Generalized models reveal stabilizing factors in food webs.

Lars Rudolf - Dynamics of Biological Networks - University of Bristol

Dresden, 18.05.2012

Food webs

Food webs - The Who eats Who in Ecology.

Links: predator-prey interactions

Food webs

Food webs - The Who eats Who in Ecology.

Directed biomass flows from prey to predator

- Strong links: High biomass flow
	- Weak links: Low biomass flow

Food webs

Food webs - The Who eats Who in Ecology.

Food webs

Complexity or stability?!

Large and complex systems are in general unlikely to be stable! * Large and complex systems are in general

* May R. Will a large complex system be stable? Nature 238 1972

Food webs

Complexity or stability?!

Large and complex systems are in general unlikely to be stable! * Large and complex systems are in general

I ne majority of natural food webs are large, complex, and stationary on population dynamical **time scales.** The majority of natural food webs are large, complex, and stationary on population dynamical time scales.

 $*$ May R. Will a large complex system be stable? Nature 238 1972

Food webs

Complexity or stability?!

Large and complex systems are in general unlikely to be stable! * Large and complex systems are in general

I ne majority of natural food webs are large, complex, and stationary on population dynamical **time scales.** The majority of natural food webs are large, complex, and stationary on population dynamical time scales.

What are the properties of food webs which give them their unusual stability?

 $*$ May R. Will a large complex system be stable? Nature 238 1972

Food webs

Food webs:

- large and complex networks
- many variables
- many parameters
- little informations
- strong nonlinearities
- dynamics on different time scales

Generalized Models

Generalized Models*

* Gross T. and Feudel U.: Generalized models as a universal approach to the analysis of nonlinear dynamical systems PHYSICAL REVIEW E 73, 016205 2006

Generalized Models

$$
\dot{X} = P(X) - L(X)
$$

Conventional Modeling

Parameterize

Compute Steady States

Compute Jacobian

Investigate Dynamics

Generalized Models

$$
\dot{X} = P(X) - L(X)
$$

Generalized Modeling

Conventional Modeling

Parameterize

Compute Steady States

Compute Jacobian

Investigate Dynamics

Generalized Models

$$
\dot{X} = P(X) - L(X)
$$

Generalized Models

$$
\dot{X} = P(X) - L(X)
$$

Generalized Models

$$
\dot{X} = P(X) - L(X)
$$

Generalized Models

$$
\dot{X} = P(X) - L(X)
$$

Generalized Models

$$
\dot{X} = P(X) - L(X)
$$

Generalized Models

$$
\dot{x} = \frac{P^*}{X^*} (p(x) - l(x))
$$

Generalized Models

$$
\dot{x} = \frac{P^*}{X^*} (p(x) - l(x))
$$

Generalized Models

$$
\dot{x} = \frac{P^*}{X^*} (p(x) - l(x))
$$

Generalized Modeling	$X^*, P^* = L^*$
Assume Steady States	$x = \frac{X}{X^*}, p(x) = \frac{P(X)}{P^*}, l(x) = \frac{L(X)}{L^*}$
Compute Jacobian	$J = \frac{P^*}{X^*}(p'(1) - l'(1))$
Parameterize	$\alpha = \frac{P^*}{X^*} = \frac{L^*}{X^*}$
Investigate Dynamics	$\phi = p'(1)$
$\mu = l'(1)$	

Generalized Models

$$
\dot{x} = \alpha(p(x) - l(x))
$$

Generalized Models

$$
\dot{x} = \alpha(p(x) - l(x))
$$

Generalized Models

$$
\dot{X}_n = S_n(X_n) + F_n(X_1, ..., X_N) - M_n(X_n) - \sum_{m=1}^N L_{mn}(X_1, ..., X_N)
$$

Generalized Modeling

Assume Steady States

Compute Jacobian

Parameterize

Investigate Dynamics

 \sim

Generalized Models

$$
\dot{X}_n = S_n(X_n) + F_n(X_1, ..., X_N) - M_n(X_n) - \sum_{m=1}^{N} L_{mn}(X_1, ..., X_N)
$$

Generalized Modeling
Assume Steady States
Compute Jacobian
Compute Jacobian
Parameterize
Inverse Steady States (The Nicole realistic topologies
Therefore Model*)
Intestigate Dynamics

* Williams R.J . & Martinez N.D. Simple rules yield complex food webs Nature 404 2000

Generalized Models

Results

Results

* Thilo Gross, Lars Rudolf, Simon A. Levin and Ulf Dieckmann:

Generalized Models Reveal Stabilizing Factors in Food Webs

Science 325, 747 (2009)

Results

Results

Weak links

Results

Weak links:

- low flow interactions
- prey centric normalization

Stabilizing for small webs, but destabilizing for larger (realistic size) webs.

Results

Link distribution

Results

Link distribution:

- trophic position
- number of predators

Many predators for intermediate species, but not for basal or top species.

Results

Link distribution:

- trophic position
- number of prey species

Generalist top and specialist basal species.

Conclusions

Conclusion

Conclusions

Conclusion

Conclusions

Assume Steady States Compute Jacobian We reproduce: Parameterize **Investigate Dynamics**

Conclusions

Conclusions

Conclusions

Thank you for your attention.

Results

