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We propose and study a set of algorithms for discovering community structure in networks—
natural divisions of network nodes into densely connected subgroups. Our algorithms all share two
definitive features: first, they involve iterative removal of edges from the network to split it into
communities, the edges removed being identified using one of a number of possible “betweenness”
measures, and second, these measures are, crucially, recalculated after each removal. We also propose
a measure for the strength of the community structure found by our algorithms, which gives us an
objective metric for choosing the number of communities into which a network should be divided.
We demonstrate that our algorithms are highly effective at discovering community structure in both
computer-generated and real-world network data, and show how they can be used to shed light on
the sometimes dauntingly complex structure of networked systems.

I. INTRODUCTION

Empirical studies and theoretical modeling of networks
have been the subject of a large body of recent research in
statistical physics and applied mathematics [1, 2, 3, 4].
Network ideas have been applied with great success to
topics as diverse as the Internet and the world wide
web [5, 6, 7], epidemiology [8, 9, 10, 11], scientific ci-
tation and collaboration [12, 13], metabolism [14, 15],
and ecosystems [16, 17], to name but a few. A property
that seems to be common to many networks is commu-
nity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to
find and analyze such groups can provide invaluable help
in understanding and visualizing the structure of net-
works. In this paper we show how this can be achieved.

The study of community structure in networks has a
long history. It is closely related to the ideas of graph
partitioning in graph theory and computer science, and

FIG. 1: A small network with community structure of the
type considered in this paper. In this case there are three
communities, denoted by the dashed circles, which have dense
internal links but between which there are only a lower density
of external links.

hierarchical clustering in sociology [18, 19]. Before pre-
senting our own findings, it is worth reviewing some of
this preceding work, to understand its achievements and
where it falls short.

Graph partitioning is a problem that arises in, for ex-
ample, parallel computing. Suppose we have a num-
ber n of intercommunicating computer processes, which
we wish to distribute over a number g of computer proces-
sors. Processes do not necessarily need to communicate
with all others, and the pattern of required communica-
tions can be represented by a graph or network in which
the vertices represent processes and edges join process
pairs that need to communicate. The problem is to allo-
cate the processes to processors in such a way as roughly
to balance the load on each processor, while at the same
time minimizing the number of edges that run between
processors, so that the amount of interprocessor commu-
nication (which is normally slow) is minimized. In gen-
eral, finding an exact solution to a partitioning task of
this kind is believed to be an NP-complete problem, mak-
ing it prohibitively difficult to solve for large graphs, but
a wide variety of heuristic algorithms have been devel-
oped that give acceptably good solutions in many cases,
the best known being perhaps the Kernighan–Lin algo-
rithm [20], which runs in time O(n3) on sparse graphs.

A solution to the graph partitioning problem is how-
ever not particularly helpful for analyzing and under-
standing networks in general. If we merely want to find
if and how a given network breaks down into commu-
nities, we probably don’t know how many such com-
munities there are going to be, and there is no reason
why they should be roughly the same size. Furthermore,
the number of inter-community edges needn’t be strictly
minimized either, since more such edges are admissible
between large communities than between small ones.

As far as our goals in this paper are concerned, a more
useful approach is that taken by social network analysis
with the set of techniques known as hierarchical cluster-
ing. These techniques are aimed at discovering natural
divisions of (social) networks into groups, based on var-

Illustra6on:	
  Newman	
  &	
  Girvan.	
  PRE	
  69,	
  026113	
  (2004)



arXiv:cond-mat/0308217v1  [cond-mat.stat-mech]  11 Aug 2003

F
in

d
in

g
a
n
d

e
v
a
lu

a
ti

n
g

c
o
m

m
u
n
it
y

st
ru

c
tu

re
in

n
e
tw

o
rk

s

M
.

E
.

J.
N

ew
m

an
1
,
2

an
d

M
.

G
ir

va
n

2
,
3

1
D

ep
ar

tm
en

t
of

P
hy

si
cs

an
d

C
en

te
r

fo
r

th
e

S
tu

dy
of

C
om

pl
ex

S
ys

te
m

s,
U

n
iv

er
si

ty
of

M
ic

hi
ga

n
,

A
n
n

A
rb

or
,

M
I

48
10

9–
11

20
2
S
an

ta
F
e

In
st

it
u
te

,
13

99
H

yd
e

P
ar

k
R
oa

d,
S
an

ta
F
e,

N
M

87
50

1
3
D

ep
ar

tm
en

t
of

P
hy

si
cs

,
C

or
n
el

l
U

n
iv

er
si

ty
,

It
ha

ca
,

N
Y

14
85

3–
25

01

W
e

p
ro

p
os

e
an

d
st

u
d
y

a
se

t
of

al
go

ri
th

m
s

fo
r

d
is
co

ve
ri
n
g

co
m

m
u
n
it
y

st
ru

ct
u
re

in
n
et

w
or

k
s—

n
at

u
ra

l
d
iv

is
io

n
s

of
n
et

w
or

k
n
o
d
es

in
to

d
en

se
ly

co
n
n
ec

te
d

su
b
gr

ou
p
s.

O
u
r

al
go

ri
th

m
s

al
l
sh

ar
e

tw
o

d
efi

n
it
iv

e
fe

at
u
re

s:
fi
rs

t,
th

ey
in

vo
lv

e
it
er

at
iv

e
re

m
ov

al
of

ed
ge

s
fr

om
th

e
n
et

w
or

k
to

sp
li
t

it
in

to
co

m
m

u
n
it
ie

s,
th

e
ed

ge
s

re
m

ov
ed

b
ei

n
g

id
en

ti
fi
ed

u
si
n
g

on
e

of
a

n
u
m

b
er

of
p
os

si
b
le

“b
et

w
ee

n
n
es

s”
m

ea
su

re
s,

an
d

se
co

n
d
,
th

es
e
m

ea
su

re
s
ar

e,
cr

u
ci

al
ly

,
re

ca
lc

u
la

te
d

af
te

r
ea

ch
re

m
ov

al
.

W
e

al
so

p
ro

p
os

e
a

m
ea

su
re

fo
r

th
e

st
re

n
gt

h
of

th
e

co
m

m
u
n
it
y

st
ru

ct
u
re

fo
u
n
d

by
ou

r
al

go
ri
th

m
s,

w
h
ic

h
gi

ve
s

u
s

an
ob

je
ct

iv
e

m
et

ri
c

fo
r

ch
o
os

in
g

th
e

n
u
m

b
er

of
co

m
m

u
n
it
ie

s
in

to
w

h
ic

h
a

n
et

w
or

k
sh

ou
ld

b
e

d
iv

id
ed

.
W

e
d
em

on
st

ra
te

th
at

ou
r
al

go
ri
th

m
s

ar
e

h
ig

h
ly

eff
ec

ti
ve

at
d
is
co

ve
ri
n
g

co
m

m
u
n
it
y

st
ru

ct
u
re

in
b
ot

h
co

m
p
u
te

r-
ge

n
er

at
ed

an
d

re
al

-w
or

ld
n
et

w
or

k
d
at

a,
an

d
sh

ow
h
ow

th
ey

ca
n

b
e

u
se

d
to

sh
ed

li
gh

t
on

th
e

so
m

et
im

es
d
au

n
ti
n
gl

y
co

m
p
le

x
st

ru
ct

u
re

of
n
et

w
or

ke
d

sy
st

em
s.

I.
IN

T
R

O
D

U
C

T
IO

N

E
m

p
ir

ic
al

st
u
d
ie

s
an

d
th

eo
re

ti
ca

lm
od

el
in

g
of

n
et

w
or

ks
h
av

e
b
ee

n
th

e
su

b
je

ct
of

a
la

rg
e
b
od

y
of

re
ce

nt
re

se
ar

ch
in

st
at

is
ti
ca

l
p
hy

si
cs

an
d

ap
p
li
ed

m
at

h
em

at
ic

s
[1

,
2,

3,
4]

.
N

et
w

or
k

id
ea

s
h
av

e
b
ee

n
ap

p
li
ed

w
it
h

gr
ea

t
su

cc
es

s
to

to
p
ic

s
as

d
iv

er
se

as
th

e
In

te
rn

et
an

d
th

e
w

or
ld

w
id

e
w

eb
[5

,
6,

7]
,

ep
id

em
io

lo
gy

[8
,

9,
10

,
11

],
sc

ie
nt

ifi
c

ci
-

ta
ti
on

an
d

co
ll
ab

or
at

io
n

[1
2,

13
],

m
et

ab
ol

is
m

[1
4,

15
],

an
d

ec
os

ys
te

m
s

[1
6,

17
],

to
n
am

e
b
u
t

a
fe

w
.

