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Fundamentals

In network modeling one often needs to generate graphs without having full connectivity information.

There are cases where only the degree sequence (O(NV)) is available in form of data.

Examples include

1) Data generated from surveys for epidemic studies.

R. Anderson & R. May, Nature 333, 514 (1988).
F. Liljeros, C. Edling, L.A.N. Amaral, H. E. Stanley, Y. Aberg, Nature 411, 907908, (2001) .

2) Chemistry.  Note: node = atom, edge = bond, degree = valence

2a) Structural isomers of alkenes.

- e.g., C,H,,, butane has 2 isomers /?/)
H—(IZ—H
H

- CH4(CH,)s;CH, has 18 isomers HEutane Isobutane

- C,yH,, has 366,319 isomers.
2
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2b) Topological indices of molecular branching. The Randi¢ index.

Problem: Given a graphical sequence of integers d, find a simple graph G(V, E) with degree
sequence d which maximizes:

boting points °C

150

Ro(G) = > (didy)”

(i,5)eE 5o
The case @ = —1/2 is the classical Randi¢ index.
Strongly correlates with physical properties such as “boiling naor
. . 1 | | i .
points of hydrocarbons and the retention volumes and
retention times obtained from chromatographic studies”. Cetom sioms plettod agans: the topotgical ranehing mdoe (Bxper

mental data are taken from ref 24.)

M. Randi¢, “On characterization of molecular branching”, J. Amer. Chem. Soc. 97, 6609 (1975).

General Motivation: understand how and to what level processes on networks
(information flow, epidemics, etc.) are affected by /i f '
and nothing else.

Hence we need to be able to build ensembles of graphs realizing a given
degree sequence and sample from them with known distributions.

[note: sequence, not distribution]
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Degree sequences (we'll talk about labeled graphs, only)

Given a graph G, the set of non-negative integers d(G) =d = {dy,ds,...,d,}

forms its degree sequence.

Not all sequences of non-negative integers will form the degree sequence of a simple graph!
(Graph without loops and multiple edges between the same pair of nodes).

Examples:
1) d=1{4,3,2,2,1} forms the degree sequence of the simple graph N/

2) d=1{3,2,1} is notthe degree sequence of any simple graph
3) d=1{5,4,3,2,1,1} is notthe degree sequence of any simple graph

A sequence of non-negative integers d is called graphical if there is a simple graph G
whose degree sequence is d .

In this case we say that G the sequence d.



VAN

{IVERSIT 3
7/ iCeNSA (@) NOTRE DAME

.

Main questions

Given a sequence of integers d = {dy,...,d,}, di>dy>...>d, >1

1. Graph Construction:

« How do we decide if d is graphical?
- How do we build a simple graph G with sequence d for its degrees?

« How do we build all possible graphs with the same degree sequence d?

» What algorithm would sample uniformly, or with known weights from the set of
all simple graphs with degree sequence d ?




/ CeNSA @UNIV!&RSI]‘Y()F

/}\ NOTRE DAME
Some more jargon: I Rl m
\/ \/ edge
Stubs
“half-edge”

The sequence d can be represented as a sequence of stubs

“Realizing a sequence” means connecting pairs of stubs into edges such that no multiple
edges are formed between the same pair of nodes, nor loops, until no stubs are left.

One can also think of graph construction, as a process of matching stubs.

Residual degree: the number of unconnected stubs of a node at any given time.

When building graphs, we will always connect all the stubs of the chosen node first before
moving on to other nodes with stubs.
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Simple examples:
d ={2,2,2} ﬁ> , , 5 :> A ﬁ> Graphical

d={32,1} s> Ms 5 1 > > Not graphical

However, not all connection sequences will result in a simple graph!

5 5 5 5 5 5 >—> Failsto create
a simple graph
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Characterizations of graphical sequences

Theorem (Erdés, Gallai, EG): Let d = {dy,d>,...,dN} bea sequence of non-negative integers with

dy>do>...>2dn >0  Thend is graphical if and only if (conditions are necessary and sufficient):

N
1) Z d; is even, and
i=1

k N
2) Zdiﬁk(k—1)+ Z min{k, d; } forall 1<k<N-1
=1 i=k+1

P. Erdés, T. Gallai. Graphs with prescribed degrees of vertices. (Hungarian) Matematikai Lapok 11, 264 (1960).

Note: there can be s

di

Ex:
d=1{2,2,2,2,2,2,
()
The E-G theorem is : or constructing the graph!
An alternative theore k=15 sed to build a graph:
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Algorithm (Hakimi, Havel): Given a graphical sequence, choose a node 1 (any), and connect all its stubs
to other nodes with the largest residual degrees. Repeat until all stubs are connected into edges.

