Collaboration in social networks: Incentives and topology

Luca Dall'Asta,

Politecnico Torino

Matteo Marsili

Abdus Salam ICTP, Trieste

and Paolo Pin

Dept. Economics, Universita' di Siena

Luca Dall'Asta, Matteo Marsili, and Paolo Pin **Collaboration in social networks**

PNAS 2012

The puzzle of cooperation

Why do we see so much cooperation around?

Failed states, why do societies collapse? \mathbf{a}

Will Euro collapse if Greece drops out?

Much has been written on the emergence of cooperation on networks

- Repeated games, reputation and trust (Myerson 1991) \blacksquare
- Endogenous network games (Vega-Redondo 2007, Jackson 2008, Goyal 2009)
- Repeated games on evolving networks (Ellison 1994, Haag Lagunoff \blacksquare 2006, Vega-Redondo 2006).
- Cooperation in evolutionary games without mutation (Boyd 1999, \bullet Hofbauer Sigmund 2003, Poncela et al 2010)
- Repeated games and punishment on specific structures (Eshel et al \mathbf{H} 1998, Haag Lagunoff 2007, Fainmesser 2009, Karlan et al 2009)
- Focus here: social network $=$ pattern of repeated interactions E. repeated interaction = forward looking behavior collaboration $=$ incentives $+$ credibility of threats How difficult is this in large games on complex structures?

Outline

- The prisoners dilemma
- Collaboration in repeated interaction: 2 players ×
	- Collaboration is supported by credible threats of punishment \blacksquare
- Collaboration in N players games on a network: Local contribution game \bullet
	- Conditional collaboration has to be reciprocal and limited to a subset of neighbors \bullet
- How does collaboration depend on incentives and topology? $\hat{\mathbf{z}}$
	- Collaborative equilibria are subgraphs of the social network
- The complexity of collaboration: \blacksquare
	- Counting collaborative equilibria with message passing ×
- **Conclusions** \blacksquare

Defection is the only possible outcome in one shot prisoner's dilemma

Each player either cooperates (C) or defects (D) with all neighbors

Payoff: 1 for each neighbor that collaborates minus X_i (=cost of collaboration)

All D (s_i=0) is the only Nash equilibrium $s_i = 0, 1$

 $u_i(s_i,s_{-i}) = -X_is_i + \sum$

 $j \in \partial_i$

sj

N=2: When the game is played many times cooperation is possible, among other things

Strategies become plans of actions, decided at time 0, to optimize future payoffs \blacksquare

$U_i = (1-d)$ ⇤ ∞ *t*=0 $d^t u_i$ $\overline{1}$ *s* $\binom{(t)}{i}, s\binom{(t)}{i}$ ⇥ $d \in [0, 1]$

- Cooperation under trigger strategies T: \blacksquare $T = \{$ start with C;
	- C as long as opponent plays C,
	- D forever, if opponent plays D}

If d is large enough, (T, T) is a Nash equilibrium

- Folk's theorem: many other outcomes can be \blacksquare supported as a Nash equilibrium
- ! d=1 in what follows \mathbf{r}

But threats should be credible

$N=3$

- Is it credible that 1 and 2 punish 3?
- \bullet Not if $u_1(C, C, D) > u_1(D, D, D)$!
- Players need to condition C only to a subset of their neighbors
- **If i conditions on j, j should condition on i**
- Emergent heterogeneity

On trees, Nash equilibria are subtrees

- Given an undirected tree G=(N,L) $k_i = |\partial_i|$ = degree of node i m_i = smallest integer larger than X_i c_i = number of collaborators in ∂_i
- Any collection of disjoint undirected subgraphs Γ=(V,Λ) of G is a collaborative equilibrium where all i∈V cooperate conditionally to neighbors in Γ and |∂i ∩ Λ|=mi
- Incentives: $i \in V$ c_i X_i \geq c_i-m_i \Rightarrow m_i \geq X_i \blacksquare
- Reciprocity: i,j∈V, if j does not punish i \blacksquare \Rightarrow i should not punish j when j defects
- Credibility: \blacksquare i,k∈V, (i,k)∈ Λ if k defects c_i - 1 - X_i < c_i - m_i \Rightarrow m_i < X_i +1