A
p
ro

p
er

ty
th

at
se

em
s

to
b
e

co
m

m
on

to
m

an
y

n
et

w
or

ks
is

co
m

m
u
-

n
it
y

st
ru

ct
u
re

,
th

e
d
iv

is
io

n
of

n
et

w
or

k
n
od

es
in

to
gr

ou
p
s

w
it
h
in

w
h
ic

h
th

e
n
et

w
or

k
co

n
n
ec

ti
on

s
ar

e
d
en

se
,
b
u
t

b
e-

tw
ee

n
w

h
ic

h
th

ey
ar

e
sp

ar
se

r—
se

e
F
ig

.
1.

T
h
e

ab
il
it
y

to
fi
n
d

an
d

an
al

yz
e

su
ch

gr
ou

p
s

ca
n

p
ro

vi
d
e

in
va

lu
ab

le
h
el

p
in

u
n
d
er

st
an

d
in

g
an

d
vi

su
al

iz
in

g
th

e
st

ru
ct

u
re

of
n
et

-
w

or
ks

.
In

th
is

p
ap

er
w

e
sh

ow
h
ow

th
is

ca
n

b
e

ac
h
ie

ve
d
.

T
h
e

st
u
d
y

of
co

m
m

u
n
it
y

st
ru

ct
u
re

in
n
et

w
or

ks
h
as

a
lo

n
g

h
is

to
ry

.
It

is
cl

os
el

y
re

la
te

d
to

th
e

id
ea

s
of

gr
ap

h
p
ar

ti
ti
on

in
g

in
gr

ap
h

th
eo

ry
an

d
co

m
p
u
te

r
sc

ie
n
ce

,
an

d

F
IG

.
1:

A
sm

al
l

n
et

w
or

k
w

it
h

co
m

m
u
n
it
y

st
ru

ct
u
re

of
th

e
ty

p
e

co
n
si
d
er

ed
in

th
is

p
ap

er
.

In
th

is
ca

se
th

er
e

ar
e

th
re

e
co

m
m

u
n
it
ie

s,
d
en

ot
ed

b
y

th
e

d
as

h
ed

ci
rc

le
s,

w
h
ic

h
h
av

e
d
en

se
in

te
rn

al
li
n
k
s
b
u
t
b
et

w
ee

n
w

h
ic

h
th

er
e

ar
e

on
ly

a
lo

w
er

d
en

si
ty

of
ex

te
rn

al
li
n
k
s.

h
ie

ra
rc

h
ic

al
cl

u
st

er
in

g
in

so
ci

ol
og

y
[1

8,
19

].
B

ef
or

e
p
re

-
se

nt
in

g
ou

r
ow

n
fi
n
d
in

gs
,

it
is

w
or

th
re

vi
ew

in
g

so
m

e
of

th
is

p
re

ce
d
in

g
w

or
k,

to
u
n
d
er

st
an

d
it
s

ac
h
ie

ve
m

en
ts

an
d

w
h
er

e
it

fa
ll
s

sh
or

t.
G

ra
p
h

p
ar

ti
ti
on

in
g

is
a

p
ro

b
le

m
th

at
ar

is
es

in
,
fo

r
ex

-
am

p
le

,
p
ar

al
le

l
co

m
p
u
ti
n
g.

S
u
p
p
os

e
w

e
h
av

e
a

nu
m

-
b
er

n
of

in
te

rc
om

m
u
n
ic

at
in

g
co

m
p
u
te

r
p
ro

ce
ss

es
,
w

h
ic

h
w

e
w

is
h

to
d
is

tr
ib

u
te

ov
er

a
nu

m
b
er

g
of

co
m

p
u
te

r
p
ro

ce
s-

so
rs

.
P

ro
ce

ss
es

d
o

n
ot

n
ec

es
sa

ri
ly

n
ee

d
to

co
m

m
u
n
ic

at
e

w
it
h

al
l
ot

h
er

s,
an

d
th

e
p
at

te
rn

of
re

qu
ir

ed
co

m
m

u
n
ic

a-
ti
on

s
ca

n
b
e

re
p
re

se
nt

ed
by

a
gr

ap
h

or
n
et

w
or

k
in

w
h
ic

h
th

e
ve

rt
ic

es
re

p
re

se
nt

p
ro

ce
ss

es
an

d
ed

ge
s

jo
in

p
ro

ce
ss

p
ai

rs
th

at
n
ee

d
to

co
m

m
u
n
ic

at
e.

T
h
e

p
ro

b
le

m
is

to
al

lo
-

ca
te

th
e

p
ro

ce
ss

es
to

p
ro

ce
ss

or
s
in

su
ch

a
w

ay
as

ro
u
gh

ly
to

b
al

an
ce

th
e

lo
ad

on
ea

ch
p
ro

ce
ss

or
,
w

h
il
e

at
th

e
sa

m
e

ti
m

e
m

in
im

iz
in

g
th

e
nu

m
b
er

of
ed

ge
s

th
at

ru
n

b
et

w
ee

n
p
ro

ce
ss

or
s,

so
th

at
th

e
am

ou
nt

of
in

te
rp

ro
ce

ss
or

co
m

m
u
-

n
ic

at
io

n
(w

h
ic

h
is

n
or

m
al

ly
sl

ow
)

is
m

in
im

iz
ed

.
In

ge
n
-

er
al

,
fi
n
d
in

g
an

ex
ac

t
so

lu
ti
on

to
a

p
ar

ti
ti
on

in
g

ta
sk

of
th

is
ki

n
d

is
b
el

ie
ve

d
to

b
e

an
N

P
-c

om
p
le

te
p
ro

b
le

m
,m

ak
-

in
g

it
p
ro

h
ib

it
iv

el
y

d
iffi

cu
lt

to
so

lv
e

fo
r

la
rg

e
gr

ap
h
s,

b
u
t

a
w

id
e

va
ri

et
y

of
h
eu

ri
st

ic
al

go
ri

th
m

s
h
av

e
b
ee

n
d
ev

el
-

op
ed

th
at

gi
ve

ac
ce

p
ta

b
ly

go
od

so
lu

ti
on

s
in

m
an

y
ca

se
s,

th
e

b
es

t
kn

ow
n

b
ei

n
g

p
er

h
ap

s
th

e
K

er
n
ig

h
an

–L
in

al
go

-
ri

th
m

[2
0]

,
w

h
ic

h
ru

n
s

in
ti
m

e
O

(n
3
)

on
sp

ar
se

gr
ap

h
s.

A
so

lu
ti
on

to
th

e
gr

ap
h

p
ar

ti
ti
on

in
g

p
ro

b
le

m
is

h
ow

-
ev

er
n
ot

p
ar

ti
cu

la
rl

y
h
el

p
fu

l
fo

r
an

al
yz

in
g

an
d

u
n
d
er

-
st

an
d
in

g
n
et

w
or

ks
in

ge
n
er

al
.

If
w

e
m

er
el

y
w

an
t

to
fi
n
d

if
an

d
h
ow

a
gi

ve
n

n
et

w
or

k
b
re

ak
s

d
ow

n
in

to
co

m
m

u
-

n
it
ie

s,
w

e
p
ro

b
ab

ly
d
on

’t
kn

ow
h
ow

m
an

y
su

ch
co

m
-

m
u
n
it
ie

s
th

er
e

ar
e

go
in

g
to

b
e,

an
d

th
er

e
is

n
o

re
as

on
w

hy
th

ey
sh

ou
ld

b
e

ro
u
gh

ly
th

e
sa

m
e

si
ze

.
F
u
rt

h
er

m
or

e,
th

e
nu

m
b
er

of
in

te
r-

co
m

m
u
n
it
y

ed
ge

s
n
ee

d
n
’t

b
e

st
ri

ct
ly

m
in

im
iz

ed
ei

th
er

,
si

n
ce

m
or

e
su

ch
ed

ge
s

ar
e

ad
m

is
si

b
le

b
et

w
ee

n
la

rg
e

co
m

m
u
n
it
ie

s
th

an
b
et

w
ee

n
sm

al
l
on

es
.

