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Percolation is a pervaisive concept.



Percolation in living neural networks, Breskin et al., PRL 2006; 
Soriano et al., Development of input connections in neural cultures, PNAS 2008
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Networ
ks in which the form

ation of conn
ections

is gove
rned by a ra

ndom process
often underg

o a

percola
tion transiti

on, whe
rein around

a critical
point, t

he additio
n of a small n

umber
of

connec
tions ca

uses a
sizable

fraction
of the n

etwork
to sudden

ly beco
me link

ed togethe
r. Typic

ally

such tra
nsitions

are con
tinuous

, so tha
t the pe

rcentag
e of the

network
linked t

ogether
tends to

zero

right ab
ove the

transiti
on point. W

hether
percola

tion transiti
ons cou

ld be disc
ontinuo

us has
been

an open questio
n. Here

, we show that inc
orporat

ing a limited
amount

of choi
ce in the classic

Erdös-R
ényi ne

twork f
ormatio

n model
causes

its perc
olation

transiti
on to become

discont
inuous.

A
large system

is said
to undergo

a phase

transitio
n when one or

more of its p
rop-

erties ch
ange ab

ruptly a
fter a sl

ight cha
nge

in a con
trolling

variable
. Beside

s water
turning

into

ice or steam
, other

prototy
pical p

hase transitio
ns

are the spontan
eous emerge

nce of mag
netizati

on

and sup
ercondu

ctivity i
n metal

s, the ep
idemic

spread

of disea
se, and

the dram
atic cha

nge in
connect

ivity

of netw
orks an

d lattice
s know

n as pe
rcolatio

n. Per-

haps th
e most

fundam
ental ch

aracteri
stic of a

phase

transitio
n is its

order, i
.e., whe

ther the
macros

copic

quantity
it affects

change
s continu

ously or dis-

continu
ously a

t the tra
nsition.

Continu
ous (sm

ooth)

transitio
ns are c

alled se
cond-or

der and
include

many

magnet
ization

phenom
ena, wh

ereas d
iscontin

uous

(abrupt
) transit

ions are
called first-ord

er, a fa
miliar

exampl
e being

the disc
ontinuo

us drop
in entropy

when liquid water tu
rns into

solid ice at 0
°C.

We consi
der per

colatio
n phase t

ransitio
ns in

models
of rando

m network
formatio

n. In th
e classi

c

Erdös-R
ényi (E

R) mod
el (1), w

e start w
ith n iso-

lated ve
rtices (p

oints) a
nd add

edges (
connec

tions)

one by
one, ea

ch edge fo
rmed by pick

ing two ver
-

tices uniform
ly at random

and connect
ing them

(Fig. 1A
). At an

y given
moment, the

(conne
cted)

compon
ent of a

vertex v is the
set of v

ertices
that

can be reac
hed from v by traversi

ng edges.
Com-

ponents
merge u

nder ER
as if att

racted by gravita-

tion. Th
is is bec

ause ev
ery time

an edge
is added

, the

probabi
lity two

given c
ompone

nts will
be merg

ed is

proport
ional to

the number
of poss

ible edges b
e-

tween t
hemwhich,

in turn,
is equa

l to the
produc

t

of their
respect

ive size
s (num

ber of v
ertices)

.

One of
the mo

st studi
ed phenom

ena in
prob-

ability
theory

is the percola
tion transitio

n of ER

random
network

s, also k
nown a

s the em
ergence

of

a giant c
ompon

ent. W
hen rn edges

have been

added,
if r <

½, the
largest

compon
ent rem

ains

miniscu
le, its nu

mber o
f vertice

sC scaling
as logn

;

in contras
t, if r >

½, ther
e is a c

ompon
ent of s

ize

linear in
n. Spec

ifically,
C ≈ (4r − 2

)n for r
slightly

greater
than ½ and, th

us, the
fraction

of verti
ces

in the largest
compon

ent und
ergoes

a continu
ous

phase tr
ansition

at r =½
(Fig. 1C

). Such
continu

ity

has bee
n conside

red a basic
charact

eristic
of per-

colatio
n trans

itions,
occurri

ng in m
odels r

anging

from classic
percola

tion in the two-dim
ensiona

l

grid to r
andom

graphm
odels of

social n
etworks

(2).

