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Introduction 

Complex networks 

• Examples 

– Engineered (Internet)  

– Social (Facebook) 

– Biological (Metabolic networks) 
 

 

Motivation for coarse-graining 

Dynamical models 

• Microscopic rules of  evolution 

• Use of coarse-grained models: 

– Identify the role of structure   

 of the network in its dynamics 

 
Metabolic network (from http://www.di.unipi.it/~braccia/ToolCode/) 

Internet map Social network  (Facebook) 

Metabolic network 



Princeton University 

u 
(Coarse) 

Equation-free (EF) approach 

• Coarse time-stepper – black box code, substitute for macroscopic eqns.  

 Can be used in coarse projective integration (CPI), bifurcation etc. 

• Choices for good coarse variables: Heuristic? 
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Coarse projective integration (CPI) 

Reference:  Kevrekidis, I. G., C. W. Gear, et al. (2004). "Equation-free: The computer-aided analysis of complex 

multiscale systems." Aiche Journal 50(7): 1346-1355. 

Detailed microscopic equations  

or rules of evolution 

e.g.  Molecular dynamics 

Macroscopic equations 

e.g. Navier-Stokes 

e.g.,  positions and 

velocities of atoms 

e.g., density and  

velocity profiles 
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Problems where variables associated with nodes on a STATIC 

network evolve based on the specified network structure 

 

Goal: Identify coarse variables to capture the effect of FEATURES 

of the network on features of the solutions 

 

Illustrative example: Network of coupled oscillators  

(Kuramoto model) 

 

 

Dynamics on networks 

Reference:  Kuramoto, Y., Chemical oscillations, waves, and turbulence, Berlin ; New York: Springer-Verlag, 1984. 
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Phase oscillators (synchronization) 

• Phases, θi of oscillators 

• Het. frequencies, ωi 
 

 

Kuramoto model1 on a network: 

 

 
A – Adjacency matrix 

1- Y. Kuramoto, Chemical oscillations, waves, and 

turbulence, Berlin ; New York: Springer-Verlag, 1984. 

5 communities with 10 members each 

Heterogeneous communities 

Watts-Strogatz model 

Varying average degrees 

Varying rewiring probabilities 

Leaders connected by a complete 

network 

• K is the coupling strength  

• Networks constructed to 
facilitate separation of 
timescales 

Sample 5 x 10 network 

Phys. Rev. E, 84, 036708 (2011) 



Princeton University 

Dynamics at different coupling strengths 
500 oscillators; 10 x 50 network; w ~ N(0,1/15) 

K = 0.1 
K = 0.5 
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Coupling strength, K 

Evolution of order parameter at unstable (K=0.1) and stable (K=0.5) regimes 

Measure of synchronization 

Animation of oscillators 

that NEVER completely 

synchronize 

Animation of oscillators 

that synchronize 
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Basis functions for solutions on networks 
 

 Our fine variables are functions on a network: phase angles, θ  

 Functions in physical space are usually approximated using Fourier modes  

  (sines and cosines – eigenfunctions of the Laplacian in space) 

 By analogy, we examine the diffusion operator on a network,  

  the Graph Laplacian (L)*. 

– We use a FEW eigenvectors (vj) of this matrix (L) as the basis vectors#. 

 

so that we reduce the number of ODEs from n to k. 

 

From n ODEs 

to k ODEs (k<<n) 

Projecting the phase angles 

onto the basis vectors 

The coefficients are z
j 

*Reference: Nadler, B., Lafon, S., Coifman, R. R. and Kevrekidis, I. G., Diffusion maps, spectral clustering and reaction 

coordinates of dynamical systems, Applied and Computational Harmonic Analysis, 21, 113 - 127 (2006) 

#Reference: McGraw, P. N. & Menzinger, M., Analysis of nonlinear synchronization dynamics of oscillator networks by Laplacian 

spectral methods, Phys Rev E Stat Nonlin Soft Matter Phys, 75, 027104 (2007) 
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Graph Laplacian Eigenbasis 

First 10 

eigenvalues  

are well separated  

from the rest 

• Thus, the first 10 Laplacian eigenvectors are the required  

  basis vectors to project the phase angles of the oscillators! 

Community 

structure 

– Let i,j be the indices of nodes of a network and di be the degree of node i. 

– Definition of a graph Laplacian (L) is given below: 

Network: 10 communities x 50 members each 

Submitted to PRE; arXiv:1105.4144 
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Coarse-graining 

Complex phase (sine and cosine of phase angles) 

Laplacian eigenbasis, {v
j
} 

Coarse variables, z
j
  

• A minor technical issue: Phase angles lie on a circular manifold, 

while the values of phase angles are represented on a linear scale 

(0 and 2π represent the same angle). 

• Hence, sine and cosine of phase angles are used for representation 

instead of the angles themselves. 

• For K=0.5, steady state is reached at t=60 , 
but partial synchronization inside 
communities is achieved before t=3 itself. 

• Thus, representation using the lower-
dimensional basis is a good approximation 
at all times 

Partial  

Synch. 
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Coarse graining results 

Oscillator number 
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K = 0.1 K = 0.5 

Coarse projective integration 

Heal 100; Evaluate 25; Jump 25 

Coarse projective integration 

Heal 20; Evaluate 5; Jump 5 

Coarse fixed point 

Coarse limit cycle 
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Time Time 

Blue – From direct simulations; Red – From coarse model 

500 Phases  10 Projection coefficients;  

50 % Simulation, 50% Projection 
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Newton-GMRES 
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Problems where network structure/topology evolves 
according to microscopic rules 

 

Goal: Identify coarse variables that capture the essential 
structure/topology of the networks evolving over time 

 

  
 

Dynamics of networks 
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Selecting coarse variables 

• Coarse variables selection  

– problem dependent        

– usually combinations of graph properties     

     and they are chosen heuristically. 
 

• Can we automate this coarse variable selection step?  
 

• Assume we obtain a family of graphs by simulating the 

dynamical model. 

• Is it possible to automatically find potential coarse variables 

(minimum crucial information) for representing the 

dynamical process at the macroscopic level? 

 

• Need to use data mining techniques (like DMAPs). 
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Pi - Set of data points – say vectors 
Dij  - distance/similarity metric – like Euclidean distance   
 
From the matrix D = {dij}, we form  
W = {w(dij)}  - non-linear transformation of D 
w(d) is a non-negative function, w(0) = 1,  
and w(d) decreases as d increases such as 
 

  w(d) = exp(-(d/ε)2) 
 

Each row of W is scaled by its row sum to get a Markov matrix K. 

Diffusion maps 
 

(non linear dimensionality reduction technique) 

(ε – a typical neighborhood distance) 

Reference: Nadler, B., Lafon, S., Coifman, R. R. and Kevrekidis, I. G., Diffusion maps, spectral clustering and reaction coordinates of dynamical systems, Applied and 

Computational Harmonic Analysis, 21, 113 - 127 (2006). 



Princeton University 

Diffusion maps (Intuition) 

 
K is a Markov matrix. 
 
Defines: Random walk process 
 

States – Data points 
 

Transition probabilities – proportional to “closeness” 
    between data points. 

Properties of K: 
1. Largest eigenvalue is 1. (Trivial eigenvector) 
2. Next few largest eigenvalues and their vectors 
                         determine the structure of the data. 
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EXAMPLE 
 

2000 uniformly random points on a rectangle wrapped onto ¾ of a 
cylinder. 
   ε = max

i
 min

k 
d

ik  
  (max nearest neighbor).

 

Diffusion map example 

Although there are three coordinates for every point, 
we know that our data really lives on a two-dimensional surface! 
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If we run PCA: 
 

3 important eigenvalues with their eigenvectors 
corresponding to 

Cartesian coordinates: x, y and z. 
 
 

If we run DMAPs: 
(we expect) 

2 principal directions: 
axial direction  

AND 
direction along the  

        curved surface of the cylinder.  