$u_i(s_i, s_{-i}) = c_i - X_i s_i$

On generic graphs cascades of defection make things more complex

- Indirect defections: As a result of the defection of j∈∂i other neighbors K k∈∂i may also defect because of loops
- A collection of disjoint undirected subgraphs $\Gamma = (V, \Lambda)$ of G is a \blacksquare collaborative equilibrium where all i∈V cooperate conditionally to neighbors in Γ and $|\partial_i \cap \Lambda| = m_i$ provided i) the indirect effects caused by the defection of all j∈ $\partial_i \cap \Lambda$ have the same consequence of the defection of i itself.
- \bullet i) holds provided removing i from V does not disconnect Γ
	- Works on trees, for dimers and loops, ig. for the complete graph
	- Likely works on random graphs and on \blacksquare dense graphs

Fig. s1 A counter example

Nash equilibria on random graphs

Do NE exist? How many? How hard is it to find them?

Circuits: Marinari, Monasson, Semerjian 2006 q-regular subgraphs: Pretti, Weigt 2006

Counting NE by message passing

i

j

■ $x_{i\rightarrow i} = 1$ if i conditions C on j, $x_{i\rightarrow i} = 0$ otherwise

- there are m_i-1 k \in ∂i/j with $x_{k\rightarrow i}=1$ \Rightarrow $x_{i\rightarrow j}=1$
- $-m_i$ k $\in \partial_i$ with $x_{k\rightarrow i}=1 \Rightarrow x_{i\rightarrow j}=0$
- $-$ no $k \in \partial_i / j$ with $x_{k\rightarrow i} = 1 \Rightarrow x_{i\rightarrow j} = 0$

***** Marginals:

$\mu_{i \to j} = P\{i \in V, i \text{ punishes } j\}$

Circuits: Marinari, Monasson, Semerjian 2006 q-regular subgraphs: Pretti, Weigt 2006

Message passing equations:

$$
\mu_{i \to j} = \frac{e^{-\epsilon} Z_{N_i \backslash j \to i}^{m_i - 1}}{Z_{N_i \backslash j \to i}^0 + e^{-\epsilon} Z_{N_i \backslash j \to i}^{m_i - 1} + e^{-\epsilon} Z_{N_i \backslash j \to i}^{m_i}} \\
Z_{V \to i}^q = \sum_{U \subseteq V} \mathbb{I}_{|U| = q} \prod_{j \in U} \mu_{j \to i} \prod_{k \in V/U} (1 - \mu_{k \to i}) \\
P\{i \in C\} = \frac{e^{-\epsilon} Z_{N_i \to i}^{\gamma_i}}{Z_{N_i \to i}^0 + e^{-\epsilon} Z_{N_i \to i}^{\gamma_i}} \\
P\{i \in \Gamma_j\} = \frac{\mu_{i \to j} \mu_{j \to i}}{\mu_{i \to j} \mu_{j \to i} + (1 - \mu_{i \to j})(1 - \mu_{j \to i})}.
$$

Fixed point \Rightarrow number of subgraphs (entropy)

Circuits: Marinari, Monasson, Semerjian 2006 q-regular subgraphs: Pretti, Weigt 2006

k

Regular random graphs: dimers *0 -4 -2 0 2 4* ε *0.2* $(m_i=1)$

as a function of K for m = 1.

Exponentially many NE's D , and consideration instability \mathcal{C} , and \mathcal{C} , and \mathcal{C} and

Figure 5: Sprectrum of possible equilibria (m = 1) in a RRG with K = 4.

larger values of K we have a similar behavior (see Figs.5-6 for K = 4).

