## Collaboration in social networks: Incentives and topology

#### Luca Dall'Asta,

Politecnico Torino

#### Matteo Marsili

Abdus Salam ICTP, Trieste

#### and Paolo Pin

Dept. Economics, Universita' di Siena

#### Luca Dall'Asta, Matteo Marsili, and Paolo Pin Collaboration in social networks

PNAS 2012

## The puzzle of cooperation

Why do we see so much cooperation around?

Failed states, why do societies collapse?

Will Euro collapse if Greece drops out?







## Much has been written on the emergence of cooperation on networks

- Repeated games, reputation and trust (Myerson 1991)
- Endogenous network games (Vega-Redondo 2007, Jackson 2008, Goyal 2009)
- Repeated games on evolving networks (Ellison 1994, Haag Lagunoff 2006, Vega-Redondo 2006).
- Cooperation in evolutionary games without mutation (Boyd 1999, Hofbauer Sigmund 2003, Poncela et al 2010)
- Repeated games and punishment on specific structures (Eshel et al 1998, Haag Lagunoff 2007, Fainmesser 2009, Karlan et al 2009)
- Focus here: social network = pattern of repeated interactions repeated interaction = forward looking behavior collaboration = incentives + credibility of threats How difficult is this in large games on complex structures?

## Outline

- The prisoners dilemma
- Collaboration in repeated interaction: 2 players
  - Collaboration is supported by credible threats of punishment
- Collaboration in N players games on a network: Local contribution game
  - Conditional collaboration has to be reciprocal and limited to a subset of neighbors
- How does collaboration depend on incentives and topology?
  - Collaborative equilibria are subgraphs of the social network
- The complexity of collaboration:
  - Counting collaborative equilibria with message passing
- Conclusions

# Defection is the only possible outcome in one shot prisoner's dilemma



N players on graph G=(N,L) Each player either cooperates (C) or defects (D) with all neighbors

Payoff: 1 for each neighbor that collaborates minus X<sub>i</sub> (=cost of collaboration)

All D ( $s_i=0$ ) is the only Nash equilibrium



 $u_i(s_i, s_{-i}) = -X_i s_i + \sum s_j$ 

 $s_i = 0, 1$ 

 $j \in \partial_i$ 

# N=2: When the game is played many times cooperation is possible, among other things

Strategies become plans of actions, decided at time 0, to optimize future payoffs

## $U_i = (1 - d) \sum_{t=0}^{\infty} d^t u_i \left( s_i^{(t)}, s_{-i}^{(t)} \right), \quad d \in [0, 1]$

- Cooperation under trigger strategies T: T= {start with C;
  - C as long as opponent plays C,
  - D forever, if opponent plays D}

If d is large enough, (T, T) is a Nash equilibrium

- Folk's theorem: many other outcomes can be supported as a Nash equilibrium
- I d=1 in what follows



## But threats should be credible

#### **N=3**

- Is it credible that 1 and 2 punish 3?
- Not if  $u_1(C,C,D) > u_1(D,D,D)$  !
- Players need to condition C only to a subset of their neighbors
- If i conditions on j, j should condition on i
- Emergent heterogeneity





## On trees, Nash equilibria are subtrees

- Given an undirected tree G=(N,L)  $k_i = |\partial_i| = degree of node i$   $m_i = smallest integer larger than X_i$  $c_i = number of collaborators in <math>\partial_i$
- Any collection of disjoint undirected subgraphs  $\Gamma = (V, \Lambda)$  of G is a collaborative equilibrium where all  $i \in V$  cooperate conditionally to neighbors in  $\Gamma$  and  $|\partial_i \cap \Lambda| = m_i$
- Incentives:  $i \in V$   $c_i X_i \ge c_i m_i \Rightarrow m_i \ge X_i$
- Reciprocity: i,j∈V, if j does not punish i
  ⇒ i should not punish j when j defects
- Credibility:  $i,k \in V, (i,k) \in \Lambda$  if k defects  $c_i - 1 - X_i < c_i - m_i \Rightarrow m_i < X_i + 1$

#### $u_i(s_i, s_{-i}) = c_i - X_i s_i$

![](_page_8_Figure_7.jpeg)

# On generic graphs cascades of defection make things more complex

- Indirect defections: As a result of the defection of j∈∂<sub>i</sub> other neighbors k∈∂<sub>i</sub> may also defect because of loops
- A collection of disjoint undirected subgraphs Γ=(V,Λ) of G is a collaborative equilibrium where all i∈V cooperate conditionally to neighbors in Γ and |∂<sub>i</sub> ∩ Λ|=m<sub>i</sub> provided
  i) the indirect effects caused by the defection of all j∈∂<sub>i</sub> ∩ Λ have the same consequence of the defection of i itself.
- i) holds provided removing i from V does not disconnect Γ
  - Works on trees, for dimers and loops, for the complete graph
  - Likely works on random graphs and on dense graphs

![](_page_9_Figure_6.jpeg)

counter example

# Nash equilibria on random graphs

![](_page_11_Figure_0.jpeg)

