Switching in Complex Networks of States: A New Paradigm for Natural Computation

Marc Timme

in collaboration with Fabio Schittler Neves

Network Dynamics Group -Max Planck Institute for Dynamics & Self-Organization

Bernstein Center for Computational Neuroscience, Göttingen

Georg August University, Göttingen

Biological and bio-inspired computation

Biological Networks

- Neural circuits
 (computation & learning)
- "Tree" of life (evolution)

Bio-inspired networks

- Autonomous robots
- Natural computing devices

Towards Natural Computation

Biological Processes:

- are nonlinear
- exploit **self-organized**, **emerging** collective states
- based on learning, adaptation, evolution

Technical computing and behaving (robotic) systems:

- may be realized in a neuro-analogous way (bio-inspired development & possible explanation of biol. phenomena)
- require understanding
 of collective nonlinear dynamics & self-organization

How to build a natural computer?

Outline

Model: Networks of **symmetrically** pulse-coupled oscillators Periodic orbit attractors (in the sense of Milnor) ... Phenomenon: ... that are **unstable** Analytically Tractable Example: Unstable modes Switching among attractors System-independence Asymmetries: Switching **Selection** of complex periodic orbits Universal Computation: k-winner takes all, binary & n-ary logics N=5 versatility; N=100 & expon. scaling Robots: phototaxis & obstacle avoidance

Neural Model and Phase Description

original model: R.E. Mirollo, S.H. Strogatz; *SIAM J. Appl. Math.* 50:1645 (1990) model with delay: U. Ernst, K. Pawelzik, T. Geisel; *Phys. Rev. Lett.* 74:1570 (1995)

Neural Model and Phase Description

Membrane potential dynamics

$$\frac{dV_i}{dt} = f(V_i) + W_i(t) + \Delta_i$$

Pulse interactions: spike sending $V_j(t_{j,m}^-) \ge 1$

and reset

$$V_j(t_{j,m}) \ge 1$$
$$V_j(t_{j,m}) := 0$$

Received after delay time τ

$$W_i(t) = \sum_{\substack{j=1\\j\neq i}}^N \sum_{m\in\mathbb{Z}} \epsilon\delta\left(t - \tau - t_{j,m}\right)$$

$$U(\phi) = \tilde{V}(\phi T)$$
 $\dot{\tilde{V}} = f(V);$ $\tilde{V}(0) = 0,$ $\tilde{V}(T) = 1$

All-to-all Connectivity: Partial Synchrony and Switching

Switching persists for small noise strengths $\eta = 10^{-22}$

Origin of switching dynamics?

Attracting and yet unstable?

switching towards another attractor

decay also occurs for very small pertubations ($\sigma = 10^{-22}$)

New Kind of Invariant Set: Unstable Attractor

perturbations induce switching

Basin of attraction (2D section through state space)

Analysis Confirms: Unstable & Attracting

→ Locally unstable although attracting (saddle periodic orbit with positive measure basin)

→ new kind of (Milnor) attractor: **unstable attractors**

First identification and analysis: M.T. et al.; *Phys. Rev. Lett.* 89:154105 (2002a) Large networks: M.T. et al.; *Chaos* 13:377 (2003) Rigorous results: P. Ashwin and M.T.; *Nonlinearity* 18:2053 (2005) Functional relevance of switching: P. Ashwin and M.T., *Nature* 436:36 (2005) Bifurcation: C. Kirst and M.T., *Phys. Rev. E (R)* (2008).

Cartoon of Heteroclinic Cycle in Symmetric Oscillator Systems

Breaking the Symmetry -> Periodic Orbit Close to Heteroclinic Cycle

Full symmetry in a network of N oscillators

only three parameters: Ι, ε, τ. (independent of N)

N=5: cluster states of different symmetries:

N=5:

V=(V1,V2,V3,V4,V5).

5!/(2!2!) = 30 saddle states

Saddle Instabilities and Heteroclinic Switching

arbitrarily small perturbation induces controlled switching

Two ways to switch: network of states

Symmetry breaking induces cyclic switching

Symmetry breaking input currents: I₁>I₂>I₃>I₄>I₅

Cyclic switching along complex periodic orbit

Complex Network of Saddle States

$(a+\Delta,b,c,b,a) \rightarrow (c,a,b,a,b)$

$(a+\Delta,b,c,b,a) \rightarrow (c,a,b,a,b)$

$(c,a+\Delta,b,a,b) \rightarrow (b,c,a,b,a)$

	ext				time		>
I 1 —		а	С	b			
2	\longrightarrow	b -	→ a+∆	С			
3	\rightarrow	С	b	а			
4	\rightarrow	b	→ a	b			
5	→	а	b	а			
		 1> 5	2 > 4				

 $(b,c,a+\Delta,b,a) \rightarrow (a,b,c,a,b)$

	ext				time		
I 1 —	\longrightarrow	а	С	b	а		
2		b	а	С	b		
3	\rightarrow	С	b	→ a+∆	С		
4	\rightarrow	b	а	b	а		
5	→	а	b	→ a	b		
		1>1 ₅	2> 4	 3> 5			