A
s

fa
r

as
ou

r
go

al
s
in

th
is

p
ap

er
ar

e
co

n
ce

rn
ed

,
a

m
or

e
u
se

fu
l
ap

p
ro

ac
h

is
th

at
ta

ke
n

by
so

ci
al

n
et

w
or

k
an

al
ys

is
w

it
h

th
e

se
t

of
te

ch
n
iq

u
es

kn
ow

n
as

h
ie

ra
rc

h
ic

al
cl

u
st

er
-

in
g.

T
h
es

e
te

ch
n
iq

u
es

ar
e

ai
m

ed
at

d
is

co
ve

ri
n
g

n
at

u
ra

l
d
iv

is
io

n
s

of
(s

oc
ia

l)
n
et

w
or

ks
in

to
gr

ou
p
s,

b
as

ed
on

va
r-





Annelise_Maren_Kromann 

Alice_Martucci

Dorthe_Sandager_Bilde 

Kaspar_Bredahl_Rasmussen 

Rikke_Thorsteinsson 

Line_Friis_Frederiksen 

Stig_Aagaard

Benny_Lautrup

Nikolaj_Beuschel

Dennis_Meyhoff_Brink 
Palle_Hyldga*rd_Poulsen 

Jonas_JakobsenRikke_Hadrup

Peder_Holm-Pedersen 
Morten_Felding

Marie_Louise_Scharff_Grandorf 

Kristian_Ingemann_Petersen 

Kristoffer_Gravgaard 

Gert_NielsenIda_Solhaug

S*ren_Stenild_Juhl Christian_Nyhus_Andreasen 

Christian_Jensen
Mogens_Skot-Hansen 

James_Kang

Jacob_Berg
Jesper_Levinsen

Peter_Langen

Karina_Kj*r

Mikkjal_Gulklett

Gert_Gadkj*r_Nielsen 

Ida_Marie_Heerfordt 

Kristian_West

Signe_Torsbjerg_J*rgensen 

Aaron_Petersen_DiBona 

Ella_Caroline_DiBona 
Erik_West

Karina_Louise_Petersen 

Niels_Arne_Dam

Sofie_Falbe

Helene_Christensen 

Joakim_Grundahl

Erik_Christensen

Mikkel_S*ndergaard 

Christina_Egelund_Pedersen 

Laura_Kirch_Kirkegaard 

Mikael_*rting_Kristiansen 

Michael_Nyhus_Andreasen 

Kasper_Vedel

Christian_Christiansen 

Torbj*rn_Porsmose_Rokamp 

Anders_Iversen

S*ren_Kj*rsgaard

Steen_Thomsen

Simon_Falbe-Hansen 

Esben_Sverdrup-Jensen 

Johan_Hjortsberg 

Thomas_R*nn

Kristian_Krohn_Djurhuus 

Mads_Hofmeister 

Anders_Vedel_Holst 

Mikkel_Nissen

S*ren_Iversen

Andreas_Toft_S*rensen 

Frank_*stergaard

Stine_Bang_Iversen 

Jessie_Hudecek_Kj*rsgaard 

Sebastian_Bernhardsson 

Brian_Larsen

Lone_N*rgaard_Skoven 

Mikael_Caroc_Warner 

Jonas_Mengel-From 

Mads_Olesen

Morten_Houmann_Jensen 

Maria_Glinvad

Kirsten_Boelskifte 

Jens_Kj*rsgaard

Kira_Clausen

Andreas_Holst_Andersen 

Nina_Adelaide_Skeem_Geist 

Kalle_Hennie

Rikke_Ankerstjerne_Schmidt 

Michael_Tronskov 

Lis_Agerb*k_J*rgensen 

Anne_Lynge_Agerb*k 

Mette_Agerb*k_Kj*ller 

Lisa_Agerb*k

Carsten_Henriksen 

Karin_Agerb*k

Karen_Agerb*k_J*rgensen 

Caroline_Buckee

Nathan_Eagle
Jure_Leskovec

Anmol_Madan

Aaron_Clauset

Jose*_Fernando_Mendes 

Maximilian_Schich 
Julian_Candia

Gourab_Ghoshal

Sebastian_Ahnert 

Vinko_Zlatic*
Dirk_Brockmann

Pascal_Braun
Skyler_Place

Zehui_Qu

Trevor_Gillaspy

Annamaria_TalasJim_Bagrow

Cesar_A._Hidalgo Albert-Laszlo_Barabasi 
Ronaldo_Menezes 

Agi_Petroczky

Suzanne_Aleva
Yong-Yeol_Ahn

Pu_Wang
Michele_Coscia

Anne-Ruxandra_Carvunis 
Sabrina_Rabello

Sang_Hoon_Lee

Petter_Holme Sameet_Sreenivasan 

Peter_CsermelyJanet_KelleyGinestra_Bianconi 

Luigi_CucciaNitesh_Chawla

Jozsef_Baranyi

Joa*o_Gama_Oliveira 

Nicolle_Haley
Marta_C._Gonzalez 

Mette_Miriam_Rakel_Bo*ll *****_****Dashun_WangChaoming_Song

Martin_Schwartz

Dan_Romescu

Rut_Jesus
Takashi_Iba

J*rgen_Jensen

Katrine_Bj*rnlund 

Torben_Jensen

Ole_Jensen

Louise_Fynbo_Jensen 
Torbj*rn_Jensen

Sarah_Wasana

Tim_SweeneyShannon_Walkley Carly_Wilcox

James_SweeneyColeen_Filipinas
Lauren_Knight_Lewicki 

Renee_Randall

Hans_Laurberg

Rasmus_Elsborg_Madsen 

Mikkel_N._Schmidt 

Morten_Hansen

Finn_A*rup_Nielsen 

Morten_Morup

Ling_FengKristoffer_Hougaard_Madsen 

Lek-Heng_Lim

Anders_Petersen

Lasse_M*lgaard Michael_Syskind_Pedersen 

Kaare_Brandt_Petersen 

Mads_Dyrholm

Anders_Meng

Tue_Lehn-Schi*ler 

Niels_Henrik_Bohl_Pontoppidan Jan_Larsen

Peter_Lehmann_Syre_Fin S*ren_McLaks_Lehmann 

Lars_Lehmann_Hunnam 
B*rge_Lehmann

Mikis_Theodorakis_Lehmann 
Signe_Lehmann Sanne_Lehmann_Nielsen 

Lene_Lehmann

Helle_Lehmann_Becker Steen_Lehmann

Winnie_R*dkj*r



Annelise_Maren_Kromann 

Alice_Martucci

Dorthe_Sandager_Bilde 

Kaspar_Bredahl_Rasmussen 

Rikke_Thorsteinsson 

Line_Friis_Frederiksen 

Stig_Aagaard

Benny_Lautrup

Nikolaj_Beuschel

Dennis_Meyhoff_Brink 
Palle_Hyldga*rd_Poulsen 

Jonas_JakobsenRikke_Hadrup

Peder_Holm-Pedersen 
Morten_Felding

Marie_Louise_Scharff_Grandorf 

Kristian_Ingemann_Petersen 

Kristoffer_Gravgaard 

Gert_NielsenIda_Solhaug

S*ren_Stenild_Juhl Christian_Nyhus_Andreasen 

Christian_Jensen
Mogens_Skot-Hansen 

James_Kang

Jacob_Berg
Jesper_Levinsen

Peter_Langen

Karina_Kj*r

Mikkjal_Gulklett

Gert_Gadkj*r_Nielsen 

Ida_Marie_Heerfordt 

Kristian_West

Signe_Torsbjerg_J*rgensen 

Aaron_Petersen_DiBona 

Ella_Caroline_DiBona 
Erik_West

Karina_Louise_Petersen 

Niels_Arne_Dam

Sofie_Falbe

Helene_Christensen 

Joakim_Grundahl

Erik_Christensen

Mikkel_S*ndergaard 

Christina_Egelund_Pedersen 

Laura_Kirch_Kirkegaard 

Mikael_*rting_Kristiansen 

Michael_Nyhus_Andreasen 

Kasper_Vedel

Christian_Christiansen 

Torbj*rn_Porsmose_Rokamp 

Anders_Iversen

S*ren_Kj*rsgaard

Steen_Thomsen

Simon_Falbe-Hansen 

Esben_Sverdrup-Jensen 

Johan_Hjortsberg 

Thomas_R*nn

Kristian_Krohn_Djurhuus 

Mads_Hofmeister 

Anders_Vedel_Holst 

Mikkel_Nissen

S*ren_Iversen

Andreas_Toft_S*rensen 

Frank_*stergaard

Stine_Bang_Iversen 

Jessie_Hudecek_Kj*rsgaard 

Sebastian_Bernhardsson 

Brian_Larsen

Lone_N*rgaard_Skoven 

Mikael_Caroc_Warner 

Jonas_Mengel-From 

Mads_Olesen

Morten_Houmann_Jensen 

Maria_Glinvad

Kirsten_Boelskifte 

Jens_Kj*rsgaard

Kira_Clausen

Andreas_Holst_Andersen 

Nina_Adelaide_Skeem_Geist 

Kalle_Hennie

Rikke_Ankerstjerne_Schmidt 

Michael_Tronskov 

Lis_Agerb*k_J*rgensen 

Anne_Lynge_Agerb*k 

Mette_Agerb*k_Kj*ller 

Lisa_Agerb*k

Carsten_Henriksen 

Karin_Agerb*k

Karen_Agerb*k_J*rgensen 

Caroline_Buckee

Nathan_Eagle
Jure_Leskovec

Anmol_Madan

Aaron_Clauset

Jose*_Fernando_Mendes 

Maximilian_Schich 