V. Havel. A remark on the existence of finite graphs. (Czech) Casopis Pést. Mat. 80 477 (1955). S.L. Hakimi. On the realizability
of a set of integers as degrees of the vertices of a simple graph. J. SIAM Appl. Math. 10, 496 (1962).

This algorithm can be used to characterize graphical sequences: A given sequence of non-negative
integers is graphical iff the above algorithm finishes in a simple graph.

However, the H-H algorithm cannot construct in general all graphs realizing a sequence!

Example: d={3,3,2,2,2,2,2 2} 2 3 2 2 3 ?
@ @

This is because it restricts the next connection to the node with the largest residual degree.
(so what method can build all realizations?)

A simple idea:

Connect the stub arbitrarily, then use some method to test whether graphicality has been
broken by this connection.
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A naive idea: use the EG theorem on the residual sequence after the arbitrary connection has
been made... (passing the EG test is necessary anyway).

To see why the E-G theorem is NOT sufficient consider the following example:

d ={6,5,5,3,3,2,1,1} Let us make connections (3,1) and (3,6). Graphicality is still preserved.

% \Ty&
6 5 5 3 3 2 1 1
Try connecting 3 to 7: —
222X
5 5 3 3 2 1 1

G
~ G 5 2 3 3 1 1)

But cannot finish in a simple graph due to constraints.

:> Passes the EG test! 10
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Star-constrained graphicality

“Star” centered on %

——
PET TN -7 Ss
& r
- e ~

A star-constraint on a node 17 is given by a set of nodes X; (forbidden set) to
which no connections are allowed from % .

For example, because there are connections already made from % to these nodes.

Py
\\\\\\\

What we need is a theorem that can tell us whether a given degree sequence is graphical such that
connections from a given node % to a set of nodes X; are all avoided.

Theorem (Star-constrained Graphicality): Let d: dy >do > ...>dy >0 bea sequence of non-
negative integers arranged non-increasingly and X; be a star-constraint on node i with |X;| < N — 1 — d;.

Define L; as the set of the first (“lefimost”’) d; nodes not from X; . Then there exist a simple graph realizing
d and avoiding connections from i to X; iff the residual sequence d’ :
dj —1 if e L,
d = 0 if j=1 is graphical.
J

d; if j&L;U{i}

H. Kim, Z. Toroczkai, P.L. Erdds, I. Miklés and L.A. Székely. “Degree-based graph construction” J. Phys. A: Math. Theor. 42, 392001
(2009).

Let us see how does this work in our previous example
11
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d ={6,5,5,3,3,2,1,1}

VWL

(5 5 2 3 3 1 1 )
ﬁ> Passes EG, but cannot finish in a simple graph.
(5 4 2 3 1 1 )
ﬁ> We check graphicality with EG theorem (or HH), which now fails. \/

This provides us with the following method that can build all realizations of a graphical sequence:

Procedure: * For an arbitrarily chosen node & connect one of its stubs to a stub of another arbitrarily chosen
node 9 only if the residual sequence (after the temporary connection) passes the star-constrained

graphicality test.

* Repeat with another stub of 1 until all its stubs are connected away into edges, before moving
onto another node.

12
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Let G(d) denote the set of all simple labeled graphs realizing d.

If we specify a systematic way of connecting the stubs, we obtain algorithms that will construct all
elements of G(d) .

E.g., in: * H. Kim, Z. Toroczkai, P.L. Erdds, I. Miklos and L.A. Székely. “Degree-based graph construction” J. Phys. A: Math.
Theor. 42, 392001 (2009).

« Z. Kiraly. “Recognizing graphic degree sequences and generating all realizations”. TR-2011-11, Published by the
Egervary Research Group on Combinatorial Optimization, ISSN 1587-4451.