Here, w
e show

that pe
rcolatio

n trans
itions i

n

random
networ

ks can
be disc

ontinuo
us. We dem-

onstrat
e this result

for models
similar

to ER,

thus also establis
hing that alt

ering a networ
k-

formation proces
s slightly

can affect
it dra-

matically
, chang

ing the
order o

f its pe
rcolatio

n

transiti
on. Co

ncretely
, we co

nsider
models

that,

like ER, sta
rt with

n isolated
vertices

and add

edges o
ne by one. Th

e differ
ence, a

s illust
rated

in Fig. 1B
, is tha

t to add a singl
e edge

we now

first pic
k two random

edges {
e1,e2}

, rather
than

one, ea
ch edge pi

cked exactly
as in ER and inde-

penden
tly of the

other. O
f these,

with no knowl-

edge of
future e

dge-pai
rs, we a

re to se
lect one

and

insert it
in the g

raph an
d discard

the othe
r. Clear

ly,

if we always
resort t

o random
ness for sele

cting

among
the two

edges,
we reco

ver the
ER model.

Whether
nonrand

om selectio
n rules ca

n delay (or

accelera
te) perc

olation
in such

models
, which

have

become
known

as Achliop
tas process

es, has
re-

ceived
much attentio

n in recent y
ears (3–

6).
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Fig. 1. Network
evolu-

tion. (A)
Under th

e Erdös-

Rényi (E
R) mode

l, in eac
h

step two
vertices

are cho-

sen at rando
m and con-

nected b
y an edg

e (shown

as the
dashed

line). In

this exa
mple, t

wo com-

ponents
of size 7

and 2

get mer
ged. (B)

In mod-

els with
choice,

two ran
-

dom edges {e1,e2}
are

picked
in each step yet

only on
e is add

ed to th
e

network
based on some selectio

n rule, w
hereas

the other i
s discard

ed.

Under t
he prod

uct rule
(PR), th

e edge
selected

is the o
ne min

imizing
the

product
of the s

izes of t
he com

ponents
it merg

es. In th
is exam

ple, e1
(with

product
2 × 7 = 14) wou

ld be chos
en and e2 disc

arded (becaus
e 4 × 4 =

16). In
contrast

, the ru
le selec

ting the edg
e minim

izing the sum
of the c

om-

ponent
sizes ins

tead of
the prod

uct wou
ld selec

t e2 rath
er than

e1. (C)
Typical

evolutio
n of C/n

for ER, B
F (a bou

nded siz
e rule w

ith K = 1), and
PR, show

n for

n = 512,000
.
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Is explosive percolation discontinuous?

Grid: Tricritical Point in (p,q)=(link density, dilution) diagram, Araujo et. al, PRL 2011

Grid: Suppression of largest cluster, Araujo & Hermann, PRL 2010

Bounded-size rules & cluster aggregation, D‘Souza & Mitzenmacher, PRL 2010

Powder Keg & multiple link models, Friedman & Landsberg, PRL 2009

True Grid: Ziff, PRL 2009

Scale-free networks: existence of tricritical point around 2.3 (degree exponent), 
Cho et al., PRL 2009 & Radicchi & Fortunato, PRL 2009.   >3 discontinuous
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future e
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Fig. 1. Network
evolu-

tion. (A)
Under th

e Erdös-

Rényi (E
R) mode

l, in eac
h

step two
vertices

are cho-

sen at rando
m and con-

nected b
y an edg

e (shown

as the
dashed

line). In

this exa
mple, t

wo com-

ponents
of size 7

and 2

get mer
ged. (B)

In mod-

els with
choice,

two ran
-

dom edges {e1,e2}
are

picked
in each step yet

only on
e is add

ed to th
e

network
based on some selectio

n rule, w
hereas

the other i
s discard

ed.