Julian_Candia

Gourab_Ghoshal

Sebastian_Ahnert 

Vinko_Zlatic*
Dirk_Brockmann

Pascal_Braun
Skyler_Place

Zehui_Qu

Trevor_Gillaspy

Annamaria_TalasJim_Bagrow

Cesar_A._Hidalgo Albert-Laszlo_Barabasi 
Ronaldo_Menezes 

Agi_Petroczky

Suzanne_Aleva
Yong-Yeol_Ahn

Pu_Wang
Michele_Coscia

Anne-Ruxandra_Carvunis 
Sabrina_Rabello

Sang_Hoon_Lee

Petter_Holme Sameet_Sreenivasan 

Peter_CsermelyJanet_KelleyGinestra_Bianconi 

Luigi_CucciaNitesh_Chawla

Jozsef_Baranyi

Joa*o_Gama_Oliveira 

Nicolle_Haley
Marta_C._Gonzalez 

Mette_Miriam_Rakel_Bo*ll *****_****Dashun_WangChaoming_Song

Martin_Schwartz

Dan_Romescu

Rut_Jesus
Takashi_Iba

J*rgen_Jensen

Katrine_Bj*rnlund 

Torben_Jensen

Ole_Jensen

Louise_Fynbo_Jensen 
Torbj*rn_Jensen

Sarah_Wasana

Tim_SweeneyShannon_Walkley Carly_Wilcox

James_SweeneyColeen_Filipinas
Lauren_Knight_Lewicki 

Renee_Randall

Hans_Laurberg

Rasmus_Elsborg_Madsen 

Mikkel_N._Schmidt 

Morten_Hansen

Finn_A*rup_Nielsen 

Morten_Morup

Ling_FengKristoffer_Hougaard_Madsen 

Lek-Heng_Lim

Anders_Petersen

Lasse_M*lgaard Michael_Syskind_Pedersen 

Kaare_Brandt_Petersen 

Mads_Dyrholm

Anders_Meng

Tue_Lehn-Schi*ler 

Niels_Henrik_Bohl_Pontoppidan Jan_Larsen

Peter_Lehmann_Syre_Fin S*ren_McLaks_Lehmann 

Lars_Lehmann_Hunnam 
B*rge_Lehmann

Mikis_Theodorakis_Lehmann 
Signe_Lehmann Sanne_Lehmann_Nielsen 

Lene_Lehmann

Helle_Lehmann_Becker Steen_Lehmann

Winnie_R*dkj*r



Annelise_Maren_Kromann 

Alice_Martucci

Dorthe_Sandager_Bilde 

Kaspar_Bredahl_Rasmussen 

Rikke_Thorsteinsson 

Line_Friis_Frederiksen 

Stig_Aagaard

Benny_Lautrup

Nikolaj_Beuschel

Dennis_Meyhoff_Brink 
Palle_Hyldga*rd_Poulsen 

Jonas_JakobsenRikke_Hadrup

Peder_Holm-Pedersen 
Morten_Felding

Marie_Louise_Scharff_Grandorf 

Kristian_Ingemann_Petersen 

Kristoffer_Gravgaard 

Gert_NielsenIda_Solhaug

S*ren_Stenild_Juhl Christian_Nyhus_Andreasen 

Christian_Jensen
Mogens_Skot-Hansen 

James_Kang

Jacob_Berg
Jesper_Levinsen

Peter_Langen

Karina_Kj*r

Mikkjal_Gulklett

Gert_Gadkj*r_Nielsen 

Ida_Marie_Heerfordt 

Kristian_West

Signe_Torsbjerg_J*rgensen 

Aaron_Petersen_DiBona 

Ella_Caroline_DiBona 
Erik_West

Karina_Louise_Petersen 

Niels_Arne_Dam

Sofie_Falbe

Helene_Christensen 

Joakim_Grundahl

Erik_Christensen

Mikkel_S*ndergaard 

Christina_Egelund_Pedersen 

Laura_Kirch_Kirkegaard 

Mikael_*rting_Kristiansen 

Michael_Nyhus_Andreasen 

Kasper_Vedel

Christian_Christiansen 

Torbj*rn_Porsmose_Rokamp 

Anders_Iversen

S*ren_Kj*rsgaard

Steen_Thomsen

Simon_Falbe-Hansen 

Esben_Sverdrup-Jensen 

Johan_Hjortsberg 

Thomas_R*nn

Kristian_Krohn_Djurhuus 

Mads_Hofmeister 

Anders_Vedel_Holst 

Mikkel_Nissen

S*ren_Iversen

Andreas_Toft_S*rensen 

Frank_*stergaard

Stine_Bang_Iversen 

Jessie_Hudecek_Kj*rsgaard 

Sebastian_Bernhardsson 

Brian_Larsen

Lone_N*rgaard_Skoven 

Mikael_Caroc_Warner 

Jonas_Mengel-From 

Mads_Olesen

Morten_Houmann_Jensen 

Maria_Glinvad

Kirsten_Boelskifte 

Jens_Kj*rsgaard

Kira_Clausen

Andreas_Holst_Andersen 

Nina_Adelaide_Skeem_Geist 

Kalle_Hennie

Rikke_Ankerstjerne_Schmidt 

Michael_Tronskov 

Lis_Agerb*k_J*rgensen 

Anne_Lynge_Agerb*k 

Mette_Agerb*k_Kj*ller 

Lisa_Agerb*k

Carsten_Henriksen 

Karin_Agerb*k

Karen_Agerb*k_J*rgensen 

Caroline_Buckee

Nathan_Eagle
Jure_Leskovec

Anmol_Madan

Aaron_Clauset

Jose*_Fernando_Mendes 

Maximilian_Schich 
Julian_Candia

Gourab_Ghoshal

Sebastian_Ahnert 

Vinko_Zlatic*
Dirk_Brockmann

Pascal_Braun
Skyler_Place

Zehui_Qu

Trevor_Gillaspy

Annamaria_TalasJim_Bagrow

Cesar_A._Hidalgo Albert-Laszlo_Barabasi 
Ronaldo_Menezes 

Agi_Petroczky

Suzanne_Aleva
Yong-Yeol_Ahn

Pu_Wang
Michele_Coscia

Anne-Ruxandra_Carvunis 
Sabrina_Rabello

Sang_Hoon_Lee

Petter_Holme Sameet_Sreenivasan 

Peter_CsermelyJanet_KelleyGinestra_Bianconi 

Luigi_CucciaNitesh_Chawla

Jozsef_Baranyi

Joa*o_Gama_Oliveira 

Nicolle_Haley
Marta_C._Gonzalez 

Mette_Miriam_Rakel_Bo*ll *****_****Dashun_WangChaoming_Song

Martin_Schwartz

Dan_Romescu

Rut_Jesus
Takashi_Iba

J*rgen_Jensen

Katrine_Bj*rnlund 

Torben_Jensen

Ole_Jensen

Louise_Fynbo_Jensen 
Torbj*rn_Jensen

Sarah_Wasana

Tim_SweeneyShannon_Walkley Carly_Wilcox

James_SweeneyColeen_Filipinas
Lauren_Knight_Lewicki 

Renee_Randall

Hans_Laurberg

Rasmus_Elsborg_Madsen 

Mikkel_N._Schmidt 

Morten_Hansen

Finn_A*rup_Nielsen 

Morten_Morup

Ling_FengKristoffer_Hougaard_Madsen 

Lek-Heng_Lim

Anders_Petersen

Lasse_M*lgaard Michael_Syskind_Pedersen 

Kaare_Brandt_Petersen 

Mads_Dyrholm

Anders_Meng

Tue_Lehn-Schi*ler 

Niels_Henrik_Bohl_Pontoppidan Jan_Larsen

Peter_Lehmann_Syre_Fin S*ren_McLaks_Lehmann 

Lars_Lehmann_Hunnam 
B*rge_Lehmann

Mikis_Theodorakis_Lehmann 
Signe_Lehmann Sanne_Lehmann_Nielsen 

Lene_Lehmann

Helle_Lehmann_Becker Steen_Lehmann

Winnie_R*dkj*r



Annelise_Maren_Kromann 

Alice_Martucci

Dorthe_Sandager_Bilde 

Kaspar_Bredahl_Rasmussen 

Rikke_Thorsteinsson 

Line_Friis_Frederiksen 

Stig_Aagaard

Benny_Lautrup

Nikolaj_Beuschel

Dennis_Meyhoff_Brink 
Palle_Hyldga*rd_Poulsen 

Jonas_JakobsenRikke_Hadrup

Peder_Holm-Pedersen 
Morten_Felding

Marie_Louise_Scharff_Grandorf 

Kristian_Ingemann_Petersen 

Kristoffer_Gravgaard 

Gert_NielsenIda_Solhaug

S*ren_Stenild_Juhl Christian_Nyhus_Andreasen 

Christian_Jensen
Mogens_Skot-Hansen 

James_Kang

Jacob_Berg
Jesper_Levinsen

Peter_Langen

Karina_Kj*r

Mikkjal_Gulklett

Gert_Gadkj*r_Nielsen 

Ida_Marie_Heerfordt 

Kristian_West

Signe_Torsbjerg_J*rgensen 

Aaron_Petersen_DiBona 

Ella_Caroline_DiBona 
Erik_West

Karina_Louise_Petersen 

Niels_Arne_Dam

Sofie_Falbe

Helene_Christensen 

Joakim_Grundahl

Erik_Christensen

Mikkel_S*ndergaard 

Christina_Egelund_Pedersen 

Laura_Kirch_Kirkegaard 

Mikael_*rting_Kristiansen 

Michael_Nyhus_Andreasen 

