
 
More realistic GP maps lead to correlations between 
genotypes. We study the impact of these correlations 
using RNA folding as the GP map. 
 
Neutral networks in this system are generally not fully 
connected [6], and the mutational connectivities are 
different from the global phenotype frequencies. 
 
 
 
 
 
 
 
 
 
 
 
 
Realistic GP maps can induce complex internal structure 
in neutral networks. Moving from one genotype to a 
neighbour may not completely change the spectrum of 
accessible phenotypes, leading to more pronounced 
bursts of mutants: 
 
 
 
 
 
 
 
 
 
 
 
 
If it takes several neutral steps to get access to new 
phenotypes, the discovery of rare phenotypes is delayed 
even further. The inverse dependence on cpq remains. 
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Introduction 
	
“Natural selection may explain the survival of the 
fittest, but it cannot explain the arrival of the fittest.” 

Hugo de Vries, Species and Varieties – Their Origin by Mutation,1904 
	
Innovations occur in evolution when mutations change 
genetic information (the genotype) and these changes 
have an effect on the physical appearance (phenotype) 
and fitness of an organism.  
The arrival of the fittest depends on how phenotypes 
arise from genotypes. This relation is characterized by 
the genotype-phenotype (GP) map. 

Mean-field model of exploration 
	
We view evolution as a two-stage process: Neutral 
exploration within a neutral network, and adaptive 
transitions between networks. 
 
Suppose a population of N individuals has adapted to a 
phenotype q, when the environment suddenly changes 
and a different phenotype p has greater fitness. Given a 
mutation rate µ per base, when is p first discovered? 
 
In general, the discovery time depends on the detailed 
connectivity of the neutral networks of p and q. We 
simplify the problem by a mean-field approximation that 
ignores local correlations: 

Analysis and simulations 
 
Frequent phenotypes are discovered earlier and 
produced more often than rare ones. 
 
If cpq is large, p is always accessible and there is no need 
for neutral exploration. The median discovery time is then 
 
 
But most phenotypes are rare; generally, they are only 
discovered through neutral exploration.  
 
The dynamics of exploration are easiest to understand in 
the limit NLµ     1, when the entire population performs a 
random walk on the neutral space [5]. The time between 
steps is distributed exponentially with mean τf=1/(Lµρq) 
and we find 
 
 
Note the non-monotonic dependence on ρq: More robust 
neutral networks are explored faster, but alternative 
phenotypes are produced less often [6]. 
 
To test these results, we performed simulations under a 
GP map that randomly assigns genotypes to phenotypes, 
so that cpq    Fp (using L=12, K=4). For intermediate NLµ, 
we observe a smooth transition between the extremes. 
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Correlations in neutral networks 

Conclusions and Outlook 
 
Even though mutations may cause uniformly random 
genotypic change, their effect on phenotypes can be 
biased by the GP map. We have shown how such bias 
emerges from the connections between neutral networks 
that arise through the GP map. 
 
Our framework presents a microscopic null-model for the 
dynamics of evolving populations on complex networks. 
As a reward, we can understand important scaling 
relations (such as the impact of robustness on the 
discovery of new phenotypes) in intuitive ways. 
 
Mutational bias can drive populations onto suboptimal 
peaks in the fitness landscape [8]. This bias can arise 
naturally from the GP map if we view connectivities 
between neutral networks as effective mutation rates. 
In the future, including adaptive transitions into our model 
promises further insight into the factors that shape the 
course of evolution. 
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phenotypes not 
accessible Mean-field 

approximation 

Unweighted, undirected network 
Nodes are genotypes 

Weighted, directed network 
Nodes are phenotypes 
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Genotype networks and the 
exploration of genotype space 

 
Phenotype-preserving (‘neutral’) mutations can 
change the set of accessible phenotypes and 
increase the potential for innovation. 
 
Generally, genotypes are strings of length L over an 
alphabet of K letters (K=4 for DNA and RNA). There are 
KL genotypes in total. Under point mutations each 
genotype has (K-1)L neighbours. For each phenotype, 
the GP map induces a neutral network containing all 
genotypes that realize this phenotype. 
The picture below illustrates the case L=3, K=2. 
 
 
 
 
 
 
 
 
 
A neutral mutation from A to B can make different 
phenotypes accessible without the need to cross a 
fitness valley. 

Genotypes with the 
same phenotype 
(colour) form a 
neutral network 

Mutations 
change a 
single letter 

Neutral 
mutation 
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The majority of genotypes maps into a small fraction 
of phenotypes.  
 
In many biological systems, the number of different 
genotypes is much greater than the number of distinct 
phenotypes. But the assignment of genotypes to different 
phenotypes is often highly biased: 

Fraction of phenotypes 
containing 95% of genotypes 

Distribution of phenotype frequencies 

The frequency Fp of a phenotype p is the probability that 
a random genotype maps into p. The diagram above 
shows phenotype frequencies of RNA secondary 
structures, folded using the Vienna package [1], obtained 
by exhaustive enumeration. 
 
Similar bias has been observed in other systems, 
including models of protein folding [2], self-assembly [3] 
and gene regulatory networks [4]. 

Over long times, the network is explored uniformly so 
that number of p-mutants scales with cpq. But if the 
population is monomorphic, there are strong correlations 
over times on the order of τf: The currently accessible 
phenotypes are produced in bursts. 

The outcome of mutations depends on the robustness ρq 
(fraction of mutations from q going back to q) and the 
weighted connectivities cpq (fraction of mutations away 
from q that lead to p, with normalization                    ). 
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