A practical note on implementations:

Sequence graphicality can be decided in linear time (EG) O(N)

* C.I. Del Genio, H. Kim, Z. Toroczkai and K.E. Bassler. “Efficent and exact sampling of simple graphs with given arbitrary
degree sequence.” PLoS ONE, 5(4) e10012 (2010). - Provides a fast algorithm that does not use multiplications.

* P. Hell, D. Kirkpatrick. “Linear-time certifying algorithms for near-graphical sequences.” Discr. Math. 309, 5703 (2009).

The paper:

 Z. Kiraly. “Recognizing graphic degree sequences and generating all realizations”. TR-2011-11, Published by the Egervary
Research Group on Combinatorial Optimization, ISSN 1587-4451.

-An O(N loglog N) implementation of the Havel-Hakimi algorithm.

- Builds all elements from g(d) with complexity O(N2) between realizations.

13
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A note on the larger context:

Given a simple graph G(V, E) and a function: f:V(G) — NU {0}

an f-factor of G is a subgraph H such that:

Iiam T. Tutte, 1918-2002.
dg(v) = f(v), forall veV

(A I-factor is a matching.) W.T. Tutte. “The factors of graphs.” Canad. J. Math. 4, 314 (1952).

When G = K the f-factor problem is nothing but the degree-based graph construction
problem !

We provided a greedy algorithm to construct f-factors in: Ky \ Sx ~ where

Sy is a star graph of k nodes centered on some (arbitrary) node.

14
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The Sampling Problem

|G(d)| is typically enormous, cannot build all realizations, one needs to sample from G(d)

|deally, for modeling purposes we'd like to sample uniformly at random.
Two main approaches to graph sampling:

1. Markov Chain Monte Carlo (MCMC): Uses edge swaps (switches).  Catherine, Peter

o 2 Ryser:
1 5 I If G1and G, are two simple graphs with
o——o 3 4 the same degree sequence, then a
:> < sequence of edge swaps transforms
o——0 one into another.
3 4
1 2 o | |
H.J. Ryser . “Combinatorial properties of matrices of
Preserves degree sequence. zeros and ones” Canad. J. Math. 9 371 (1957).
\ R. A. Brualdi “Matrices of zeros and ones with fixed
3 4 row and column sum vectors” Lin. Alg. Appl. 33, 159
(1980).
o . . _ R. Taylor “Constrained switchings in graphs” SIAM J.
Problem: mixing time is not known in general. ’ ALG. DISC. METH. 3, 115 (1982)

15
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2. Direct Construction: - Matching stubs

- Connect a pair of stubs uniformly at random.

Configuration Model (CM):
- If multiple (parallel) edges or self-loops, reject then restart.

B. Bollobas. Eur. J Comb. 1:311-316 (1980) E. Bender, E. Canfield J. Comb. Th. A 24 296-307 (1978)
M Molloy, B. Reed. Rand. Struct. Alg. 6:161-179 (1995)

Advantage: uniform sampler. S(d) :set of all graphs with degree seq d

G(d) : set of all simple graphs with degree

Disadvantage: seq d

- Can have many rejections
dependingon d.

Worst case: “a needle in the haystack”

For those who favor tails of distributions:

H-sequences |

Define the large degree tail of a sequence d of
non-negative integers the subsequence:

{d17d27 %) ds} with

dlzdgz...ZdSZS, dsy1 < s—+1
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Pick your favorite “tail sequence” of integers: hy > ho > ... > hs > s> 1.

Assuming we really don’t care much about the low degree part, we will extend it further such that
the full sequence is graphical and it has some other properties.

S

In particular, let us introduce the sequence h; = Z H(hj +1—s—id), 1<i<h +1-s5.

1, n>0 J=1
W= o n<q

Theorem (H-sequence):  For an arbitrary sequence of non-negative integers hy > ... > hy > s> 1

the sequence Hy > ... > H,, defined by:
hz' , 1 S ) § S,

H; = is graphical.

hi—s, s+1<i<n=h1+1

Moreover, we have forall 1 < k < s :

k n
Z H,=k(k—-1)+ Z min{k, H;} .  (that is, we have equalities in the EG test)
4= i=k+1

In words: the low-degree part is obtained by mirroring the large-degree tail onto the first bisector,

shifted by unity:
17



Properties: - has exactly one graphical realization by a simple graph
- the first S nodes are connected into a complete graph K
* there are no connections between nodes in {s +1,... ,n}