Kasper_Vedel

Christian_Christiansen 

Torbj*rn_Porsmose_Rokamp 

Anders_Iversen

S*ren_Kj*rsgaard

Steen_Thomsen

Simon_Falbe-Hansen 

Esben_Sverdrup-Jensen 

Johan_Hjortsberg 

Thomas_R*nn

Kristian_Krohn_Djurhuus 

Mads_Hofmeister 

Anders_Vedel_Holst 

Mikkel_Nissen

S*ren_Iversen

Andreas_Toft_S*rensen 

Frank_*stergaard

Stine_Bang_Iversen 

Jessie_Hudecek_Kj*rsgaard 

Sebastian_Bernhardsson 

Brian_Larsen

Lone_N*rgaard_Skoven 

Mikael_Caroc_Warner 

Jonas_Mengel-From 

Mads_Olesen

Morten_Houmann_Jensen 

Maria_Glinvad

Kirsten_Boelskifte 

Jens_Kj*rsgaard

Kira_Clausen

Andreas_Holst_Andersen 

Nina_Adelaide_Skeem_Geist 

Kalle_Hennie

Rikke_Ankerstjerne_Schmidt 

Michael_Tronskov 

Lis_Agerb*k_J*rgensen 

Anne_Lynge_Agerb*k 

Mette_Agerb*k_Kj*ller 

Lisa_Agerb*k

Carsten_Henriksen 

Karin_Agerb*k

Karen_Agerb*k_J*rgensen 

Caroline_Buckee

Nathan_Eagle
Jure_Leskovec

Anmol_Madan

Aaron_Clauset

Jose*_Fernando_Mendes 

Maximilian_Schich 
Julian_Candia

Gourab_Ghoshal

Sebastian_Ahnert 

Vinko_Zlatic*
Dirk_Brockmann

Pascal_Braun
Skyler_Place

Zehui_Qu

Trevor_Gillaspy

Annamaria_TalasJim_Bagrow

Cesar_A._Hidalgo Albert-Laszlo_Barabasi 
Ronaldo_Menezes 

Agi_Petroczky

Suzanne_Aleva
Yong-Yeol_Ahn

Pu_Wang
Michele_Coscia

Anne-Ruxandra_Carvunis 
Sabrina_Rabello

Sang_Hoon_Lee

Petter_Holme Sameet_Sreenivasan 

Peter_CsermelyJanet_KelleyGinestra_Bianconi 

Luigi_CucciaNitesh_Chawla

Jozsef_Baranyi

Joa*o_Gama_Oliveira 

Nicolle_Haley
Marta_C._Gonzalez 

Mette_Miriam_Rakel_Bo*ll *****_****Dashun_WangChaoming_Song

Martin_Schwartz

Dan_Romescu

Rut_Jesus
Takashi_Iba

J*rgen_Jensen

Katrine_Bj*rnlund 

Torben_Jensen

Ole_Jensen

Louise_Fynbo_Jensen 
Torbj*rn_Jensen

Sarah_Wasana

Tim_SweeneyShannon_Walkley Carly_Wilcox

James_SweeneyColeen_Filipinas
Lauren_Knight_Lewicki 

Renee_Randall

Hans_Laurberg

Rasmus_Elsborg_Madsen 

Mikkel_N._Schmidt 

Morten_Hansen

Finn_A*rup_Nielsen 

Morten_Morup

Ling_FengKristoffer_Hougaard_Madsen 

Lek-Heng_Lim

Anders_Petersen

Lasse_M*lgaard Michael_Syskind_Pedersen 

Kaare_Brandt_Petersen 

Mads_Dyrholm

Anders_Meng

Tue_Lehn-Schi*ler 

Niels_Henrik_Bohl_Pontoppidan Jan_Larsen

Peter_Lehmann_Syre_Fin S*ren_McLaks_Lehmann 

Lars_Lehmann_Hunnam 
B*rge_Lehmann

Mikis_Theodorakis_Lehmann 
Signe_Lehmann Sanne_Lehmann_Nielsen 

Lene_Lehmann

Helle_Lehmann_Becker Steen_Lehmann

Winnie_R*dkj*r



100

101

102

103

104

105

106

101 102 103n
u

m
b

e
r 

o
f 

c
o

m
m

u
n

it
ie

s

number of users per community

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0 5 10 15 20 25 30 35

n
u

m
b

e
r 

o
f 

u
s
e

rs

number of communities
 per user

100

101

102

103

101 102 103n
u

m
b
e

r 
o

f 
c
o

m
m

u
n

it
ie

s

number of metabolites per community

10
0

10
1

10
2

10
3

0 50 100 150 200

n
u

m
b

e
r 

o
f 

m
e

ta
b

o
lit

e
s

number of communities
 per metabolite

Mobile Phone

E. coli

H
2
O, H

+

ATP
ADP

P
i

 0.1

 0.3

 0.5

 0.7

 0.9

C
o

v
e

ra
g

e

 0.2

 0.4

 0.6

 0.8

s
2
 /

 s
1

0.05
0.10
0.15
0.20
0.25

0.0 0.2 0.4 0.6 0.8

P
a

rt
it
io

n
 D

e
n

s
it
y

0.2 0.4 0.6 0.8 1.0

Clustering Threshold

E. coli Mobile Phone
A B

Figure 4: Statistics for the E. coli metabolic and mobile phone networks. (A) Coverage, the
fraction of nodes induced by communities of 3 or more nodes (see text); the ratio of the number
of edges in the two largest communities; and the partition density D, respectively. The denser
metabolic network requires a higher threshold to separate compared to the mobile phone data.
In both networks, peaks in D correspond to s2/s1 nearing 1/2, a possible transition point (28).
(B) The distribution of community sizes and node memberships (insets). Currency metabo-
lites, such as water, belong to many communities, as expected. See SOM for protein-protein
interaction networks.
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Figure 1: Overlapping communities lead to dense networks and prevent the discovery of a sin-
gle node hierarchy. (A) Locally, structure in social networks is simple: an individual node sees
the communities it belongs to. (B) Complex global structure emerges when every node is in the
situation displayed in (A). (C) Strong overlap hinders the discovery of hierarchical organization
since nodes exist simultaneously in many leaves throughout the dendrogram, preventing a sin-
gle tree from encoding the full hierarchy. Bottom Panel, Hierarchical Link Clustering (HLC):
shown is an example network with (D) node communities and (E) link communities. (F) The
link similarity matrix (darker matrix elements show more similar pairs of links) and resulting
dendrogram. See supporting materials for additional examples.
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Figure 1: Overlapping communities lead to dense networks and prevent the discovery of a sin-
gle node hierarchy. (A) Locally, structure in social networks is simple: an individual node sees
the communities it belongs to. (B) Complex global structure emerges when every node is in the
situation displayed in (A). (C) Strong overlap hinders the discovery of hierarchical organization
since nodes exist simultaneously in many leaves throughout the dendrogram, preventing a sin-
gle tree from encoding the full hierarchy. Bottom Panel, Hierarchical Link Clustering (HLC):
shown is an example network with (D) node communities and (E) link communities. (F) The
link similarity matrix (darker matrix elements show more similar pairs of links) and resulting
dendrogram. See supporting materials for additional examples.
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Hierarchical structure and the prediction of missing links in networks∗

