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The puzzle of cooperation
Why do we see so much cooperation around?

Failed states, why do societies collapse?

Will Euro collapse if Greece drops out?
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Much has been written on the emergence 
of cooperation on networks

Repeated games, reputation and trust (Myerson 1991)

Endogenous network games (Vega-Redondo 2007, Jackson 2008, 
Goyal 2009)

Repeated games on evolving networks (Ellison 1994, Haag Lagunoff 
2006, Vega-Redondo 2006).

Cooperation in evolutionary games without mutation (Boyd 1999, 
Hofbauer Sigmund 2003, Poncela et al 2010)

Repeated games and punishment on specific structures (Eshel et al 
1998, Haag Lagunoff 2007, Fainmesser 2009, Karlan et al 2009)

Focus here: social network = pattern of repeated interactions
           repeated interaction = forward looking behavior
                      collaboration = incentives + credibility of threats
How difficult is this in large games on complex structures?
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Outline
The prisoners dilemma

Collaboration in repeated interaction: 2 players

Collaboration is supported by credible threats of punishment

Collaboration in N players games on a network: Local contribution game

Conditional collaboration has to be reciprocal and limited to a subset of neighbors

How does collaboration depend on incentives and topology?

Collaborative equilibria are subgraphs of the social network

The complexity of collaboration:

Counting collaborative equilibria with message passing

Conclusions
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Defection is the only possible outcome in 
one shot prisoner’s dilemma

C (s=1) D (s=0)

C (s=1) 1-x, 1-x -x, 1

D (s=0) 1, -x 0, 0N players on graph G=(N,L)
Each player either cooperates (C) or 
defects (D) with all neighbors

Payoff: 1 for each neighbor that collaborates
            minus Xi (=cost of collaboration)

All D (si=0) is the only Nash equilibrium si = 0, 1

ui(si, s�i) = �Xisi +
X

j2@i

sj
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N=2: When the game is played many times 
cooperation is possible, among other things

Strategies become plans of actions, decided at time 0, to optimize future payoffs

Cooperation under trigger strategies T:
T= {start with C; 
      C as long as opponent plays C, 
      D forever, if opponent plays D}

If d is large enough, (T, T) is a Nash equilibrium

Folk’s theorem: many other outcomes can be
supported as a Nash equilibrium

! d=1 in what follows

1-x

1-x u1

u2

(C,C)

(D,D)

Ui = (1� d)
⇥⇤

t=0

dtui

�
s(t)

i , s(t)
�i

⇥
, d ⇥ [0, 1]
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But threats should be credible
N=3

Is it credible that 1 and 2
punish 3?

Not if u1(C,C,D) > u1(D,D,D) !

Players need to condition C only
to a subset of their neighbors

If i conditions on j, j should condition on i

Emergent heterogeneity

T T

?

1 2

3
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?
- Trees
- Graphs
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On trees, Nash equilibria are subtrees
Given an undirected tree G=(N,L) 
ki = |∂i| = degree of node i
mi = smallest integer larger than Xi 
ci = number of collaborators in ∂i

Any collection of disjoint undirected 
subgraphs Γ=(V,Λ) of G is a collaborative 
equilibrium where all i∈V cooperate 
conditionally to neighbors in Γ and |∂i ∩ Λ|=mi

Incentives: i∈V  ci - Xi ≥ ci-mi ⇒ mi ≥ Xi 

Reciprocity: i,j∈V, if j does not punish i 
             ⇒ i should not punish j when j defects

Credibility:  
i,k∈V, (i,k)∈Λ if k defects ci - 1 - Xi < ci - mi ⇒ mi < Xi +1
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On generic graphs cascades of defection 
make things more complex

Indirect defections: As a result of the defection of j∈∂i other neighbors 
k∈∂i  may also defect because of loops

A collection of disjoint undirected subgraphs Γ=(V,Λ) of G is a 
collaborative equilibrium where all i∈V cooperate conditionally to 
neighbors in Γ and |∂i ∩ Λ|=mi provided 
i) the indirect effects caused by the defection of all j∈∂i ∩ Λ have the same 
consequence of the defection of i itself.

i) holds provided removing i from V 
does not disconnect Γ

Works on trees, for dimers and loops, 
for the complete graph

Likely works on random graphs and on 
dense graphs

4

⎡X4⎤= 1

⎡X2⎤= 2

⎡X1⎤= 2

⎡X5⎤= 1

⎡X3⎤= 2

FIG. s1 A collaborative equilibrium which is not a Nash equilibrium.

