bollobas. Eur. J Comb. 1:311-316 (1980) E. Bender, E. Canfield J. Comb. Th.  A 24 296-307 (1978)  
M Molloy, B. Reed. Rand. Struct. Alg. 6:161-179 (1995) 
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Pick your favorite “tail sequence” of integers: h1 ≥ h2 ≥ . . . ≥ hs ≥ s ≥ 1 .

Assuming we really don’t care much about the low degree part, we will extend it further such that 
the full sequence is graphical and it has some other properties.  

In particular, let us introduce the sequence h̄i =
s�

j=1

θ(hj + 1− s− i) , 1 ≤ i ≤ h1 + 1− s .

θ(n) =
�

1 , n ≥ 0
0 , n < 0

In words: the low-degree part is obtained by mirroring the large-degree tail onto the first bisector, 
shifted by unity: 

Theorem (H-sequence): For an arbitrary sequence of non-negative integers 
 the sequence H1 ≥ . . . ≥ Hn  defined by: 

 is graphical. Hi =






hi , 1 ≤ i ≤ s ,

h̄i−s , s + 1 ≤ i ≤ n = h1 + 1

Moreover, we have for all 1 ≤ k ≤ s :
k�

i=1

Hi = k(k − 1) +
n�

i=k+1

min{k, Hi} . (that is, we have equalities in the EG test) 

h1 ≥ . . . ≥ hs ≥ s ≥ 1
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i

di

1 2 3 4 5 

 s
=

 
s 

s+
1 

Properties: 

Kss

{s + 1, . . . , n}

h

n�

i=1

Hi = 2
s�

i=1

hi − s(s− 1)

•  its diameter is 2 

Ks

The “Sun Graph” 

Can we do better than the CM algorithm? 

S(d)
G(d)

M. Koren. J. Comb. Theory. B 21, 235 (1976). 

n = h1 + 1



1. Choose the first node in the sequence as the “work” node 

2. Build the set of allowed nodes, A   that can be connected to the work node 

3. Choose uniformly at random a node a  in A  and connect it to the work node   

3.1 If a has still stubs, add it to the set of forbidden nodes. 
3.2 Otherwise, remove it from residual sequence 

4. Repeat from 2 to 3.2 until all stubs of the work node are connected away. 

5. Remove the work node from the sequence  

6. Repeat the whole procedure until we end with a simple graph.  

C.I. Del Genio et.al. PLoS ONE 5(4), e10012 , (2010). 

Biased sampling, but it provides the weight of the sample. 
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Given a graphical sequence  d1 ≥ . . . ≥ dn ≥ 1



: average of the observable 

: observable measured for sample 
: inverse of the relative probability probability for        to occur 

€ 

ki j

€ 

d i

: Size of allowed set  

: residual degree of work node 
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m    : number of work nodes (≤ N-1) 

�Q� =
�K

i=1 ωSiQ(Si)�K
i=1 ωSi

�Q�
Q(Si) Si

ω(Si) Si

ω =
m�

i=1

1
di!

di�

j=1

kij

C.I. Del Genio, H. Kim, Z. Toroczkai & K.E. Bassler. PLoS ONE,  5(4), e10012 , (2010). 

 number of samples K :

H. Kim, C.I. Del Genio, K.E. Bassler &  Z. Toroczkai.. New J. Phys. 14, 02312 (2012). 



Sample weights for an ensemble of power-law sequences chosen from 

 Many realizations        log-normal distribution 

•  Upper bound for worst case complexity 

If number of edges  

If number of edges     Complexity 

  Complexity 
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€ 

N =100, γ = 3

€ 

γ = 3 µ 
σ 

€ 

p

€ 

N

€ 

logω

lnω =
m�

i=1








di�

j=1

ln kij



− ln
�
di

�




P (d) ∼ d−γ

M = O(N) O(N2)

O(N3)M = O(N2)

Simulations: 2x104 graphical sequences, 106 samples for each, for a total of 2x1010 samples.  

O(NM)
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 Provided an algorithm does not use swaps, instead it is based on the star-constrained graph 
construction results. 

 It produces statistically independent samples.  

 It provides the sample weight, which in turn can be used to compute network observables as if 
sampled uniformly or by some preferred distribution. 

 Unlike the Configuration Model based method, it is rejection free: it always ends in a simple 
graph realization of the degree sequence. 

P (d) = const.
N = 100 104

 Drawback: due to the log-normal distribution, one has to draw many samples.  
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All of the above can be extended to bi-degree sequences (bds) to realize directed simple graphs 
with the same bds: 

D = (d(i),d(o)) = {(d(i)
1 , d(o)

1 ), . . . (d(i)
n , d(o)

n )}

EG  �→ Fulkerson-Ryser (fast implementation: Charo and Kevin) 
HH �→ P.L. Erdős, I. Miklós & Z. Toroczkai. Electron. J. Comb. 17(1), R66, (2010). 

D.J. Kleitman & D.L. Wang. Discr. Math. 6, 79 (1973). 

Sampling: H. Kim, C.I. Del Genio, K.E. Bassler &  Z. Toroczkai. New J. Phys. 14, 02312 (2012). 

P (in) = cd−γ
in

P (out) = e−λ λdout

dout!

λ = �din�


