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distribution of few-node connectivity patterns, or motifs
[26,27]. Another such approach is analyzing the utilization
(or, in this case, the strength) of connections [28,29,30].

In this paper, we apply a combination of statistical methods
to a large dataset from hundreds of simultaneous quadruple
whole-cell recordings from visual cortex in developing rats.
Our results confirm previous indications of nonrandomness
and point out several new ones. In particular, we show that
the distribution of connection strengths between pyramidal
neurons is non-Poisson and find correlations in the strength
of the connections sharing pre- or postsynaptic neurons.
Also, we find several overrepresented three-neuron connec-
tivity patterns, or motifs. Surprisingly, we find that some few-
neuron motifs can play an important role in the dynamics of
layer 5 local cortical networks because they are composed of
exceptionally strong connections. This suggests a novel view
of the local cortical network, in which a skeleton of stronger
connections is immersed in a sea of weaker ones.

Results

We studied connectivity among thick tufted layer 5
neurons in rat visual cortex with quadruple whole-cell
recordings (Figure 1A and 1B). Thick tufted layer 5 pyramidal
neurons are important projection neurons from the cerebral
cortex to subcortical areas [9,31,32]. Synaptic connection
strengths were assessed by evoking action potentials in each
of the four cells and measuring the averaged peak excitatory
postsynaptic potential (EPSP) amplitudes in the other three
cells (see Figure 1C and Materials and Methods). Results of
these measurements for a sample quadruple recording are
shown in Figure 1D. Each arrow indicates a detected
connection with the corresponding connection strengths.

The dataset contained a total of 816 quadruple recording
attempts (some of these attempts contained data for only two
or three neurons, if whole-cell configuration was not
successfully established with all four cells). As previously
reported [5], the rate of connectivity was p = 11.6% (931
connections out of 8,050 possible connections), which is
similar to that reported for rat somatosensory cortex layers 5
[6,9] and 2/3 [11], as well as those previously reported for rat
visual cortical layers 5 [3,10] and 2/3 [11].

Two-Neuron Patterns
We started by assessing how well a randomly connected

network [33] describes our dataset. In this model, the
existence of a connection between any two neurons is
independently chosen with a uniform probability p
(Figure 2A). We test the predictions of this model by
classifying all simultaneously recorded pairs of neurons into
three classes: unconnected, unidirectionally connected, and
bidirectionally connected. Given connection probability p
and total number of pairs N, the expected number of
unconnected pairs should be N(1! p)2. The expected number
of unidirectionally connected pairs should be 2Np(1! p), and
the expected number of bidirectionally connected pairs
should be Np2. We find that the actual number of bidirec-
tionally connected pairs is four times that of the expected
numbers (p , 0.0001) (Figure 2B). The observed over-
representation of reciprocally connected layer 5 neurons
confirms previous reports [5,6]. Such overrepresentation has
also been observed in layer 2/3 of the rat visual cortex [11].
However, whether projections between layers observe this
pattern remains an open question.
Can the overrepresentation of reciprocal connections

reflect an experimental artifact? Indeed, such overrepresen-

Figure 1. Illustration of a Quadruple Whole-Cell Recording

(A) Dodt contrast image showing four thick-tufted L5 neurons before patching on.
(B) Fluorescent image of the same four cells in whole-cell configuration.
(C) Average EPSP waveform measured in the postsynaptic neuron (bottom) while evoking action potentials in the presynaptic neuron (top).
(D) Diagram of detected synaptic connections and their strengths for this quadruple recording.
DOI: 10.1371/journal.pbio.0030068.g001
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Cross-Correlation Function

ρ(t) expressed as

c(t) =
1

T

� T

0

E[(ρ(t)− r)(ρ(t + τ − r)]dt.

Exercise: Compute h(t) and the autocorrelation function for a Poisson process.

Multivariate point processes

Our brains consist of many neurons working together. Therefore, we frequently need to extend
the methods described above to collections of spike trains. If neurons acted independently,
this would be easy since the response of a population of N neurons would be completely
characterized by the individual responses of each group in the population.

Neuronal responses are frequently not independent. A group of cells could be coupled, or
they could receive shared input. In both cases observing a spike in one cell tells us something
about the probability of observing a spike in another. This can again be summarized by using
an intensity function. Suppose we have two cells, A and B. Let NA(s, t) be the number of
spikes in cell A during the interval (s, t). The probability of observing a spike in A in the
interval (t, t + ∆t) given a spike in cell B at time 0 is given in terms of the cross-intensity
function

hA,B(t) = lim
∆t→0+

Pr[NA(t, t + ∆t) = 1|NB(−∆t, 0) > 0]

∆t
.

It is easy to see that hA,B(t) = hB,A(−t) when the rates of the two processes are equal. It is
also easy to see from the definition how to compute hB,A(t): Separate the timeline into bins of
some size. Choose a spike in train A at some time t0 (dashed vertical line in the figure below).
Now compute the relative times between this spike and all spikes in train B (in the figure
below ti stands for the relative time between this and the ith spike following it). Increase the
value in the bin by this amount.

those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):

r<S m,sð Þc~
s2 dn

dm

! "2

CV2n
c ð3Þ

Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).

As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:

r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).

To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted

+

+

+

+

CV

 

O
u
tp

u
t 

c
o

rr
e
la

ti
o

n
 r

T

µ s

20 mV
0.1 nA

100 ms
30 ms

Time (ms)

C
u
rr

e
n
t

Geometric mean output rate √ninj (spikes s–1)

50 (spikes s–1)2

≈

1

2

n1

rate: n
correlation:
rT = c ≠ f(n)

1

2

n2

T

0 10 20

–60

0

x1

x2

xc

–50 50–50 0 50 0

0

0.5

1

0 0.5 1
Input correlation c

a b

c d

0.1

0.2

0.1

0.2

0.5 1

r
T

0

0.3

n(1–c)

n(1–c)

nc

y1:

y2:

x1:

xc:

x2:

e

f

O
u
tp

u
t 

c
o

rr
e
la

ti
o

n
 r

T

0

0.3

Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with

ffiffiffiffiffiffiffi
ninj

p
and does not co-vary with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj

p

(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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Cross-Correlation Function

ρ(t) expressed as

c(t) =
1

T

� T

0

E[(ρ(t)− r)(ρ(t + τ − r)]dt.

Exercise: Compute h(t) and the autocorrelation function for a Poisson process.

Multivariate point processes

Our brains consist of many neurons working together. Therefore, we frequently need to extend
the methods described above to collections of spike trains. If neurons acted independently,
this would be easy since the response of a population of N neurons would be completely
characterized by the individual responses of each group in the population.

Neuronal responses are frequently not independent. A group of cells could be coupled, or
they could receive shared input. In both cases observing a spike in one cell tells us something
about the probability of observing a spike in another. This can again be summarized by using
an intensity function. Suppose we have two cells, A and B. Let NA(s, t) be the number of
spikes in cell A during the interval (s, t). The probability of observing a spike in A in the
interval (t, t + ∆t) given a spike in cell B at time 0 is given in terms of the cross-intensity
function

hA,B(t) = lim
∆t→0+

Pr[NA(t, t + ∆t) = 1|NB(−∆t, 0) > 0]

∆t
.

It is easy to see that hA,B(t) = hB,A(−t) when the rates of the two processes are equal. It is
also easy to see from the definition how to compute hB,A(t): Separate the timeline into bins of
some size. Choose a spike in train A at some time t0 (dashed vertical line in the figure below).
Now compute the relative times between this spike and all spikes in train B (in the figure
below ti stands for the relative time between this and the ith spike following it). Increase the
value in the bin by this amount.

those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):

r<S m,sð Þc~
s2 dn

dm

! "2

CV2n
c ð3Þ

Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).

As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:

r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).

