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Random walks on a scale-free network

D, (t) — Z ip. (Z _1) Probability that a RWer
LS Jjs

i) k. occupies at node i at time t,
/ starting from node s at t=0.
ki
P (t > 0) = o7 Noh and Rieger, PRL (2004)

PO=1Y p.®




Purposes:

. . ] &
Probability to return to the origin P (f) = — t
(1) N;pss()

First passage time:
Irst passage 1 p.(1)="7

- First passage time distribution
- Mean first passage time

as a function of ds and Y. => It shows crossover behaviors

« Many studies on these have been performed on deterministic SF nets,
* but not on un-deterministic networks, or
« asymptotic behaviors for some limited cases



Probability to return to the origin

I)O(t) . t—ds/2
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Probability to return to the origin
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Probability to return to a given starting node s

Lk RAG
p;(t — )_ZL » P (1) Zi(t)

/;l(t) = Z Ey (t)  Sum of the link accessibility from node j to i
jenn(i)

N —
L(t) = Zki (t)/2  Number of accessed links
i=1

() = <k> A
2P, (t-2)

d./2  Number of
cf. S(t) ~1 distinct sites visited

7 r A\ (y—1
kh (1) ~ L(2) =D Similar to natural cutoff relation






Probability to return-to-origin in random SF nets

(,d_/2(y-1)
A s for t <t )

(y-1)/d, 2/d,
k, ~ < ¥ t. ~k, ~L
k, for t>1

.

A [ (hub)
k(1) t=4 2 for t K Iy,

3

Phh(f) —

2L(1) | - for t > t,,
df.h“b) = d, et

520D for <1 (s)
k for t>1¢ (s)

)

Kand
!

{ (S) _ k 2(y-1)/d,




-

d,/2(7-1) £,
A t for 1< (s)
5

k. for 1>1 (s)

L

_ 2(y-1)/d;
t.(s) ~ k,

(=412 for ¢ L t.(9),
Pss(t) ~ kot ™2 fort.(s) < t K .

k

am — g Y ~2

\y—l

when y — 2, d"™ — 0, and p_(¢) — const. during ¢ ().

Random walks are trapped at local hubs, Minotaur's labyrinth.



Effective degree of starting node vs time
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Probability to return to the origin on model nets
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Probability to return to the origin on the WWW
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First passage time distribution for RWs

N

_ S FPT probability for RWs
Fn () = Z Ep (1) starting from sto m

s=1
Using the renewal equation,

t
Pm S(t) — 5m 5510 + 2 Fn s(t,)pm m(t - t,)

t'=0

k., z 1
2L(1—2)R,, (2)

Fm (2) =



Phase diagram in (dg, y) space
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Mean First Passage Time
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Conclusions

1. Probability to return to the origin has been studied
in diverse scale-free networks

2. First passage time problems have been studied in
diverse scale-free networks

Complete analytic formulae for those quantities
Including crossover behavior over time are
derived in terms of spectral dimensions,

de, Vv, ke, ki, and N.
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1. Background

t=1/N

1) The number of nodes is fixed as N.

2) Edges are added one by one to the system between
two nodes randomly chosen at each time step.

=>» Percolation transition at ftc=L¢/N=1/2

=» Continuous transition



Ach“thaS process Achlioptas et al, Science (2009,3)
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1. Pick up two edge candidates randomly.
2. Calculate the product of two-cluster sizes:

By e1, 7*2=14 vs. by e2, 4*4=16 = e1 < ez (product rule)
3. Then, e1 is attached, and ez is discarded.

= Growth of large clusters is suppressed. ERPR
=» Percolation transition point is delayed.



2. Goal

Is the explosive percolation transition continuous or discontinuous ?

1) Achlioptas et al, Explosive percolation transition, Science (2009,3).

2) Many others.

1) R.A. da Costa, S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes Explosive
Percolation Transition is Actually Continuous, PRL 105, 255701 (2010).

2) P Grassberger, C. Christensen, G. Bizhani, S.-W. Son, M. Paczuski, Explosive
percolation is continuous, but with unusual finite size behavior, PRL 106,
225701 (2011).

3) O. Riordan and L. Warnke, Explosive percolation is continuous, Science
333, 322 (2011).

4) H.K. Lee, BJ. Kim, and H. Park, Continuity of the explosive PT, PRE 84,
020101 (2011).
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] — From the Achlioptas slide
Introduction

® Achlioptas process:
start with the empty graph on n vertices

in each step r edges are chosen uniformly at
random (among all edges never seen before)

select one of the r edges that is inserted into the
graph, the remaining r— 1 edges are discarded

® Goal: Avoid creating a copy of some fixed graph F

F= r=2

How long can we
avoid F by this

freedom of choice?




] — From the Achlioptas slide

Introduction

®* Ng=Ny(F, r, n) is a threshold:
There is a strategy that Every strategy will be forped
Avoids creating a copy to create a copy of F with

of F with probability 1-o(1) :  probability 1-o(1)

= N = N(n) = # steps
N /N, No=No(F. 1. n) NN, |
] I I I ! >
n’ n12  1.286... n1.333... }(n) o 2
2

r=1 F=A =2 r=3 r=4 '

If F is a cycle, a cligue or a complete bipartite graph with parts of equal
size, an explicit threshold function is known. (Krivelevich, Loh, Sudakov, 2007+)

O B M



v" The Achlioptas process (AP):
the dynamics avoiding the formation

of a given pattern in evolution of graph.

v The percolation model following the AP:
the target pattern is giant component.
Thus, the dynamics has to be proceeded

to avoid the formation of a giant cluster.



3. Classification of edge candidates

(1) (ii) (iii)

Inter-cluster edges Inter-cluster edge Intra-cluster edges
+

Intra-cluster edge



Fraction of type (ii) & (ii)

Fraction of (11) + (i11)
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4. Model Variants (Product Rule)

For the case (ii)

ERPR-A (original rule)

812:72 VS. SZa*SZb:4*4:16
> Take e,

But e; is desirable

ERPR-B

> Take e; (Absolutely)
Cluster size unchanged

ERPR-C

Case (i) is excluded.




Model Variants (Sum Rule)

For the case (ii)

ERSR-A

251:2*7 VS. SZa+SZb:4+4:8
> Take e,

But e, is desirable

ERSR-B

> Take e; (Absolutely)
Cluster size unchanged

ERSR-C

Case (i) is excluded.




5. Intrinsic fault of product rule

For the case (i)

S1a"51p,=7*2=14 vs. S1a*+S1p=7+2=9 vs.

S75*Sp=44=16 # SatSp=4+4=8

e, was taken in PR, = e, has to be taken
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6. Results
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/. da Costa, Dorogovtsev, Goltsev, & Mendes model
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Small-world network model by Watts & Strogatz
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[Strogatz 1998] MBER 15 PHYSICAL REVIEW LETTERS

Small-World Networks: Evidence for a Crossover Picture

Marc Barthélémy™* and Luis A. Nunes Amaral

br for Polymer Studies and Department of Physics. Boston University, Boston, Massachusett
(Recetved 8 December 1998)

Addition or rewiring of p=1/N fraction of links changes to the SW network



Conclusions

1. Size-dependent behavior of the order parameter is sensitive to the
dynamic rules.

2. This makes it hard to reach a conclusion (discontinuous or
continuous transition) based on numerical data.

3. Comparison between randomness in choosing edge candidates
and suppression strength should to be made analytically. The
difference should be compared with the order of time delayed due
to the addition of intra-cluster edges.