Aaron Clauset,1, 2 Cristopher Moore,1, 2, 3 and M. E. J. Newman2, 4
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Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it
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assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)
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tures of interest.
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cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-
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world. We accomplish this by fitting the hierarchical model
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mon ancestor independently with probability pr (Fig. 1).
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Even in the case when nodes belong to multiple 
communities, their links can be well categorized.
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Figure S1: (A) The similarity measure S(eik, ejk) between edges eik and ejk sharing node k.
For this example, |n+(i) ⇥ n+(j)| = 12 and |n+(i) � n+(j)| = 4, giving S = 1/3. Two simple
cases: (B) an isolated (ka = kb = 1), connected triple (a,c,b) has S = 1/3, while (C) an isolated
triangle has S = 1.

where d(i, x) is the length of the shortest path between nodes i and x. The set simply contains

the node itself and its neighbors. From this, the similarity S between links can be given by, e.g.,

the Jaccard index (1):

S(eik, ejk) =
|n+(i) ⇥ n+(j)|
|n+(i) � n+(j)| (S2)

An example illustration of this similarity measure is shown in Fig. S1 (See Sec. S2.1 for gener-

alizations of the similarity).

With this similarity, we use single-linkage hierarchical clustering to find hierarchical com-

munity structures. We use single-linkage mainly due to simplicity and efficiency, which enables

us to apply HLC to large-scale networks. However, it is also possible to use other options such

as complete-linkage or average-linkage clustering. Each link is initially assigned to its own

community; then, at each time step, the pair of links with the largest similarity are chosen and

their respective communities are merged. Ties, which are common, are agglomerated simulta-

neously. This process is repeated until all links belong to a single cluster. The history of the

clustering process is then stored in a dendrogram, which contains all the information of the

hierarchical community organization. The similarity value at which two clusters merge is con-

sidered as the strength of the merged community, and is encoded as the height of the relevant
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Figure S12: Overlapping community structure around Acetyl-CoA in the E. coli metabolic network. Acetyl-CoA plays several
different and important roles in metabolism. Shown are only communities with homogeneity score equal to 1 (all compounds
inside each community share at least one pathway annotation); all other links, including those that contribute to community
structure, are omitted. Pathway annotations shared by all community members are displayed with corresponding colors. The
two communities to the right of Acetyl-CoA are grouped since they share the same exact pathway annotations.
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Figure S13: More link community examples in the word-association network. Top: link communities successfully captures
various meanings of the word BRUSH. Bottom: Link communities captures diverse associations of a word pair SUNRISE-
SUNSET The translated node communities are listed.
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Building a (synthetic) benchmark 
graph assumes a model. A specific 
view of the community structure.







A synthetic graph cannot be used to 
compare methods with different 
models of community structure.



A synthetic graph cannot be used to 
compare methods with different 
models of community structure.

Problem:

Use metadata to test the detected 
structure.

Solution:
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Figure S18: The elements of composite performance. (top left) Community quality measures the similarity between nodes
within each community compared to a null model, based on metadata. (bottom left) Overlap quality compares the amount
of overlap found for each node with a measure of real-wold overlap, based on metadata. (top right) Community coverage
is simply the fraction of nodes categorized by the algorithm. (bottom right) Two methods may have the same community
coverage but one may extract many more overlapping memberships and will yield more information about the network. Thus
we introduce Overlap coverage, the average number of memberships per node. This is equivalent to community coverage for
non-overlapping methods.

Note that the evaluation of the community and overlap quality include neither trivial communities nor
singleton nodes, since their absence is considered by the coverage measures.

For many networks, these measures do not necessarily fall between 0 and 1. For example, in the
Amazon.com product network and the word association network, link communities find enrichments
80–100 times higher than the global baseline. Therefore, we renormalize all community and overlap
quality values such that the maximum value is 1 for the best performing method4. This allows us to
directly compare performance across networks whose metadata similarities may cover vastly different
ranges of values. Likewise, overlap coverage is often greater than 1 for overlapping methods; these
values are likewise rescaled. Community coverage is also renormalized, although there is typically
always one algorithm that yields complete coverage and the values are already constrained to [0,1].

We are now left with four measures quantifying the performance of each algorithm. In order to
provide a clean, simple representation of each algorithm’s performance, we show a stacked bar chart
summing all four measures. Since each measure is normalized to have values between 0 and 1, so that
the best method for each measure has a value of 1, the maximum composite performance will be 4. Note
that this composite performance measure weighs each of the four aspects equally, while providing a

4If a method happens to yield a negative value for a particular measure, all the methods are subsequently scaled such that
the minimum value is 0.
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metadata

network description N �k⇥ community overlap

PPI (Y2H) PPI network of S. cerevisiae
obtained by yeast two-hybrid
(Y2H) experiment [41]

1647 3.06 Set of each protein’s
known functions (GO
terms)a

The number of
GO terms

PPI (AP/MS) Affinity purification mass
spectrometry (AP/MS)
experiment

1004 16.57 GO terms GO terms

PPI (LC) Literature curated (LC) 1213 4.21 GO terms GO terms

PPI (all) Union of Y2H, AP/MS, and
LC PPI networks

2729 8.92 GO terms GO-terms

Metabolic Metabolic network
(metabolites connected by
reactions) of E. coli

1042 16.81 Set of each metabolite’s
pathway annotations
(KEGG)b

The number of
KEGG pathway
annotations

Phone Social contacts between
mobile phone
users [44, 45, 46]

885989 6.34 Each user’s most likely
geographic location

Call activity
(number of phone
calls)

Actor Film actors that appear in the
same movies during
2000–2009 [47]

67411 8.90 Set of plot keywords for
all of the actor’s films

Length of career
(year of first role)

US Congress Congressmen who
co-sponsor bills during the
108th US Congress [48, 49]

390 38.95 Political ideology, from
the common space
score [50, 51]

Seniority (number
of congresses
served)

Philosopher Philosophers and their
philosophical influences,
from the English Wikipediac

1219 9.80 Set of (wikipedia)
hyperlinks exiting in the
philosopher’s page

Number of
wikipedia subject
categories

Word Assoc. English words that are often
mentally associated [52]

5018 22.02 Set of each word’s senses,
as documented by
WordNetd

Number of senses

Amazon.com Products that users
frequently buy together

18142 5.09e Set of each product’s user
tags (annotations)

Number of
product categories

aGO terms are “structured, controlled vocabularies (ontologies) that describe gene products in terms of their as-
sociated biological processes, cellular components and molecular functions in a species-independent manner.” See
http://wiki.geneontology.org/index.php/GO_FAQ

bKEGG database provide metabolic pathway annotations for metabolites. See http://www.genome.jp/kegg/
cThese influences are treated independently from the global wikipedia hyperlink structure and are particularly easy

to extract for philosopher biographies.
dSee http://wordnet.princeton.edu/wordnet/man/wngloss.7WN.html
eAmazon.com’s XML Service only returns the five most co-purchased products, though considering the network

as undirected will boost some node degrees. This artificial constraint makes the network to have very narrow degree
distribution, and serves as a unique test set.