Diffusion map example 
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Components of second eigenvector versus angle around cylinder 
 - roughly parameterizes that coordinate 

Diffusion map example 
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Components of second eigenvector versus components of third eigenvector 
- they show a dependence 

(third eigenvector is essentially in the same direction as the previous one) 

Diffusion map example 
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Components of second eigenvector versus components of fourth eigenvector 
- they are not dependent 

fourth eigenvector parameterizes another direction 

Diffusion map example 
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These are two sets of points colored by  

the size of the eigenvector entry for each point.   

 

  

 

Colored by second eigenvector               Colored by fourth eigenvector 

Diffusion map example 
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Extension to graph data 

• Many data mining schemes (including DMAP) require 

definition of  a similarity metric in the space of data points. 

 

• However, defining a similarity metric is not trivial due to 

the problem of isomorphism. 

 

• Challenge: Finding good ways to quantify the closeness 

(similarity) between pairs of graphs. 
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Two Options for similarity metrics 

• Subgraph approach 

– Structural information 

– Choose a few representative subgraphs/motifs                  

(for e.g. connected subgraphs of size less than 5) and 

compare densities (frequency of occurrence)  
 

• Random walk approach 1 

– Consider random walks with a finite stopping probability 

on the nodes on both graphs 

– Compare the number of k-length random walks 

– This can be evaluated efficiently using the spectral 

decomposition of the graphs.1 

 1 Ref: S. V. N. Vishwanathan, K. M. Borgwardt, I. Risi Kondor, and N. N. Schraudolph. Graph Kernels. ArXiv e-prints, July 2008.2 
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Diffusion maps example 

• Example: Consider a sequence of Erdős–Rényi graphs with 

increasing edge probability, p. 

Graphs are arranged in the order of increasing p 

Graph # Graph # 

Graph # 

Graph # 

Graph # Graph # 

Graph # Graph # Graph # 

Densities 

of 

connected  

subgraphs1 

of size <= 4 

1 – Shown in insets 
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DMAP results: Subgraph approach 

1:1 with p 

Graph # Graph # 

Graph # Graph # 

Other eigenvectors are just  

functions of eigenvector 2. 

 No new direction! 

Graphs are arranged in the order of increasing p 
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DMAP results: Random walk approach 

1:1 with p 

Graph # Graph # 

Graph # Graph # 

Graphs are arranged in the order of increasing p 

Results similar to  

those for the  

previous approach 

Note: Signs of eigenvectors  

are arbitrary. 



Princeton University 

2 parameter family (Chung-Lu based) 
 

 Weights for each node, wi = Np(i/N)r, where i=1,2,… N 

 Probability of existence of edge = min(wiwj/Σwk , 1) 

Degree distributions 

are plotted  

on the right. 
 

X- Axis: Degree 

Y-Axis: Probability 

Increasing r 
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Approximately: 

 p – Density of edges 
 

 r – Measure of skewness 

 

 

p = 1 

r = 0 
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DMAP results: Subgraph approach 

p p 

p p 

r 

r r 

r 

Colors are based on magnitude of eigenvectors 
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DMAP results: Subgraph approach 

Eigenvector 4 is 

clearly  

a function of 

eigenvectors  

2 and 3. 
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DMAP results: Random walk approach 

p p 

p p 

r 

r r 

r 

Colors are based on magnitude of eigenvectors 
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Quick recap 

1. Create graphs using a 2D model, CL(p,r). 

2. Forget the principal parameters, p and r. 

3. Apply Diffusion MAPs. 

4. Diffusion Map finds principal coordinates. 

5. Check if we recover p and r! 
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The two 2-D manifolds 

Colored  

by ‘p’ 

Colored  

by ‘r’ 

Subgraph method Random walk method 

p p 

r 
r 
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Conclusions 

• Dynamics “on” networks 

– Coarse graining using observed features of solutions on networks 

– Specific example: Synchronization of networked oscillators 

  The low-dimensional network structure imposes on the structure of 

solutions (oscillator phases) on the network. This structure is 

captured by eigenvectors of the graph Laplacian defined on the 

network 

• Dynamics “of” networks 

– Data mining to find good coarse variables. 

– Defining similarity metrics between pairs of graphs. 

