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When none of the events happen

Assume that A1,A2,…,An are events in a probability space Ω. How can we 
infer            ? 
If Ai’s are mutually independent, P(Ai)<1, then
If               , then 



A way to combine arguments:

Assume that A1,A2,…,An are events in a probability space Ω. 
Graph G is a dependency graph of the events A1,A2,…,An, if V(G)={1,2,
…,n} and each Ai is independent of the elements of the event algebra 
generated by 



Lovász Local Lemma 
             (Erdős-Lovász 1975)

Assume G is a dependency graph for A1,A2,…,An, and d=max degree in G
   If for i=1,2,…,n, P(Ai)<p, and e(d+1)p<1, then



Lovász Local Lemma (Spencer)

Assume G is a dependency graph for A1,A2,…,An  
   If there exist x1,x2,…,xn  in [0,1) such that

   then



Negative dependency graphs

Assume that A1,A2,…,An are events in a probability space Ω. 
Graph G with V(G)={1,2,…,n} is a negative dependency graph for events 
A1,A2,…,An, if  

                       implies



LLL: Erdős-Spencer 1991, 
Albert-Freeze-Reed 1995, Ku

Assume G is a negative dependency graph for A1,A2,…,An , exist x1,x2,
…,xn  in [0,1) such that,                           , then

Setting xi=1/(d+1) implies the uniform version both for dependency and 
negative dependency



Needle in the haystack

LLL has been in use for existence proofs to exhibit the existence of events 
of tiny probability. Is it good for other purposes?
Where to find negative dependency graphs that are not dependency 
graphs?



Poisson paradigm

Assume that A1,A2,…,An are events in a probability space Ω, p(Ai)=pi. Let 
X  denote the sum of indicator variables of the events. If dependencies are 
rare, X can be approximated with Poisson distribution of mean Σ pi.  
X~Poisson means                               using k=0,



Two negative dependency graphs

H is a complete graph KN  or a complete bipartite graph KN,L ; Ω is the 
uniform probability space of maximal matchings in H. For a partial 
matching M, the canonical event
Canonical events AM and AM* are in conflict: M and M* have no common 
extension into maximal matching, i.e. 



Main theorem

For a graph H=KN or KN,L, and a family of canonical events, if the edges 
of the graph G are defined by conflicts, then G is a negative dependency 
graph.

This theorem fails to extend for  the hexagon H=C6



Hexagon example

Two perfect matchings
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Relevance for permutation 
enumeration problems
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Assume that A1,A2,…,An are events in a probability space Ω. 
Graph G with V(G)={1,2,…,n}  is an ε–near-positive dependency graph of 
the events A1,A2,…,An, 

 

  

ε-near-positive dependency graphs



Main asymptotic theorem 
(conditions)

 M is a set of partial matchings in KN (2|N) or 
KN,L  (N≤L); 
M is antichain for inclusion
 
r is the size of the largest matching from M
 



Main asymptotic theorem 
(conditions continued)

  
 

  with

      for all 

  
 

      

 



Main asymptotic theorem - 
conclusion



Consequences for permutation 
enumeration

For k fixed, the proportion of k-cycle free permutations is 

(Bender 70’s) If max K grows slowly with n, the proportion of permutations 
free of cycles of length from set K is  



Enumeration of labeled d-regular 
graphs
Bender-Canfield, independently Wormald 1978: d fixed, nd even



Configuration model 
                          (Bollobás 1980)
Put nd (nd even) vertices into n equal clusters
Pick a random matching of Knd 
Contract every cluster into a single vertex getting a multigraph or a simple 
graph
Observe that all simple graphs are equiprobable



Enumeration of labeled regular 
graphs
Bollobás 1980:  nd even, 

McKay 1985: for



Enumeration of labeled regular 
graphs
McKay, Wormald 1991:  nd even, 

Wormald 1981: fix d≥3, g≥3 girth



Theorem (from main)
In the configuration model,  if d≥3  and g6 (d–1)2g–3=o(n), then the 
probability that the resulting random d-regular multigraph after the 
contraction has girth at least g, is                             

  hence the number of d-regular graphs with girth at least g is



McKay, Wormald, Wysocka 
[2004]
Our condition is slightly stronger than in McKay, Wormald, Wysocka [2004]:
    (d−1)2g−3  =o(n)



Configuration model for degree 
sequences  (Bollobás 1980)
Put N=d1+d2+…+dn (even sum) vertices into n  clusters, d1≤d2≤…≤dn 
Pick a random matching of KN  
Contract every cluster into a single vertex getting a multigraph or a simple 
graph
Observe that all simple graphs are equiprobable



New Theorem (hypotheses)
For a sequence x1,…,xn, set  

 Assume d1≥ 1,         , set Dj=dj(dj−1) and 



New Theorem (conclusion)
(McKay and Wormald 1991 
without girth condition) 

Then the number of graphs with degree sequence d1≤d2≤…≤dn and girth at 
least g≥3 is    



More general results hold:
 For excluded sets of cycles (instead of excluding all short cycles)
 Also for bipartite degree sequences 

  



Classic Erdős result with the 
probabilistic method:

 There are graphs with girth ≥g and chromatic number at least k, for any 
given g and k. 



Turning the  Erdős result 
universal from existential: 
In the configuration model, assume  d1≥ 1, 
k fixed,

and

Then almost all graphs with degree sequence d1≤d2≤…≤dn and girth at 
least g≥3 are not k-colorable. 

 



Recall: 

For a graph H=KN or KN,L, and a family of canonical events, if the edges 
of the graph G are defined by conflicts, then G is a negative dependency 
graph.

This theorem fails to extend for  the hexagon H=C6



A slightly stronger result
 (Austin Mohr)  
Assume r divides N. For a hypergraph H=KN(r) , and a family of canonical 
events, if the edges of the graph G are defined by conflicts, then G is a 
negative dependency graph.



A conjecture (Austin Mohr)  
Ω is the uniform probability space of partitions  of a set H. 
For a set of disjoint subsets M of H, the canonical event  
is 

Canonical events AM and AM* are in conflict: M and M* 
have no common extension into a partition
CONJECTURE: For a family of canonical events, if the 
edges of the graph G are defined by conflicts, then G is a 
negative dependency graph.



A theorem for spanning trees

Ω is the uniform probability space of spanning trees in KN. For a circuit-free 
set of edges M, the canonical event

Canonical events AM and AM* are in conflict:  



Spanning tree theorem (with 
Austin Mohr)

For a family of canonical events, if the edges of the graph G are defined by 
conflicts, then G is a negative dependency graph.



van der Waerden conjecture − 
Egorychev-Falikman theorem 
1981 

For a non-negative doubly stochastic nxn matrix A, permanent(A) is 
minimized, if aij=1/n. 
If all aij=1/n then   



Is there a negative dependency 
graph for doubly stoch. matrices?

Using the doubly stoch. matrix A=(aij), define a random 
function π on [n] by selecting π(i) independently for each i, 
with
Define event Bi by
           is the event that π is a permutation. 
Note that

Do the events B1,…,Bn define an edgeless negative 
dependency graph?



Is there a negative dependency 
graph for doubly stoch. matrices?

If the events B1,…,Bn define an edgeless negative dependency graph, then

If aij=1/n, the events B1,…,Bn define an edgeless negative dependency 
graph and (e-o(1))−n < Permanent(A)
Leonid Gurvits: not always negative dependency graph 
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