Table S2: A brief description of the networks used in the paper. Shown are the number of nodes N, the average degree �k⇥,
and brief descriptions of the metadata available to study node similarity and the expected amount of overlap. Full details in
Sec. S6.
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pervasive overlap

metadata

sampling



But Sune, we often find ‘good’ non-
overlapping communities in networks 
that should possess pervasive overlap 
according to your argument.





hmm. could sampling cause networks 
with pervasive overlap to appear non-
overlapping?



a simple model for pervasive overlap



Complex networks have recently attracted much interest due to their prevalence in nature
and our daily lives [3, 21]. A critical network property is its resilience or robustness to random
breakdown and failure [4, 11, 9, 12], typically studied as a percolation problem [27, 1, 10, 24],
or cascading failures [16, 8, 23]. Meanwhile, most networks are modular [14, 20], comprised
of small, densely connected groups of nodes. The modules often overlap, with elements
belonging to multiple modules [22, 2]. Existing work on robustness has not considered the
role of modular structure.

Consider a system of interacting elements representing computers, power generators, neu-
rons, etc. These elements perform tasks su�ciently complex that they must work together
in densely interconnected modules. These tasks may be parallelized computations, pro-
tein biosynthesis, or higher-order neurological functions such as visual processing or speech
production. Elements are required to communicate between modules, so that modules are
coupled or overlapping, and the system functions properly only when modules can commu-
nicate. We ask how these networks respond when a random fraction of elements fail: do the
modules become uncoupled before the network loses global connectivity? Random failures
provide a toy model of, e.g., a traumatic brain injury or degenerative disease. If enough
elements fail, the modules can no longer communicate (higher brain functions are lost) even
though the network may remain connected (simpler autonomic responses persist). Likewise,
an individual module may fail if too many of its member elements cease to function.

Modular structure can be represented as a bipartite network (Fig. 1a) [18, 19] character-
ized by two degree distributions, r

m

and s

n

, governing the fraction of elements that belong
to m modules and the fraction of modules that contain n elements, respectively. The average
number of modules per element is µ ⌘

P
m

mr

m

and the average number of elements per
module is ⌫ ⌘

P
n

ns

n

. We derive two networks from the bipartite graph by projecting
onto either the elements or the modules: One is the network between elements, while the
other is a network where each node represents a module and two modules are linked if they
share at least one element. The giant component in the element network disappears when
the network loses global connectivity; in the module network it vanishes when the modules
become uncoupled (non-overlapping). Before projection elements fail with probability 1� p

and are removed from the network. Meanwhile, a module is unable to complete its collective
task if fewer than a critical fraction fc of its original elements remain. These failed modules
are removed from the module network but any surviving member elements are not removed
from the element network. See Fig. 1b.

We wish to determine S(p), the fraction of remaining nodes within the giant component
as a function of p, for both the element and module networks. We define four generating
functions [18, 19]:

f0(z) =
1X
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These functions generate the probabilities for (f0) a randomly chosen element to belong
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a simple model for pervasive overlap

pervasively overlapping network 
characterized by two degree 
distributions rm and sn

these determine the fraction of 
elements that belong to m 
modules and fraction of modules 
that contain n elements

with averages

projection provides module and element networks respectively



failure model



failure model

failures occurs on the 
element network. before 
projection, elements fail with 
probability (1 - p) and are 
removed from the network

we say that modules fail 
when fewer some critical fc of 
the nodes in the module 
remain

failed modules are removed 
from the module network, but  
their elements remain in the 
element network



quantity of interest

We wish to determine S(p), 
the fraction of remaining 
nodes within the giant 
component as a function of p, 
for both the element and 
module networks

The giant component in the 
element network disappears 
when the network loses global 
connectivity.

In the module network the 
giant connected component 
vanishes when the modules 
become uncoupled (non-
overlapping)



with these things in place, we can sharpen 
our question
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Hierarchical structure and the prediction of missing links in networks∗

Aaron Clauset,1, 2 Cristopher Moore,1, 2, 3 and M. E. J. Newman2, 4

1Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM, 87501, USA

3Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
4Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA

Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it

∗This paper was published as Nature 453, 98 – 101 (2008);

doi:10.1038/nature06830.

assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)
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could we end up in a situation where the element 
network remains globally connected, but module 
network has under gone a percolation transition?



Complex networks have recently attracted much interest due to their prevalence in nature
and our daily lives [3, 21]. A critical network property is its resilience or robustness to random
breakdown and failure [4, 11, 9, 12], typically studied as a percolation problem [27, 1, 10, 24],
or cascading failures [16, 8, 23]. Meanwhile, most networks are modular [14, 20], comprised
of small, densely connected groups of nodes. The modules often overlap, with elements
belonging to multiple modules [22, 2]. Existing work on robustness has not considered the
role of modular structure.

Consider a system of interacting elements representing computers, power generators, neu-
rons, etc. These elements perform tasks su�ciently complex that they must work together
in densely interconnected modules. These tasks may be parallelized computations, pro-
tein biosynthesis, or higher-order neurological functions such as visual processing or speech
production. Elements are required to communicate between modules, so that modules are
coupled or overlapping, and the system functions properly only when modules can commu-
nicate. We ask how these networks respond when a random fraction of elements fail: do the
modules become uncoupled before the network loses global connectivity? Random failures
provide a toy model of, e.g., a traumatic brain injury or degenerative disease. If enough
elements fail, the modules can no longer communicate (higher brain functions are lost) even
though the network may remain connected (simpler autonomic responses persist). Likewise,
an individual module may fail if too many of its member elements cease to function.

Modular structure can be represented as a bipartite network (Fig. 1a) [18, 19] character-
ized by two degree distributions, r

m

and s

n

, governing the fraction of elements that belong
to m modules and the fraction of modules that contain n elements, respectively. The average
number of modules per element is µ ⌘

P
m

mr

m

and the average number of elements per
module is ⌫ ⌘

P
n

ns

n

. We derive two networks from the bipartite graph by projecting
onto either the elements or the modules: One is the network between elements, while the
other is a network where each node represents a module and two modules are linked if they
share at least one element. The giant component in the element network disappears when
the network loses global connectivity; in the module network it vanishes when the modules
become uncoupled (non-overlapping). Before projection elements fail with probability 1� p

and are removed from the network. Meanwhile, a module is unable to complete its collective
task if fewer than a critical fraction fc of its original elements remain. These failed modules
are removed from the module network but any surviving member elements are not removed
from the element network. See Fig. 1b.

We wish to determine S(p), the fraction of remaining nodes within the giant component
as a function of p, for both the element and module networks. We define four generating
functions [18, 19]:
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These functions generate the probabilities for (f0) a randomly chosen element to belong

2

probability���������	
��
������������������  of���������	
��
������������������  a���������	
��
������������������  randomly���������	
��
������������������  chosen���������	
��
������������������  
element���������	
��
������������������  to���������	
��
������������������  belong���������	
��
������������������  to���������	
��
������������������  m���������	
��
������������������  modules

probability���������	
��
������������������  that���������	
��
������������������  a���������	
��
������������������  random���������	
��
������������������  
element���������	
��
������������������  within���������	
��
������������������  a���������	
��
������������������  randomly���������	
��
������������������  
chosen���������	
��
������������������  module���������	
��
������������������  belongs���������	
��
������������������  to���������	
��
������������������  m���������	
��
������������������  
other���������	
��
������������������  modules

probability���������	
��
������������������  of���������	
��
������������������  a���������	
��
������������������  random���������	
��
������������������  
module���������	
��
������������������  to���������	
��
������������������  contain���������	
��
������������������  n���������	
��
������������������  
elements

prob���������	
��
������������������  that���������	
��
������������������  a���������	
��
������������������  random���������	
��
������������������  module���������	
��
������������������  
of���������	
��
������������������  a���������	
��
������������������  randomly���������	
��
������������������  chosen���������	
��
������������������  
element���������	
��
������������������  to���������	
��
������������������  contain���������	
��
������������������  n���������	
��
������������������  other���������	
��
������������������  
elements



Likewise, the total number of elements that a randomly chosen neighbor of A is connected
to is generated by

G1(z) = f1(h(z)). (6)

Before determining S, we first identify the critical point pc where the giant component
emerges. This happens when the expected number of elements two steps away from a random
element exceeds the number one step away, or

@

z

G0(G1(z))
��
z=1

� @

z

G0(z)
��
z=1

> 0. (7)

Substituting Eqs. (5) and (6) gives f 0
0(1)h

0(1)[f 0
1(1)h

0(1)� 1] > 0 or f 0
1(1)h

0(1) > 1. Finally,
the condition for a giant component to exist, since h

0(1) = pg

0
1(1), is

pf

0
1(1)g

0
1(1) > 1. (8)

For the uniform case, r
m

= �(m,µ) and s

n

= �(n, ⌫), this gives p(µ� 1)(⌫� 1) > 1. If µ = 3
and ⌫ = 3, then the transition occurs at pc = 1/4.