$(a+\Delta,b,c,a,b) \rightarrow (c,a,b,b,a)$

ext					time			
I ₁	→	а	С	b	→ a +∆	С		
I ₂ —	→	b	а	С	b	а		
I 3 —	→	С	b	а	С	b		
I 4 —	→	b	а	b	→ a	b		
l ₅ -	→	а	b	а	b	а		
	I 1	∣ > 5	2>1 ₄	 3> 5	5 ₁ > ₄			

$(c,a+\Delta,b,b,a) \rightarrow (b,c,a,a,b)$

	ext				time			>
I 1 —	\rightarrow	а	С	b	а	С	b	
2 -	\rightarrow	b	а	С	b —	→ a+∆	С	
3	\rightarrow	С	b	а	С	b	а	
4	\rightarrow	b	а	b	а	b	а	
5	→	а	b	а	b	b → a		
		1> 5	2>4	₃ > ₅	1> 1 4	2 > 15		

 $(b,c,a+\Delta,a,b) \rightarrow (a,b,c,b,a)$

	ext				time			
I 1 —	\longrightarrow	а	С	b	а	С	b	а
2	\rightarrow	b	а	С	b	а	С	b
3	\rightarrow	С	b	а	С	b	→ a+∆	С
4	\rightarrow	b	а	b	а	b	→ a	b
5	→	а	b	а	b	а	b	а
		1> 1 5	2 > 4	3>1 ₅	₁ > ₄	2 > 5	 3> 4	

 $(a+\Delta,a,b,b,c) \rightarrow (c,b,a,a,b)$

e	lext												
1	→	а	С	b	а								
2	\rightarrow	b	а	С	b	а	С	b					
3 -	→	С	b	а	С	b	а	С					
4	\rightarrow	b	а	b	а	b	а	b					
5	→	а	b	а	b	b a		a					
$ _1> _5$ $ _2> _4$ $ _3> _5$ $ _1> _4$ $ _2> _5$ $ _3> _4$													
result: {I1,I2,I3}>{I4,I5}													

 $(a+\Delta,a,b,b,c) \rightarrow (c,b,a,a,b)$

	lext											
I 1 -	\longrightarrow	а	С	b	а	С	b	а				
2	\longrightarrow	b	а	С	b	а	С	b				
3	\rightarrow	С	b	а	С	b	а	С				
4	\rightarrow	b	а	b	а	b	а	b				
5	→	а	b	а	b	а	b	а				
		 ₁ > ₅	2>4	 3> 5	 ₁ > ₄	2>1 ₅	 3> 4	~~~~				
	result: {I ₁ ,I ₂ ,I ₃ }>{I ₄ ,I ₅ }											

From Digital Analog Conversion to Classification

Encode 10 different classes by 5 neurons.

Neuron

#classes grows exponentially with number N of neurons e.g. N=100, 10^8 classes

Classification provides basis for computation

Arbitrary Binary Computation

Input signal

Operation

out. category

Operation table: XOR (0,1)

Input signal		0	1	0	0	1		AND	(0,0,1, 0,0) (0,0,1, 0,1)
Input weights (x10 ⁻⁴)	×	2.5	2.5	2.5	5	5			(0,0,1, 1,0) (0,0,1, 1,1)
effective input (x10-4)	-	0	2.5	0	0	5		OR	(1,0,0, 0,0) (1,0,0, 0,1)
base asymmetry (x10 ⁻⁴)	+	4	3	2	1	0			(1,0,0, 1,0) (1,0,0, 1,1)
total asymmetry (x10-4)		4	5.5	2	1	5			(0,1,0, 0,0)
	-						-	XOR	(0,1,0, 0,1)
result category									(0,1,0,1,0) (0,1,0,1,1)

Larger networks -> gigantic no. of options

20-winner-take-all computation;

5 x 10²⁰ possible outcomes with N=100 neurons (exponential in N)

Complex Networks of States → New Type of Natural Computer

Versatile with only five identical units:

- unary processing, e.g.: NOT
- single binary processing
- multiple binary processing (up to three operations at given parameters)
- **single ternary** (because 2^3=8 possible input classes < 10 possible output classes)

Universal computation as generic feature

- analog-digital converter, classifier
- k winner takes all
- n-ary logics
- scales well with system size

Future & current work:

- adaptation
- hardware/robot implementation (in progress)
- transfer of spatio-temporal patterns (instead of binary conversion)

Encode 10 different classes by 5 neurons.