• “Subgraph method” and “random walk method”  

  Both approaches require tuning  

           in terms of assigning weights. 

    However, the random walk approach scales better   

          in terms of computational effort.  
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Thank you! 
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K = 0.5 

Effect of oscillator heterogeneity 

 The portion of the phase vector NOT captured by the eigenbasis  

 (i.e., the excess over the projection or the residual)  

 is plotted against the oscillator frequencies. 

 

A correlation (c) develops quickly between  

this excess phase and the intrinsic oscillator frequency. 

(Notice the red points – they belong to oscillators from one specific community) 
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K = 0.1 
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Effect of oscillator heterogeneity 
 The correlation slope approaches its steady state value  

much faster than the time to reach the system steady state. 
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Effect of oscillator heterogeneity 

The steady state value of correlation slope is observed to be 

inversely proportional to the coupling strength and  

independent of the variance in the intrinsic oscillator 

frequencies. 

z = R.V. distributed according to Normal(0,1) 
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An improved coarse model 

Additional coarse variable, c  

S
lo

p
e 

=
 c

 

Oscillator frequencies 

Projection coefficients, z
j   

 

Projection of the “corrected” phase angles onto the graph Laplacian eigenbasis 
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Watts-Strogatz model 
We start with a ring of n vertices, each connected to its k nearest neighbours by undirected edges. (n = 20 and k = 4 

here). We choose a vertex and the edge that connects it to its nearest neighbour in a clockwise sense. With 

probability p, we reconnect this edge to a vertex chosen uniformly at random over the entire ring, with duplicate 

edges forbidden; otherwise we leave the edge in place. We repeat this process by moving clockwise around the 

ring, considering each vertex in turn until one lap is completed. Next, we consider the edges that connect vertices 

to their second-nearest neighbours clockwise and rewire as before. As there are nk/2 edges in the entire graph, the 

rewiring process stops after k/2 laps. 

Courtesy: Watts, D. J. and Strogatz, S. H., Collective dynamics of 'small-world' networks, Nature, 393, 440-442 (1998) 
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Coarse fixed point performance 

Coarse variables K=1 K=0.5 K=0.1 

Case I 0.9974 0.9975 0.9976 

Case II 0.9983 0.9983 0.9983 

Case III 0.9994 0.9994 0.9995 

Case I : Average phase for each community 

 

Case II: Laplacian eigenbasis (Structural) 

 

Case III: Laplacian eigenbasis and oscillator frequency correction 

Case III Case II 

Information added by including more coarse variables is meaningful! 



Princeton University 

Oscillator frequencies from a Rayleigh distribution 

• The oscillator frequencies were chosen by sampling 500 

numbers from a Rayleigh distribution with parameter 0.1 and 

then subtracting the mean from these 500 samples.  

• Coarse projective integration results similar to the case when 

frequencies were sampled from a Normal distribution 

 Blue – From direct simulations; Red – From coarse model 
500 Phases  11 Coarse variables; 50 % Simulation, 50% Projection 
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Effect of oscillator heterogeneity 

• The inverse proportionality of the steady correlation slope 

with coupling strength holds for this case also. 

 (intrinsic frequencies sampled from Rayleigh distribution) 
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Linearized Jacobian of the heterogeneous problem 

• Consider the matrix I, the inner product matrix of dimension 10 x 10, whose 

ijth element is wi.vj (dot product). 

• The 10 eigenvectors of this matrix are listed here: 0.9993, 0.9993, 0.9993, 

0.9993, 0.9995, 0.9992, 0.9992, 0.9995, 0.9995, 0.9991.  

• Since all the 10 eigenvalues are close to 1, the space spanned by {wi; 

i=1,2,…10} and {vi; i=1,2,…10} are similar. 

• Hence, one can use the first 10 graph Laplacian eigenvectors as basis vectors 

even for heterogeneous problems when the heterogeneity is small. 

 

Graph Laplacian Linearized Jacobian Matrix 

Eigenvalues 

Eigenvectors {wi}
 {vi}

 

First 10 

eigenvalues  

are well separated  

from the rest 

First 10 

eigenvalues  

are well separated  

from the rest 


