Generalized models reveal stabilizing factors in food webs.

Lars Rudolf - Dynamics of Biological Networks - University of Bristol

Dresden, 18.05.2012

Food webs

Food webs - The Who eats Who in Ecology.

Links: predator-prey interactions

Food webs

Food webs - The Who eats Who in Ecology.

Directed biomass flows from prey to predator

- Strong links: High biomass flow
 - Weak links: Low biomass flow

Food webs

Food webs - The Who eats Who in Ecology.

Food webs

Complexity or stability?!

Large and complex systems are in general unlikely to be stable! *

* May R. Will a large complex system be stable? Nature 238 1972

Food webs

Complexity or stability?!

Large and complex systems are in general unlikely to be stable!* The majority of natural food webs are large, complex, and stationary on population dynamical time scales.

* May R. Will a large complex system be stable? Nature 238 1972

Food webs

Complexity or stability?!

Large and complex systems are in general unlikely to be stable!* The majority of natural food webs are large, complex, and stationary on population dynamical time scales.

What are the properties of food webs which give them their unusual stability?

* May R. Will a large complex system be stable? Nature 238 1972

Food webs

Food webs:

- large and complex networks
- many variables
- many parameters
- little informations
- strong nonlinearities
- dynamics on different time scales

Generalized Models

Generalized Models*

* Gross T. and Feudel U.: Generalized models as a universal approach to the analysis of nonlinear dynamical systems PHYSICAL REVIEW E 73, 016205 2006

Generalized Models

$$\dot{X} = P(X) - L(X)$$

Conventional Modeling

Parameterize

Compute Steady States

Compute Jacobian

Investigate Dynamics

Generalized Models

$$\dot{X} = P(X) - L(X)$$

Generalized Modeling

Conventional Modeling

Parameterize

Compute Steady States

Compute Jacobian

Investigate Dynamics

Generalized Models

$$\dot{X} = P(X) - L(X)$$

$$\dot{X} = P(X) - L(X)$$

Generalized Models

$$\dot{x} = \frac{P^*}{X^*} (p(x) - l(x))$$

Generalized Models

$$\dot{x} = \frac{P^*}{X^*} (p(x) - l(x))$$

$$\dot{x} = \frac{P^*}{X^*} (p(x) - l(x))$$

Generalized Modeling
$$X^*, P^* = L^*$$
Assume Steady States $x = \frac{X}{X^*}, p(x) = \frac{P(X)}{P^*}, l(x) = \frac{L(X)}{L^*}$ Compute Jacobian $\mathbf{J} = \frac{P^*}{X^*}(p'(1) - l'(1))$ Parameterize $\alpha = \frac{P^*}{X^*} = \frac{L^*}{X^*}$ Investigate Dynamics $\varphi = p'(1)$ $\mu = l'(1)$

$$\dot{x} = \alpha(p(x) - l(x))$$

$$\dot{x} = \alpha(p(x) - l(x))$$

Generalized Models

$$\dot{X}_n = S_n(X_n) + F_n(X_1, ..., X_N) - M_n(X_n) - \sum_{m=1}^N L_{mn}(X_1, ..., X_N)$$

Generalized Modeling

Assume Steady States

Compute Jacobian

Parameterize

Investigate Dynamics

Lars Rudolf - Dynamics of Biological Networks - University of Bristol

. .

Generalized Models

$$\dot{X}_{n} = S_{n}(X_{n}) + F_{n}(X_{1}, ..., X_{N}) - M_{n}(X_{n}) - \sum_{m=1}^{N} L_{mn}(X_{1}, ..., X_{N})$$
Generalized Modeling
Assume Steady States
Use an algorithm to
create realistic topologies
(The Niche Model*)
Parameterize

Investigate Dynamics

* Williams R.J. & Martinez N.D. Simple rules yield complex food webs Nature 404 2000

Results

Results

* Thilo Gross, Lars Rudolf, Simon A. Levin and Ulf Dieckmann:

Generalized Models Reveal Stabilizing Factors in Food Webs

Science **325**, 747 (2009)

Results

Results

Weak links

Results

Weak links:

- low flow interactions
- prey centric normalization

Stabilizing for small webs, but destabilizing for larger (realistic size) webs.

Results

Link distribution

Results

Link distribution:

- trophic position
- number of predators

Many predators for intermediate species, but not for basal or top species.

Results

Link distribution:

- trophic position
- number of prey species

Generalist top and specialist basal species.

Conclusions

Conclusion

Conclusions

Conclusion

Conclusions

Assume Steady States
Compute Jacobian
Parameterize
Investigate Dynamics

Conclusions

Conclusions

Conclusions

Conclusions

Thank you for your attention.