To find S, consider the probability u for element A to not belong to the giant component.
A is not a member of the giant component only if all of A’s neighbors are also not members,
so u satisfies the self-consistency condition u = G1(u). The size of the giant component is
then S = 1�G0(u).

2 Module network

Consider a random module C and then a random member element A. Let Q(`|m) be the
probability that C is connected to ` modules, including itself, through element A, who was
originally connected to m modules including C:

Q(`|m) =

✓
m� 1

`� 1

◆
q

`�1
1 (1� q1)

m�`

, (9)

where
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i�1(1� p)n�i

. (10)

(Notice that q1 = 1 when x(n) ⌘ dnfce = 1 for all n.) The generating function j

m

for the
number of modules that C is connected to, including itself, through A is

j

m

(z) =
mX

`=1

Q(`|m)z`�1 = (zq1 + 1� q1)
m�1

. (11)

Once again, averaging j

m

over memberships gives

j(z) =
1

µ

1X

m=0
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m
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(z) = f1(zq1 + 1� q1). (12)
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Figure 1: The modular network representation [18, 19]. (a) We obtain two networks by pro-
jecting onto elements or modules. (b) The failure of element 3 induces the failure of module
B, uncoupling the remaining modules, even though the network itself remains connected.

to m modules, (f1) a random element within a randomly chosen module to belong to m

other modules, (g0) a random module to contain n elements, and (g1) a random module of
a randomly chosen element to contain n other elements.

1 Element network

Consider a randomly chosen element A that belongs to a group of size n. Let P (k|n) be the
probability that A still belongs to a connected cluster of k nodes (including itself) in this
group after failures occur:

P (k|n) =
✓
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◆
p

k�1(1� p)n�k

. (2)

The generating function for the number of other elements connected to A within this group
is

h
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. (3)

Averaging over module size:
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(z) = g1(zp+ 1� p). (4)

The total number of elements that A is connected to, from all modules it belongs to, is then
generated by

G0(z) = f0(h(z)). (5)
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4
The total number of modules that C is connected to is not generated by g0(j(z)) but by
g̃0(j(z)), where the g̃

i

are the generating functions for module size after elements fail:

g̃0(z) =
1X
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, g̃1(z) =
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The probability s̃

k

to have k member elements remaining in a module after percolation is
given by
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The denominator is necessary for normalization since we cannot observe modules with fewer
than dnfce members. Notice that s̃

n

= s

n

when s

n

= �(n, ⌫) and dnfce = n = ⌫.
Finally, the total number of modules connected to C through any member elements is

generated by F0(z) = g̃0(j(z)) and the total number of modules connected to a random
neighbor of C is generated by F1(z) = g̃1(j(z)). As before, the module network has a giant
component when @

z

F0(F1(z))|z=1�@

z

F0(z)|z=1 > 0 and S = 1�F0(u) = 1� g̃0(j(u)), where
u satisfies u = F1(u) = g̃1(j(u)).

For the uniform case with µ = 3, ⌫ = 3, and fc > 2/3, the critical point for the module
network is pc = 1/2, a considerably higher threshold than for the element network (pc = 1/4).
In Fig. 2 we show S for µ = 3 and ⌫ = 6. The “robustness gap” between the element and
module networks widens as the module failure cuto↵ increases, covering a significant range
of p for the larger values of fc.

Of particular interest are scale-free networks [7, 28, 21]. Here we take r

m

= �(m,µ) as
before, but now s

n

⇠ n

��, with � � 2 1. It is known that scale-free networks are robust to
random failures when 2 < � < 3 (meaning that pc ! 0). However, this result also requires
that the maximum value K of the degree distribution be large (K � 1) [11]. Indeed, as
we lower �, we discover that, while we increase the robustness of the elements, we actually
decrease the robustness of the modules (Fig. 3). For modular networks, it may not be
feasible to build extremely large modules. Interestingly, enforcing on s

n

a maximum module
size cuto↵ N = max{n | s

n

> 0} only improves element robustness.

3 Empirical results

We study failures in multiple social, biological, and informational real-world datasets (see
App. A). Unlike the model, we do not know the modules in advance, so we estimate them with
an overlapping community algorithm [2] (a second method [22] displays similar behavior).
These networks tend to be smaller than those previously discussed, introducing finite-size
e↵ects that mask the behavior of S. To overcome this, we instead use S

0, the fraction of
original nodes that remain in the giant component (see App. B). As shown in Fig. 4, the

1
The degree distribution after projection remains scale-free (with the same exponent), although the

maximum degree may increase.
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Figure 2: The size of the giant component S for r
m

= �(m,µ), s
n

= �(n, ⌫), with µ = 3 and
⌫ = 6. Theory and simulations confirm that the network undergoes a transition from coupled
to non-overlapping modules well before it loses global connectivity. Symbols represent the
element (2) and module (#) networks.

modules fall apart more easily than the elements, qualitatively matching our model across a
broad range of networks.

4 Conclusions

There are a number of interesting avenues for further work. We considered the simplest
case of random failures but extensions to purposeful attacks (failure proportional to n or
m) are also important. Likewise, the model we use assumes that all links exist within
modules, but links between modules are certainly possible. These additional links can only
enhance the robustness of the element network, but will not improve the module network,
so that the robustness gap may be significantly increased. Beyond structural characteristics
of these modular networks it is important to understand the e↵ect of failures and modular
structure on critical phenomena such as synchronization [6, 5], contact processes [15, 26],
cascades [16, 8, 23] or other dynamics [13].

Finally, this work can also help us to understand how empirical networks are a↵ected by
missing data, of critical importance when studying communities. Here p is the probability
that a network element is successfully captured by an experiment, such as a high-throughput
biological assay or web crawler. The robustness gap can explain how non-overlapping com-
munity methods may succeed in networks where overlap is expected: the network is sampled
down to the intermediate regime where nodes are connected but modules are uncoupled.
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scale free networks

It is known that 
scale-free 
networks are 
robust to random 
failures when 2 < λ 
< 3 (meaning that 
pc → 0).

(This result 
requires max value 
of distribution, K, 
to be large.)
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Figure 3: Robustness of scale-free networks. Here r

m

= �(m, 3), s
n

⇠ n

��, fc = 1/2,
and N ⌘ max{n | s

n

> 0}. Increasing N and decreasing �, measures known to improve
the robustness of scale-free networks, actually magnifies the robustness gap. Surprisingly,
this also increases the fragility of the module network, indicating that optimizing against
structural failure may worsen the network’s functional resilience.
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Figure 4: (color online). We simulate failures in a number of real networks, from functional
brain networks to WWW hyperlinks and collaborative social networks. Many of these net-
works are robust to random failures (the element networks exhibit very small pc), but all
networks The behavior of the giant component for all the empirical networks qualitatively
matches that of the model, as the identified modules uncouple faster than the network itself.
Shaded regions provide a guide to the eye for the robustness gap (fc = 0.7). For full dataset
details, see App. A.

there. The Web Links network is constructed from a web crawl made available by Google;
see http://google.com/programming-contest/. The Collaborations network is constructed
between authors who share at least one publication on the arXiv:cond-mat system [17]. The
Brain network was derived using normal patient fMRI data where each node is a “voxel”
dividing the brain spatially and links exist between voxels whose respective BOLD time
series are correlated (measured using Normalized Mutual Information). We begin with the
top 200k most correlated links. A single voxel had very high degree, k = 0.73N (the next
highest degree is k = 0.096N) so we first remove it. This leaves 5038 nodes and 196311
links. We further preprocess this dense network by extracting its multiscale backbone [25]
(↵ = 0.37), giving a final network of 5038 nodes and 77680 links. For all networks, link
communities were extracted at the level of maximum partition density [2], providing the
estimated modules.

B Finite-size e↵ects

For the empirical networks analyzed in Fig. 4, we modified our definition of the quantity S

due to finite-size e↵ects. There are two sources for these e↵ects: (i) the number of modules is
often much smaller than the number of elements, so that a small network of a few thousand
elements may only have a few hundred modules; and (ii) the rate at which elements fail
may be slower than the rate at which modules fail (the former is simply given by p but
the latter also depends on s

n

and fc). We suppress these e↵ects by choosing S with a
well-behaved denominator as p ! 0. Specifically, our options are S(p) = Ngcc(p)/N(p) or
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S’(p) the fraction of original nodes 
in the giant connected component

Shaded regions provide a guide to the eye for 
the robustness gap (fc = 0.7).




