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Abstract
We study the transport of excitations on a V-shaped network of three cou-
pled two-level systems. A common feature of these networks is the exis-
tence of a dark-state that blocks the transport to the drain. Here we pro-
pose a means to avoid this state by a suitable choice of initial correlations,
induced by a source that is common to both coupled nodes. These results
are also valid if we couple the system to an environment that induces
incoherent hopping between the nodes [1].

Excitation dynamics and quantum stochastic walks
Quantum stochastic walks
The quantum stochastic walk [2] is a model to describe excitation dynam-
ics on networks under the influence of interactions with an environment,
by using a Lindblad master equation that interpolates between coherent
dynamics and the Pauli master equation:

dρ(t)

dt
≡ L(ρ(t)) = −i(1 − α) [HS, ρ(t)] + α

3∑
k,l=1

λklD(Lkl, ρ(t)),

where α ∈ [0, 1]. The HamiltonianHS for a V-shaped network is given by:

HS =

3∑
i=1

E |i〉 〈i|+ V (|1〉 〈3|+ |2〉 〈3|+ h.c.)

and the Lindblad terms for the operators Lkl = |k〉 〈l| are defined by:

D(Lkl, ρ(t)) = Lklρ(t)L
†
kl −

1
2

{
L†klLkl, ρ(t)

}
For k = l we choose the coupling constants λkk = λ, corresponding
to a global dephasing process for each node. For k 6= l, we choose
λkl = |Hkl|

2, corresponding to transition rates that are estimated with
Fermi’s golden rule.

The dark state
Our model exhibits a dark state ρ = |ψD〉 〈ψD|, with |ψD〉 = (|1〉−|2〉)/

√
2,

that has no overlap with the node connected to the drain. In the purely
coherent limit α→ 0, this causes a blocking of the transport.

Transport efficiency
A good measure for the transport efficiency is the expected survival time
(EST) for the excitation in the network [3]:

η(α) =

∫∞
0
dt

N∑
k=0

ρkk(t,α) =
∫∞
0
dt [1 − ρN+1,N+1(t,α)]

A large value of η(α) implies a low transport efficiency and visa-versa.

Numerical results
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(a) EST for initial correlations
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(b) Cross-sections of the EST
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(c) Influence of dephasing noise
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Numerical parameters: E = 1,V = 1,γ = 1 and Γ = 1. For Fig (a) and (b) we use λ = 1 and for Fig (c) we use φ = 0.
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Creating initial correlations with a source
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Transitions from the source |0〉 to a state |ψ〉 of the network are modelled
by the Lindblad operator Ls = |ψ〉 〈0|. There are two interesting ways to
model these transitions:

We can consider two independent transitions to nodes |1〉 and |2〉:

L
(1)
source(ρ) =

Γ

2
D(|1〉 〈0| , ρ) + Γ

2
D(|2〉 〈0| , ρ)

We can consider a transition that induces initial correlations:

L
(2)
source(ρ) = ΓD(|ψφ〉 〈0| , ρ) with |ψφ〉 = (|1〉+ eiφ |2〉)/

√
2

The full master equation (including the drain |d〉) now takes the form:

dρ

dt
= L(ρ(t)) + γD(|d〉 〈3| , ρ(t)) + Lsource(ρ(t))

Analytical results for the EST
Assuming γ = V = 1, we find the following analytical solutions for the
EST η(α):

ηI(α) = 1/Γ + f(α)/g(α), ηII(α) = ηI(α) − h(α) cosφ/g(α)

with h(α) = 4(1 − α)2. The functions f(α) and g(α) are monotonically
increasing with α.

Conclusions and outlook
It is possible to overcome the transport inhibiting effects of the dark state

with a source that induces specific initial correlations.
The efficient transport in the presence of certain initial correlations is

robust under dephasing noise.
We expect the results obtained here also hold for larger networks that

exhibit invariant subspaces.
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