So, what is in general the structure of collaborative equilibria and when is Proposition 2 satisfied?

The assumption that j 2 �i if and only if i 2 �j identifies distinct connected components of the

network where the collaboration of any node depends only on the collaboration of all the other

nodes in the same component. The full set C of collaborators is the union of those components. We

may have that Dj!i ⇢ Di!i (where the inclusion is strict), only if the component that i belongs to

would be disconnected by the removal of node i itself. If a node k in the same component, neighbor

of i, has her only path to j through i, then this is possible. This is exactly what happens removing

player 1 from the graph in Fig.s1: the component connecting player 2 (and 4) is disconnected

from that with players 3 and 5. As argued in the main text, this situation is not very likely to

occur for typical sub-graphs (C, ~�) on many graphs. For instance, this will never be the case if the

network is a complete graph, as e.g. for the three nodes example in the text. On the other hand,

if the network is a tree, no indirect e↵ect is produced and Dj!i = Di!i is trivially true, because

Dj!i = Di!i = ;.

B. A COMPLEMENTARY APPROACH: CIRCULAR GAMES

In Proposition 1 of the main text we have identified Collaborative Equilibria with a particular

class of trigger strategies equilibria of the repeated game, when there are no loops in the network.

In this section of the Supporting Information we identify the same subset of nodes (those collab-

orating) with the equilibria of a well specified game in extensive form between a set N of n � 2

players, we call them Collaborative Sets. We show that within this definition of the repeated game,

and under the assumption that there are no loops in the network, Collaborative Sets characterize

counter example
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Nash equilibria on 
random graphs
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Regular random graphs: 
ki=k, Xi=X for all i

X ≤ 1          dimers
1 < X ≤ 2    circuits
...

q-1< X ≤ q  q-regular subgraphs
...

k-1< X ≤ k   back to dimers

Do NE exist? How many? How hard is it to find them?
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k=4
q=1

k=4
q=2

k=4
q=3

Circuits: Marinari, Monasson, Semerjian 2006
q-regular subgraphs: Pretti, Weigt 2006
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Counting NE by message passing
xi→j = 1 if i conditions C on j, xi→j = 0 otherwise
- there are mi-1 k ∈ ∂i/j with xk→i=1 ⇒ xi→j =1
- mi k ∈ ∂i/j with xk→i=1 ⇒ xi→j =0
- no k ∈ ∂i/j with xk→i=1 ⇒ xi→j =0

Marginals: k

i

j

Circuits: Marinari, Monasson, Semerjian 2006
q-regular subgraphs: Pretti, Weigt 2006

µi!j = P{i 2 V, i punishes j}
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Message passing equations:

µi!j =
e�✏Zmi�1

Ni\j!i

Z0
Ni\j!i + e�✏Zmi�1

Ni\j!i + e�✏Zmi

Ni\j!i

Zq
V!i =

X

U✓V

I|U |=q

Y

j2U

µj!i

Y

k2V/U

(1� µk!i)

P{i 2 C} =
e�✏Z�i

Ni!i

Z0
Ni!i + e�✏Z�i

Ni!i

(1)

P{i 2 �j} =
µi!jµj!i

µi!jµj!i + (1� µi!j)(1� µj!i)
. (2)

k

i

j

Fixed point ⇒ number of subgraphs (entropy)
Circuits: Marinari, Monasson, Semerjian 2006
q-regular subgraphs: Pretti, Weigt 2006
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Regular random graphs: dimers

Exponentially many NE’s

ρ = fraction of cooperators
s(ρ) = log(number of NE|ρ)/N
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Figure 5: Sprectrum of possible equilibria (m = 1) in a RRG with K = 4.
Density of cooperators ρ(ε), entropy s(ε), modulation instability λ1(ε) and
spin-glass instability λ2(ε) are displayed.
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Figure 6: Diagram entropy vs. density (for m = 1) in a RRG with K = 4.

16

2 4 6 8 10 12 14 16 18 20
K

0.6

0.8

1

1.2

1.4 ρ
typ
(K)

s
typ
(K)

Figure 2: Typical behavior of the density of cooperators and entropy of CE
as a function of K for m = 1.

particular configuration of punishments. The number of possible ways in
which cooperating nodes punish is exponential with the number of directed
edges in the graph. This is at the origin of the degeneracy s(ρ = 1) > 0. For
larger values of K we have a similar behavior (see Figs.5-6 for K = 4).

