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Figure : SOC example. K = average connectivity. C = frozen fraction.



Modified Bornholdt-Rohlf Boolean Network
1. nodes v;(t) € {£1}, directed edges e;;(t) € {—1,0,+1}.
2. dynamical update rule (t = 0, random graph), define
fi(t) = > ei(t)v(t) + pvi(t) + ori, F~N(0,1)
Jj
_ [ senlfi(t)] if fi(t) # 0,
vi(t+1) = { vi(t) if £(t) = 0.



Modified Bornholdt-Rohlf Boolean Network
1. nodes v;(t) € {£1}, directed edges e;;(t) € {—1,0,+1}.
2. dynamical update rule (t = 0, random graph), define
fi(t) = > ei(t)v(t) + pvi(t) + ori, F~N(0,1)
Jj
_ [ senlfi(0)] if £i(t) #0,
vi(t+1) = { vi(t) if £(t) = 0.

3. T, node dynamics steps, T, := | T,/2], measure activity

T,-1
1

A,' = TV — Ta Z V,'(t)

t=T,

4. topological update rule, choose one node i randomly

Al > 1-96 create an edge eji(t) # 0,
|Ajl < 1—0  delete an edge ¢;(t) = 0.



SOC Ingredients & Observations

» Large time scale separation T, = 1/e > 1 needed

topology dynamics <+ slow node dynamics <> fast.

» SOC is robust to small noise 0 < 0 < 1.
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» Steady state near fast subsystem bifurcation point?!
» Information processing <+ perturbations < finite-time.



Are there optimal values of (e, 0)?

5 T/2

error = Ex 1= = > IX(t) = X7l for X € {K,C}.
t=0

> X7 := (X(t))[1/2, 1] Where (-){1/2,7] = time average.
> X average over 100 initial random graphs.



Are there optimal values of (e, 0)?

STIX(e) - X,

error = Ex 1= —

for X € {K, C}.

> X7 := (X(t))[1/2, 1] Where (-){1/2,7] = time average.

> X average over 100 initial random graphs.
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: T = 60000 total topological dynamics steps.



Background for Models

Fast variables x € R™, slow variables y € R", time scale separation 0 < € < 1.

%: / = et= Q = X =
{%_X, _ f(x,y) §t=% {Efj}s, _ 6)‘< _ f(x,y)
F=y eg(x,y) T y g(x,y)
} e=0 J e=0
{X’ = f(x,y) {0 = f(x,y)
y =0 y = g(x,y)

fast subsystem slow subsystem



Background for Models

Fast variables x € R™, slow variables y € R", time scale separation 0 < € < 1.

dx dx :

{g;:xj = f(xy) §t=% {Eg; = €>f = f(x,y)
=Y = elxy) & = v = gy
} e=0 J e=0
{X’ = f(xy) {0 = f(xy)

y’ =0 vy = glxy)
fast subsystem slow subsystem

> C:={f =0} = critical manifold = equil. of fast subsystem.
» C is normally hyperbolic if D,f has no zero-real-part eigenvalues.

> Fenichel’s Theorem: Normal hyperbolicity = “nice” perturbation.



Non-Monotonicity and Optimality in €7 - A Model...
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Non-Monotonicity and Optimality in €7 - A Model...

X/ = (y71)27x)
y' = e(l-y).
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Important (new?) concept - time-scale resonance (TR).



Back to the Bornholdt-Rohlf Model... and Noise
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Back to the Bornholdt-Rohlf Model... and Noise
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» Non-monotone error, small noise — noise optimality.

» SOC tipping, large noise — noise-induced phase transition.
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dx = (yx—x3)dt + &dWw,
dy = e(x*— |x])dt
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> First thought: It is just stochastic resonance.

» Second throught: No, since we have SOC steady state.

dx = (yx—x3)dt + &dW,
dy = e(x*— |x])dt
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Important concept - steady-state stochastic resonance (SSR).
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Thank you for your attention.