Neuron

Behavioral Autonomies

Phototaxis

finding or following a light (=food) source

Obstacle avoidance & untrapping

Find the way out of a number of "Network Science"books

Behavioral Autonomies

Theoretical Challenges in Network Dynamics: Adaptation, Inference, Computation & Behavior

Selected works:

Network Dynamics and Information Processing

Phys. Rev. Lett. 89:258701 (2002c); Phys. Rev. Lett. 92:074101 (2004b); Chaos 16:015108 (2006); Phys. Rev. E 78:065201(R) (2008); Phys. Rev. Lett. 102:068101 (2009); Europhys. Lett. 90:48002 (2010); *Phys. Rev. Lett.* 92:074103 (2004a); *Phys. Rev. Lett.* 93:074101 (2004c);

Nonlinearity 21:1579 (2008); Chaos, 21:025113 (2011); SIAM J. Appl. Math. 70:2119 (2010)

<u>Network Inference</u>: Design, Reconstruction and Stability

Phys. Rev. Lett. 97:188101 (2006); Europhys. Lett. 76:367 (2006); Phys. Rev. Lett. 100:048102 (2008); Frontiers Comp. Neurosci. 5:3 (2010);

Physica D 224:182 (2006); Phys. Rev. Lett. 98:224101 (2007); Frontiers in Comput. Neurosci. 3:13 (2009); New J. Physics. 13:013004 (2011)

Spatio-temporal <u>patterns</u>, control and computation

Phys. Rev. Lett. 89:154105 (2002a); *Nonlinearity* 18:20 (2005);

Neurocomputing 70:2096 (2007); Frontiers in Neurosci. 3:2 (2009); Chaos 13:377 (2003);

Neurosci. Res. 61:S280 (2008); Discr. Cont. Dyn, Syst. 28:1555 (2010);

Handbook on Biological Networks (Chapter on 'Spike Patterns'), World Scientific (2010);

Theoretical Challenges in Network Dynamics: Adaptation, Inference, Computation & Behavior

• Adaptation and autonomous robots via nonlinear dynamics J. Phys. A: Math. Theor. 42:345103 (2009); Nature 436:36 (2005): Phys. Rev. Lett., under review (Kielblock et al., 2012) Input Output Nature Phys. 6:224 (2010);

Intelligent coordination and new computational devices

Phys. Rev. Lett. 88:245501 (2002b); *Cornell Rep.* 1813:1352 (2007); Nature Phys., 7:265 (2011); Phys. Rev. Lett. in press (Schittler Neves & MT, 2012)

New J. Phys. 11:023001 (2009); *J. Phys. A: Math. Theor.*, 43:175002 (2010);

Thanks to ...

Network Dynamics Group – MPI f. Dynamics & Self-Organization

Christian Bick Shubham Dipt Frederik Fix Hinrich Kielblock Fabio Schittler-Neves Heike Vester David Breuer Federico Faraci Carsten Grabow Christoph Kirst Martin Rohden Gunter Weber Wen-Chuang Chou Britta Feldsmann Sven Jahnke Christoph Kolodziejski Andreas Sorge Dirk Witthaut

Raoul-Martin Memmesheimer

Harvard / Nijmegen

MPI BPC Göttingen

Florentin Wörgötter, Poramate Manoonpong, Theo Geisel, Fred Wolf, Andre Fiala, all colleagues at MPIDS & BCCN **Göttingen**

Silke Steingrube Solar Energy Research, Univ. Hannover

Shuwen Chang, Holger Taschenberger

YOU all for your attention !

Questions & Comments Welcome!

Different concepts of an attractor

main requirement: attractor A has basin of attraction B(A) of positive volume

conventionally: contracting neighbourhood U \Rightarrow these attractors are stable

Milnor: no contracting neighbourhood U \Rightarrow attractors may be unstable

parameter tuning to obtain unstable attractors ?

Instability and attraction

subthreshold input desynchronizes \Rightarrow cluster states may be unstable

suprathreshold input synchronizes \Rightarrow cluster states may be attractors

How does an unstable attractor work?

basin volume

cluster formation (synchronization) by suprathreshold input: discontiuous jump

mechanism in large systems: M.T., F. Wolf, T. Geisel, Chaos 13:377-387 (2003)

Use of heteroclinic switching so far: encoding

- D. Hansel, G. Mato, and C. Meunier, *Phys. Rev. E* (1993):
- U. Ernst, K. Pawelzik, and T. Geisel, *Phys. Rev. Lett.* (1995); *Phys. Rev. E* (1998).
- M. Rabinovich et al., Phys. Rev. Lett. (2001); T. Nowotny & M. Rabinovich, Phys. Rev. Lett. (2008);
- M.T., F. Wolf, T. Geisel, *Phys. Rev. Lett.* (2002); *Chaos* (2003)
- G. Orosz et al., Proc. Appl. Math. Mech. (2007).; J. Borresen & P. Ashwin, Phys. Rev. E (2008)
- C. Kirst & M.T., Phys. Rev. E (2008). F. Schittler Neves & M.T., J. Phys. A: Math. Theor., (2009).

Towards computation via heteroclinic switching

P. Ashwin and J. Borresen. Discrete computation using a perturbed heteroclinic network. *Phys. Lett. A* (2005);

(still requires external logic device)

Larger Networks, other clustering

20 winner-take-all computation

Spatio-Temporal Patterns in Networks of Biology and Physics

Biological Networks $(10^{-3} - 10^{10}s; 10^{-5} - 10^{-1}m)$

- Computation in Neural circuits
- "Tree" of life (speciation in early evolution)

Networks of physical & artificial units

 $(10^{-2} - 10^{10}s; 10^{-9} - 10^{6}m)$

- Complex disordered media
- Modern power grids (mind the rei
- Autonomous robots
- Natural computing devices