Under t
he prod

uct rule
(PR), th

e edge
selected

is the o
ne min

imizing
the

product
of the s

izes of t
he com

ponents
it merg

es. In th
is exam

ple, e1
(with

product
2 × 7 = 14) wou

ld be chos
en and e2 disc

arded (becaus
e 4 × 4 =

16). In
contrast

, the ru
le selec

ting the edg
e minim

izing the sum
of the c

om-

ponent
sizes ins

tead of
the prod

uct wou
ld selec

t e2 rath
er than

e1. (C)
Typical

evolutio
n of C/n

for ER, B
F (a bou

nded siz
e rule w

ith K = 1), and
PR, show

n for

n = 512,000
.
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Is explosive percolation continuous?

PRL 2011 (strong numerical evidence):
Grassberger et al. : Explosive percolation is continuous but with unusual finite-size 
behavior

PRL 2010 (hybrid numerical-analytical):
da Costa et al.: Explosive percolation is continuous

Nature Phys. 2011 (numerics & analytical microdynamical analysis):
Nagler et al.: Impact of single links in competitive percolation
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Nagler, Levina & Timme, Nat. Phys. (2011) 
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Is explosive percolation continuous or discontinuous?

no rigorous proof
but important question



main conclusion of rigorous proof:

„any rule based on picking a fixed number of 
random vertices gives a continuous transition“

Riordan & Warnke, Science 333, 322 (2011):
„Explosive percolation is continuous“ 
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1011

Nagler, Tiessen & Gutch, to appear in Phys. Rev. X (2012) with L<X<Z



1. Instability of giants: 
For any rule based on picking n vertices at random,
there cannot be more than n-1 giant components

 on any finite (time) interval

Proof idea

Nagler, Tiessen & Gutch, to appear in Phys. Rev. X (2012) with L<X<Z

2. Homophily of mergers:
The largest component cannot join with components

 smaller than 50% of its own size

3. Impossibility of overtaking of O(N) components:
Giants cannot be overtaken (whp)
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 Continuous percolation by discontinuities

No power law divergence <-> critical phenomena

Coexistence of local continuity and global discontinuities

Please take home our analytical result:
Explosive percolation is not always continuous

Conclusions

Nagler, Tiessen & Gutch, to appear in Phys. Rev. X (2012) with L<X<Z



Part II:
Complete Reconstruction of

 Correlation Networks

Jan Nagler

in collaboration with
 Magdalena Kersting, Annette Witt & Theo Geisel

MPI for Dynamics + Self-Organization, SPICE group, Göttingen



What do we do?

Generalization of the 
Crosscorrelation Theorem

 to arbitrarily shaped networks
of stochastic processes



Object:
 Network of N wide-sense stationary ergodic processes

Aim: 
Reconstruction of the entire correlation structure -
given a subnetwork formed by correlation functions
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When is the system under- or overdetermined?
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Which topologies are reconstructable?
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b)
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Why do we care?



Wiener Khinchine:
Fourier(ACF)=Power Spectral Density

F(ACF (τ)) = X(ω)X(ω)∗ = |X(ω)|2 = S(ω)

Crosscorrelation Theorem:
Fourier(CCF)=Product of Fourier-transformed signals

F(CCF (τ)) = X(ω)Y (ω)∗



Assumptions

ACF+CCF:
 smooth, non-zero

stochastic processes:
wide-sense stationary & ergodic, unit variance

network:
connected



3-network: relation for CCF in Fourier space

Pjk(ω) =
Pjl(ω)Plk(ω)

Pll(ω)
, j, k, l ∈ {1, 2, 3}

Crosscorrelation Theorem:
Fourier(CCF)=Product of Fourier-transformed signals

F(CCF (τ)) = X(ω)Y (ω)∗
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Main Observation (given assumptions)

Except for certain loop structures,
either N crosscorrelation functions (CCF),

or N-1 CCF + 1 single autocorrelation function (ACF)
determine all missing ACF + CCF

=> for observational data:
1 additional single signal x(t)

determines all other N-1 signals

Kersting, Witt, Geisel, Nagler (2012)



-6 -3 0 3 6

-0,4

-0,2

0,0

0,2

 

 
C

C
F,

 ρ
23

Lag, τ

Lag, τ

-0,02

0,00

0,02

-5 0 5

ρ
23

- ρ
23

re
co

ns
t.

Numerics vs analytics: OK



Conclusions

Kersting, Witt, Geisel, Nagler (2012)



Thanks!
Feedback welcome!            
jan@nld.ds.mpg.de
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