3.2.2 Case m = 2

Let us consider the more cooperative case m = 2, for which the non-trivial
solution of the self-consistent equation admits the explicit analytic form,

µε,2 =

{

1 +
(K − 1)(K − 2)

√

2(K − 1)(K − 2)(K − 1 − eε)

}−1

. (22)

As reported in Fig.7, the typical density of cooperators and the typical en-
tropy grow with K similar to the case m = 1. On the contrary, the large-
deviation behavior of the density is a bit different, showing a continuous
transition as a function of ε (see Fig.8). At sufficiently positive chemical
potential, only the trivial equilibrium survives. However, a continuous tran-
sition has no major consequences on the set of equilibria; in fact, we can find
equilibria for any value of ρ. This becomes evident in the plot s(ρ) in Fig.9.

14

(mi=1)

NE ∃ ∀ρ∈[0,1]
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Regular random graphs: circuits

Exponentially many NE’s

ρ = fraction of cooperators
s(ρ) = log(number of NE|ρ)/N

(mi=2)
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Figure 8: Sprectrum of possible equilibria (m = 2) in a RRG with K = 3.
Density of cooperators ρ(ε), entropy s(ε), modulation instability λ1(ε) and
spin-glass instability λ2(ε) are displayed.
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Figure 9: Diagram entropy vs. density (for m = 2) in a RRG with K = 3.
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Figure 7: Typical behavior of the density of cooperators and entropy of CE
as a function of K for m = 2.

3.2.3 Case m = 3

This case is much more interesting and we naturally expect a real cooperative
effect (discontinuity in some order parameter) because ”string-like” clusters
are no-more essential for the collective behavior (see results from k-core per-
colation and kinetically-constrained models). An explicit analytical solution
of the BP equation is no more generally possible, even if we can easily write
it as the implicit solution of the third-order equation

[

e−ε(K − 1)(K − 2)(K − 6) − 6
]

µ3 + 6
[

e−ε(K − 1)(K − 2) + 3
]

µ2

−3
[

e−ε(K − 1)(K − 2) + 6
]

µ + 6 = 0 (23)

A first difference compared to m = 1, 2 is the non-monotonic behavior of the
typical density of cooperators as a function of K reported in Fig.10. But this
obviously a consequence of m = K for K = 3 that makes this curve a bit
special (see next paragraph for the case m = K). For this reason we neglect
the case K = 3 and we focus on K ≥ 4. For K = 4, Fig. 11 shows clearly
the existence of a discontinuous transition at some positive ε signaling the
abrupt disappearance of collaborative equilibria with non zero cooperators.
There is no equilibrium with a density of cooperators smaller than some
ρc ≈ 0.8 apart from the trivial one that always exists (see Fig. 12). Note
that the transition is a real first-order one, i.e. the non-zero density branch
becomes unstable above some value of ε (linearizing the system around the

17

NE ∃ ∀ρ∈[0,1]
(Marinari, Monasson, Semerjian 2006)
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Regular random graphs: mi=3

Exponentially many NE’s

NE ∄ ∀ρ<ρc 

NE are non-local and fragile
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Figure 10: Typical behavior of the density of cooperators and entropy of CE
as a function of K for m = 3.

non-zero solution, the Lyapunov exponent becomes smaller than 1 exactly
at the transition point). Increasing K the transition point moves to larger
values of ε, i.e. ρc(K) decreases. Now, it is not clear numerically that the
gap closes in the limit K → ∞. From some large K expansion we see that

µε,3 ≈
√

3
K − 3

K and ρ ≈ 1 − 2√
3
eεK−3/2 − 8

√
3eεK−5/2 (in good agreement

with the numerical simulations). Computing the large K expansion of the
stability condition, inserting the expression for µ and keeping only the first
order terms, we get an expression that goes to zero as K−1/2, i.e. the gap
closes only at K = ∞.