#### Do NE exist? How many? How hard is it to find them?

Circuits: Marinari, Monasson, Semerjian 2006 q-regular subgraphs: Pretti, Weigt 2006

## Counting NE by message passing

#### • $x_{i \rightarrow j} = 1$ if i conditions C on j, $x_{i \rightarrow j} = 0$ otherwise

- there are m<sub>i</sub>-1 k  $\in \partial_i/j$  with  $x_{k \rightarrow i}=1 \Rightarrow x_{i \rightarrow j}=1$
- $m_i k \in \partial_i / j$  with  $x_{k \rightarrow i} = 1 \Rightarrow x_{i \rightarrow j} = 0$
- no  $k \in \partial_i/j$  with  $x_{k \rightarrow i} = 1 \implies x_{i \rightarrow j} = 0$

#### Marginals:

### $\mu_{i \to j} = P\{i \in V, i \text{ punishes } j\}$

Circuits: Marinari, Monasson, Semerjian 2006 q-regular subgraphs: Pretti, Weigt 2006

### Message passing equations:

$$\begin{split} \mu_{i \to j} &= \frac{e^{-\epsilon} Z_{N_i \setminus j \to i}^{m_i - 1}}{Z_{N_i \setminus j \to i}^0 + e^{-\epsilon} Z_{N_i \setminus j \to i}^{m_i - 1} + e^{-\epsilon} Z_{N_i \setminus j \to i}^{m_i}} \\ Z_{V \to i}^q &= \sum_{U \subseteq V} \mathbb{I}_{|U| = q} \prod_{j \in U} \mu_{j \to i} \prod_{k \in V/U} (1 - \mu_{k \to i}) \\ P\{i \in C\} &= \frac{e^{-\epsilon} Z_{N_i \to i}^{\gamma_i}}{Z_{N_i \to i}^0 + e^{-\epsilon} Z_{N_i \to i}^{\gamma_i}} \\ P\{i \in \Gamma_j\} &= \frac{\mu_{i \to j} \mu_{j \to i}}{\mu_{i \to j} \mu_{j \to i} + (1 - \mu_{i \to j})(1 - \mu_{j \to i})}. \end{split}$$

• Fixed point  $\Rightarrow$  number of subgraphs (entropy)

Circuits: Marinari, Monasson, Semerjian 2006 q-regular subgraphs: Pretti, Weigt 2006

k

## Regular random graphs: dimers (mi=1)

#### Exponentially many NE's

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_3.jpeg)

•  $\rho$  = fraction of cooperators s( $\rho$ ) = log(number of NE| $\rho$ )/N

#### NE $\exists \forall \rho \in [0,1]$

### Regular random graphs: circuits (mi=2)

Exponentially many NE's

![](_page_15_Figure_2.jpeg)

![](_page_15_Figure_3.jpeg)

•  $\rho$  = fraction of cooperators s( $\rho$ ) = log(number of NE| $\rho$ )/N

NE  $\exists \forall \rho \in [0,1]$ 

(Marinari, Monasson, Semerjian 2006)

## Regular random graphs: m<sub>i</sub>=3

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

- Exponentially many NE's
- NE  $\nexists \forall \rho < \rho_c$
- NE are non-local and fragile

![](_page_16_Picture_6.jpeg)

## Heterogeneous random graphs

![](_page_17_Figure_1.jpeg)

Scale free: hubs collaborate more likely than spokes

#### Erdös-Rényi: E[k]=4

#### $X_i = x k_i$

![](_page_17_Figure_5.jpeg)

# Assortative networks are more conducive to collaboration

![](_page_18_Figure_1.jpeg)

Scale free network  $P(k) \sim k^{-2.5}$  $X_i = xk_i, x=0.1$ 

## Conclusions: Theory

Collaboration in repeated prisoners dilemma as a graph theoretical problem:

- 1- make sure enough neighbors collaborate
- 2- not credible to monitor more neighbors
- 3- checks should be reciprocal
- If incentives to defect (x)
  - is small then cooperation is easy
  - is large

i) collaboration requires critical mass

- ii) Nash equilibria are fragile
- iii) effect of defection are non-local
- Topology: Collaboration is easier on
  i) trees

ii) densely connected graphs

Collaboration is harder on networks which can be disconnected (e.g. quasi 1d graphs)

## Conclusion: Empirical evidence

- Individuals condition collaboration on that of others (Fishbacher, Gachter, Fehr 2001)
- Weak and strong ties (Granovetter, 1973) Individuals do not condition collaboration to all contacts, not even to all those who collaborate, only to a subset of them
- Critical mass theory of collective action (Oliver, Marwell 1993) If the cost of collaboration is large enough, collaborative equilibria only arise if a finite fraction of agents participate
- Collaboration easier in dense networks (Kirchkamp, Nagel 2007; Cassar 2007)
- More connected agents are more likely to collaborate (Cassar 2007)
- Collaboration is not contagious (Suri, Watts 2011)
  The more of my contacts are engaged in conditional collaboration with others, the less likely I am to find neighbors with whom to collaborate conditionally