- among all simple graphs with the same tail h the H-sequence
graph is the “tightest’, i.e., has the smallest volume, given by:

=1 1=1

* jts diameter is 2

The “Sun Graph”

The chances of hitting the Sun Graph by the
CM algorithm is astronomically small for large
n=hy+1

M. Koren. J. Comb. Theory. B 21, 235 (1976).

Can we do better than the CM algorithm?
18
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The graph sampling algorithm

Given a graphical sequence (; > ... >d,, > 1
1. Choose the first node in the sequence as the “work” node
Build the set of allowed nodes, 4 that can be connected to the work node

3. Choose uniformly at random a node & in 4 and connect it to the work node

3.1 If a has still stubs, add it to the set of forbidden nodes.
3.2 Otherwise, remove it from residual sequence

4. Repeat from 2 to 3.2 until all stubs of the work node are connected away.
5. Remove the work node from the sequence

6. Repeat the whole procedure until we end with a simple graph.

:> Biased sampling, but it provides the weight of the sample.

C.l. Del Genio et.al. PLoS ONE 5(4), e10012, (2010).

19
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Measuring network observables uniformly

Zszl wSzQ(SZ) K

T : number of samples
22:1 Ws;

Q) =

(@) :average of the observable
Q(S;) : observable measured for sample .5;
w(S;) :inverse of the relative probability probability for .S; to occur

k. : Size of allowed set

Lj

™m

&

1
> W= =

k; . d.:residual degree of work node
i=1 %

J

m : number of work nodes (< N-1)

C.l. Del Genio, H. Kim, Z. Toroczkai & K.E. Bassler. PLoS ONE, 5(4), e10012, (2010).

H. Kim, C.I. Del Genio, K.E. Bassler & Z. Toroczkai.. New J. Phys. 14, 02312 (2012).
20
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Inw = y: y: Ink;, | —In(d;)| Many realizations > log-normal distribution
i=1 | \j=1

Sample weights for an ensemble of power-law sequences chosen from P(d) ~d 7

Simulations: 2x10* graphical sequences, 108 samples for each, for a total of 2x101° samples.

0_04-Illllllllllll'l""l':"l"" ](')SL T=T=T"TTTTT T T TTIT] lllllllJ
0.03 ]()4 3 ?
p C 10° -!
0.02 3
10?
0.01 |
B 10"
0.00 [ ](')U T raanul Lo aaaanl
0 50 100 150 200 250 300 0! 02 0 0"
logw N
* Upper bound for worst case complexity (Q(N M)

If number of edges M = O(N) => Complexity O(NQ)

If number of edges )y = O(N?) & Complexity (’)(N?’) 21
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* Provided an algorithm does not use swaps, instead it is based on the star-constrained graph
construction results.

» Unlike the Configuration Model based method, it is rejection free: it always ends in a simple
graph realization of the degree sequence.

P(d) = const.
N = 100 10*

* It produces statistically independent samples.

* |t provides the sample weight, which in turn can be used to compute network observables as if
sampled uniformly or by some preferred distribution.

» Drawback: due to the log-normal distribution, one has to draw many samples.
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Directed graph construction and sampling

All of the above can be extended to bi-degree sequences (bds) to realize directed simple graphs
with the same bds:

D = (d?,d®) = {(d?,d'?),...(dD,d)N

EG —— Fulkerson-Ryser (fast implementation: Charo and Kevin)

HH —— P.L. Erdés, |. Miklos & Z. Toroczkai. Electron. J. Comb. 17(1), R66, (2010).
D.J. Kleitman & D.L. Wang. Discr. Math. 6, 79 (1973).

Sampling: H. Kim, C.l. Del Genio, K.E. Bassler & Z. Toroczkai. New J. Phys. 14, 02312 (2012).

08— 1 71 T 10° a
0.025 o plim) = Cdz'_n7 — 4 : :
A7 10 E|
§ )\dout 1 E E
0.02 plout) — o= i : ]
p L dout! i 5 1 03 3 -_;
0.015+ _ . E
L - <dzn> = ) i
10 H
0.01- - §
L 1 ]
0.005+ - 10 E
. ‘ 0 . e . L s , i
160 1%0 0 10 ' :
log w 10! 102 10° 104

N 23