3.2.4 Case m = K

This case is trivial, but corresponds to the relevant limit x → 1. For m = K,
there are three solutions of the BP equation: the trivial one (µ = 0), the
complete equilibrium µ = 1 and the solution

µε,K =
1

1 + e−ε/(K−2)
. (24)

The complete equilibrium is unique (everybody cooperate with and control
everybody else), whereas µε,K leads to a negative entropy shown in Fig. 13,
an evidence of the rare character of such configurations. Moreover, numerical
solution of the BP equations do not find such equilibrium for any value of ε. A
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Figure 11: Sprectrum of possible equilibria (m = 3) in a RRG with K = 4.
Density of cooperators ρ(ε), entropy s(ε), modulation instability λ1(ε) and
spin-glass instability λ2(ε) are displayed.
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Figure 12: Diagram entropy vs. density (for m = 3) in a RRG with K = 4.
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(Pretti, Weigt 2006)
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Heterogeneous random graphs
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FIG. 3 (Left) Density �typ of collaborators in a typical equilibrium in Erdös-Rényi graphs as function of

the average degree ⇧k⌃ for x = 0.1 (black circles) and 0.5 (red squares). The inset shows the corresponding

typical entropies smax = s(�typ). (Right) Probability PC(k) (red squares) that a node of degree |Ni| = k

collaborates in a typical collaborative equilibrium (�typ) and low marginal cost (x = 0.05) on an uncorrelated

scale-free random graph of size |N | = 5 · 103 with degree distribution P (k) ⌅ k�2.5 for 2 ⇥ k ⇥ 70 (blue

circles).

of the technical condition in Proposition 2 requires a more demanding analysis. We shall work

under the assumption that this condition is verified, which means that our estimate of the number

of equilibria can only be considered as an upper bound10.

All the instances which have been analyzed confirmed the following set of generic features: i) on

average the typical fraction �typ of collaborators increases with costs; ii) the absence of equilibria

at small densities � for large costs; and iii) their fragility w.r.t. small perturbations and non-local

character, for su⇤ciently large costs. WhenXi = x|Ni|, if the marginal cost x is small, equilibria are

mainly formed by dimers and loops and can be found for any density �. When x is large, non-trivial

collaborative equilibria only exist for su⇤ciently large density of collaborators �, reproducing the

“critical mass” e�ect observed in regular random graphs. Interestingly, when the marginal cost

exceeds a graph-dependent threshold xc (xc ⇤ 0.79 for Erdös-Rényi random graphs with average

degree equal to 4), the number of equilibria vanishes in the full range of � (i.e. s(�) < 0), suggesting

that the only possible equilibria are the all-defect or the fully collaborative (for x = 1) ones.

In addition, we also found that iv) increasing the average degree promotes collaboration on

average, because denser graphs admit typical equilibria of larger density �typ of collaborators, as

shown in Fig. 3 (left) for Erdös-Rényi random graphs. The monotonic behavior of s(�typ) with

10 Again we expect that for small and for large Xi the condition should hold with high probability. Scale free random
graphs with Xi = x|Ni| is the most delicate case, where removing highly connected nodes might disconnect parts
of the sub-graph (C, ⌃�).

Scale free: hubs collaborate more 
likely than spokes

Xi = xki
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Assortative networks are more 
conducive to collaboration
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Scale free network
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Xi = xki, x=0.1
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Conclusions: Theory
Collaboration in repeated prisoners dilemma as a graph theoretical problem:
1- make sure enough neighbors collaborate
2- not credible to monitor more neighbors
3- checks should be reciprocal

If incentives to defect (x)

is small then cooperation is easy

is large 
i) collaboration requires critical mass
ii) Nash equilibria are fragile
iii) effect of defection are non-local

Topology: Collaboration is easier on
i) trees
ii) densely connected graphs
Collaboration is harder on networks which can be disconnected 
(e.g. quasi 1d graphs)
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Conclusion: Empirical evidence
Individuals condition collaboration on that of others
(Fishbacher, Gachter, Fehr 2001)

Weak and strong ties (Granovetter, 1973)
Individuals do not condition collaboration to all contacts, not even to all those 
who collaborate, only to a subset of them

Critical mass theory of collective action (Oliver, Marwell 1993)
If the cost of collaboration is large enough, collaborative equilibria only arise if a 
finite fraction of agents participate

Collaboration easier in dense networks (Kirchkamp, Nagel 2007; 
Cassar 2007)

More connected agents are more likely to collaborate (Cassar 2007)

Collaboration is not contagious (Suri, Watts 2011)
The more of my contacts are engaged in conditional collaboration with others, 
the less likely I am to find neighbors with whom to collaborate conditionally
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