 \bullet ρ = fraction of cooperators $s(\rho) = log(number of NE|\rho)/N$

 $p(A|A)$ D)/N NE ∃ ∀ρ∈[0,1] edges in the graph. This is at the origin of the degeneracy s(ρ = 1) > 0. For

Regular random graphs: circuits $(m_i=2)$ *-4 -2 0 2 4* ε *0.2*

as a function of K for m = 2.

Exponentially many NE's Density of cooperators ρ("), entropy s("), modulation instability λ1(") and s Exnonentially

Figure 8: Sprecht et possible equilibria (m = 2) in a RRG with K = 3. In a RRG with K = 3. In a RRG with K = 3

 Λ erinori Λ longooga Comerijan Or

colation and kinetically-constrained models). An explicit analytical solution

are no-more essential for the collective behavior (Marinari, Monasson, Semerjian 2006)

 \bullet ρ = fraction of cooperators $s(\rho) = log(number of NE|\rho)/N$

 $\mathsf{I}\rho$)/N NE ∃ $\forall \rho \in [0,1]$

Regular random graphs: mi=3 D_{Ω} possible companies in the cooperators in spin-glass instability λ2(") are displayed.

! ³

^K [−] ³

closes only at K \approx

^K and ρ ≈ 1 − [√]

-4 -2 0 2 4

Figure 10: Typical behavior of the density of cooperators and entropy of CE

non-zero solution, the Lyapunov exponent becomes smaller than 1 exactly at the transition point). Increasing K the transition point moves to larger

values of !, i.e. ρc(K) decreases. Now, it is not clear numerically that the

ad an the limit K and some limit K expansion we see that we se

Exponentially many NE's as a function of K for m = 3.

20

Figure 12: Diagram entropy vs. density (for m = 3) in a RRG with K = 4.

 \bullet NE \sharp $\forall \rho < \rho_c$

NE are non-local and fragile µ!,³ ≈ with the numerical simulations). Computing the large α stability condition, inserting the expression for µ and keeping only the first

Heterogeneous random graphs

x = 0.025

FIG. 3 (Left) Density *typ* of collaborators in a typical equilibrium in Erd¨os-R´enyi graphs as function of

0 10 20 30 40 50 60 70 k

0,5 0,6 0,7 0,8 0,9 likely than spokes *C(k) x = 0.1* Scale free: hubs collaborate more

0,5

0,4

Erdös-Rényi: E[k]=4

$X_i = xk_i$

Assortative networks are more conducive to collaboration

Scale free network $P(k)$ ~ $k^{-2.5}$ $X_i = xk_i, x=0.1$

Conclusions: Theory

Collaboration in repeated prisoners dilemma as a graph theoretical problem: \blacksquare

- 1- make sure enough neighbors collaborate
- 2- not credible to monitor more neighbors
- 3- checks should be reciprocal
- If incentives to defect (x) \blacksquare
	- is small then cooperation is easy \blacksquare
	- **x** is large

i) collaboration requires critical mass ii) Nash equilibria are fragile

- iii) effect of defection are non-local
- Topology: Collaboration is easier on \blacksquare i) trees

ii) densely connected graphs

Collaboration is harder on networks which can be disconnected (e.g. quasi 1d graphs)

Conclusion: Empirical evidence

- Individuals condition collaboration on that of others \blacksquare (Fishbacher, Gachter, Fehr 2001)
- Weak and strong ties (Granovetter, 1973) \mathbf{x} Individuals do not condition collaboration to all contacts, not even to all those who collaborate, only to a subset of them
- Critical mass theory of collective action (Oliver, Marwell 1993) If the cost of collaboration is large enough, collaborative equilibria only arise if a finite fraction of agents participate
- Collaboration easier in dense networks (Kirchkamp, Nagel 2007; ×. Cassar 2007)
- More connected agents are more likely to collaborate (Cassar 2007)
- Collaboration is not contagious (Suri, Watts 2011) \blacksquare The more of my contacts are engaged in conditional collaboration with others, the less likely I am to find neighbors with whom to collaborate conditionally