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Abstract It is a well known fact that the behavior of simulated annealing algorithms is tightly related to the hierarchical
decomposition of their configuration spaces in cycles. We here apply the iterative routine invented by Wentzell and Freidlin
[1] to construct the cycle decomposition of small RNA configuration spaces, for instance, hairpins. We furthermore explore
the relationships of cycles and the barrier tree of the energy landscape.

RNA Configuration Space

Given an RNA sequence R = R1R2 . . . Rn, where Ri ∈ {A,U,G,C}, a secondary structure is a graph on n vertices with three
properties:

• Ri and Ri+1 are connected for any 1 ≤ i ≤ n− 1;

• each vertex Ri can be paired to at most one other vertex Rj (exclude the arcs exist in primary structure) if RiRj ∈ A =
{AU,UA,GC,CG,GU,UG};

• if both Ri < Rj and Rh < Rℓ are paired, then i < h < j implies that i < ℓ < j.

Given an RNA sequence, the configuration space (Landscape) can be viewed as a directed graph G(V,E). In which, the vertex
set V is formed by all the possible secondary structures with respect to the RNA sequence and we say i → j ∈ E if j can be
obtained from i by either adding or removing an arc in i. Let F (i) denote the free energy of the secondary structure i. The
weight of a directed edge i → j, denoted by w(i → j), is defined by

w(i → j) =

{

0 if F (i) > F (j);

F (j)− F (i) otherwise.
(1)

Example: A toy configuration space for AACCCUU
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Exit Graph and Strongly Connected Component

Given a directed graph G = (V,E), the exit graph of G, denoted by H = (VH, EH), is a subgraph of G, such that VH = V and
EH = {i → j|C(i, j) = infi→k∈EC(i, k)}.

Example: Construction of exit graph
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A directed graph is called strongly connected if there is a path from each vertex in the graph to every other vertex. The strongly
connected components of a directed graph G are its maximal strongly connected subgraphs with respect to set inclusion.

Example: Graph with strongly connected components colored in different colors
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Tarjan-V: slight modification of Tarjan’s Algorithm

After the exit graph H = (VH, EH) of G is constructed, Tarjan’s algorithm can be used to search for the strongly connected
components in H with complexity O(|VH| + |EH|). But here, a slight modification is we have to distinguish the ”leaf” strong
connected component from the others.

Example: Difference between original and modified Tarjan’s algorithm
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Cycle decomposition Procedure

Given the RNA sequence, the cycle decomposition in cycles is realized in an iterative way:

• Initialize C0(V 0, E0) which is identified with the original RNA configuration space;

• Assume all the information of Ck(V k, Ek) has been derived. We construct Ck+1(V k+1, Ek+1) as follows. Firstly, we build
the exit graph of Ck and derive the components according to the Tarjan-V procedure. By contracting the vertices of Ck

within the same component, we obtain the vertex-set of Ck+1, i.e. V k+1. We say the Ck-vertices {vk1 , v
k
2 , . . . } contracted to

a single V k+1-vertex m are the son-structures of m, denoted by m ↓ vki .
To define Ek+1, given two V k+1-vertices p and q, p are directed to q if and only if there at least exist one pair of V k-vertices
v1 and v2 such that p ↓ v1, q ↓ v2 and v1 → v2 ∈ Ek. The weight of the directed edge p → q, denoted by wk+1(p → q) is
assigned by Eqn. (2).

wk+1(p → q) = inf{Hk+1
m (p) + wk(v1, v2)−Hk

e (v2)}. (2)

In which, Hs
e(v) and Hs

m(v) denote the so-called escape energy and mixing energy respectively given as follows:

Hs
e(v) = inf{ws(v → w)|v → w ∈ Es, v, w ∈ V s} (3)

Hs
m(v) = sup{Hs−1

e (w)|v ↓ w,w ∈ V s−1}. (4)

• The whole procedure terminates in case of |V k+1| = 1, iterates otherwise.

Cycle decomposition Procedure

Example: Towards Level-1 from Level-0 for AACCCUU
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Computational Result

Example: Barrier tree and cycle decomposition tree for sequ ence GGAAUAAUUCC
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abstract cycle

Remarks:

• In the worst case, the complexity of the cycle decomposition algorithm is O(|V |(|V | + |E|)). In which, O(|V | + |E|) is the
complexity of the (modified) Tarjan’s algorithm and the other factor, |V |, caused by (in the worst case) the number of
iterations, denoted by σ, need to run before the procedure is terminated. We remark here, the integer σ is a valuable
parameter that also reflects the topology of the landscape itself. For RNA configuration space, interestingly, we observe
that the bigger the size of the space, the smaller the ratio σ

|V | is.

• By construction, the mixing energy of the cycle (firstly) merging two local minima identified with their saddle height
obtained by the RNAbarrier[2] included in the Vienna package. I.e. the barrier tree can be viewed as a subtree of the
cycle decomposition tree. The RNAbarrier is based on the flooding-algorithm which need more effort in case of the
degenerate RNA landscape. Comparing with RNAbarrier, cycle decomposition by construction avoid the problem
may caused by multiple saddle points. Also, we note here the mixing energy is only one of the valuable parameters that
can be read from cycle decomposition procedure.
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