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Figure : SOC example. K = average connectivity. C = frozen fraction.



Modified Bornholdt-Rohlf Boolean Network

1. nodes vi (t) ∈ {±1}, directed edges eij(t) ∈ {−1, 0,+1}.

2. dynamical update rule (t = 0, random graph), define

fi (t) =
∑

j

eij(t)vj(t) + µvi (t) + σri , ~r ∼ N (0, 1)

vi (t + 1) =

{

sgn[fi (t)] if fi (t) 6= 0,
vi (t) if fi (t) = 0.



Modified Bornholdt-Rohlf Boolean Network

1. nodes vi (t) ∈ {±1}, directed edges eij(t) ∈ {−1, 0,+1}.

2. dynamical update rule (t = 0, random graph), define

fi (t) =
∑

j

eij(t)vj(t) + µvi (t) + σri , ~r ∼ N (0, 1)

vi (t + 1) =

{

sgn[fi (t)] if fi (t) 6= 0,
vi (t) if fi (t) = 0.

3. Tv node dynamics steps, Ta := ⌊Tv/2⌋, measure activity

Ai :=
1

Tv − Ta





Tv−1
∑

t=Ta

vi (t)



 .

4. topological update rule, choose one node i randomly

|Ai | > 1− δ create an edge eij(t) 6= 0,
|Ai | ≤ 1− δ delete an edge eij(t) = 0.



SOC Ingredients & Observations

◮ Large time scale separation Tv = 1/ǫ≫ 1 needed

topology dynamics↔ slow node dynamics ↔ fast.

◮ SOC is robust to small noise 0 < σ ≪ 1.
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◮ Steady state near fast subsystem bifurcation point?!

◮ Information processing ↔ perturbations ↔ finite-time.



Are there optimal values of (ǫ, σ)?

error = EX :=
2

T

T/2
∑

t=0

|X (t)−XT |, for X ∈ {K ,C}.

◮ XT := 〈X (t)〉[T/2,T ] where 〈·〉[T/2,T ] = time average.

◮ X average over 100 initial random graphs.
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Figure : T = 60000 total topological dynamics steps.



Background for Models

Fast variables x ∈ R
m, slow variables y ∈ R

n, time scale separation 0 < ǫ ≪ 1.

{

dx
dt

= x ′ = f (x , y)
dy
dt

= y ′ = ǫg(x , y)
ǫt=s
←→

{

ǫdx
ds

= ǫẋ = f (x , y)
dy
ds

= ẏ = g(x , y)

↓ ǫ = 0 ↓ ǫ = 0

{

x ′ = f (x , y)
y ′ = 0

{

0 = f (x , y)
ẏ = g(x , y)

fast subsystem slow subsystem
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◮ C := {f = 0} = critical manifold = equil. of fast subsystem.

◮ C is normally hyperbolic if Dx f has no zero-real-part eigenvalues.

◮ Fenichel’s Theorem: Normal hyperbolicity ⇒ “nice” perturbation.



Non-Monotonicity and Optimality in ǫ? - A Model...

x ′ = (y − 1)2 − x ,
y ′ = ǫ(1− y).
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Important (new?) concept - time-scale resonance (TR).



Back to the Bornholdt-Rohlf Model... and Noise
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◮ Non-monotone error, small noise → noise optimality.

◮ SOC tipping, large noise → noise-induced phase transition.
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dx = (yx − x3)dt + σ̃dW ,
dy = ǫ(x∗ − |x |)dt .
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Important concept - steady-state stochastic resonance (SSR).
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Thank you for your attention.