To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with
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p
and does not co-vary with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj

p

(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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ρ(t) expressed as

c(t) =
1

T

� T

0

E[(ρ(t)− r)(ρ(t + τ − r)]dt.

Exercise: Compute h(t) and the autocorrelation function for a Poisson process.

Multivariate point processes

Our brains consist of many neurons working together. Therefore, we frequently need to extend
the methods described above to collections of spike trains. If neurons acted independently,
this would be easy since the response of a population of N neurons would be completely
characterized by the individual responses of each group in the population.

Neuronal responses are frequently not independent. A group of cells could be coupled, or
they could receive shared input. In both cases observing a spike in one cell tells us something
about the probability of observing a spike in another. This can again be summarized by using
an intensity function. Suppose we have two cells, A and B. Let NA(s, t) be the number of
spikes in cell A during the interval (s, t). The probability of observing a spike in A in the
interval (t, t + ∆t) given a spike in cell B at time 0 is given in terms of the cross-intensity
function

hA,B(t) = lim
∆t→0+

Pr[NA(t, t + ∆t) = 1|NB(−∆t, 0) > 0]

∆t
.

It is easy to see that hA,B(t) = hB,A(−t) when the rates of the two processes are equal. It is
also easy to see from the definition how to compute hB,A(t): Separate the timeline into bins of
some size. Choose a spike in train A at some time t0 (dashed vertical line in the figure below).
Now compute the relative times between this spike and all spikes in train B (in the figure
below ti stands for the relative time between this and the ith spike following it). Increase the
value in the bin by this amount.

those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):

r<S m,sð Þc~
s2 dn

dm

! "2

CV2n
c ð3Þ

Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).

As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:

r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).

To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with

ffiffiffiffiffiffiffi
ninj

p
and does not co-vary with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj

p

(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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Spike train A

Spike train B

Exercise: How do you need to normalize the resulting histogram to get hB,A(t)?

The argument used in proving relation Eq. (4) can again be used to relate the cross-
intensity function with the cross-covariance density cA,B(t) = rBhA,B(t)− rArB, where rA and
rB are the respective rates of the two processes. Here cA,B(T )(∆t)2 can again be interpreted
as the approximate covariance of NA(t + T, t + T + ∆t) and NB(t, t + ∆t).

7

Conditional probability of 
spike in B, given spike in A.

the correlation structure of a network.

Network model

To illustrate the results we consider a network of N nonlinear integrate-and-fire (IF) neurons with

membrane potentials modeled by

τiv̇i = −(vi − EL,i) + ψ(vi) + Ei +

�
σ2

i τiξi(t) + fi(t) + ηi(t). (1)

Here Ei represents the mean input from parts of the system not explicitly modeled. A spike-

generating current ψ(vi) may be included to emulate the rapid onset of action potentials. Un-

less otherwise specified, we utilize the exponential IF model (EIF), so that ψ(v) ≡ ∆T exp[(v −
vT )/∆T ] [Fourcaud-Trocmé et al., 2003]. Cells are subject to internally induced fluctuations due to

channel noise [White et al., 2000], and externally induced fluctuations due to inputs not explicitly

modelled [Renart et al., 2004]. We model both by independent, Gaussian, white noise processes,�
σ2

i τiξi(t) [Burkitt, 2006]. An external signal to cell i is represented by ηi(t).

Upon reaching a threshold vth, an action potential is generated, the membrane potential is reset

to vr, and held constant for an absolute refractory period τref . The output of cell i is characterized

by the times, ti,k, at which its membrane potential reaches threshold, resulting in an output spike

train yi(t) =
�

k δ(t− ti,k). Synaptic interactions are modeled by delayed α-functions

fi(t) =

�

j

(Jij ∗ yj)(t), where Jij(t) =





Wij

�
t−τD,j

τ2
S,j

�
exp

�
− t−τD,j

τS,j

�
t ≥ τD,j

0 t < τD,j

. (2)

The N × N matrix J contains the synaptic kernels, while the matrix W contains the synaptic

weights, and hence defines the network architecture. In particular, Wij = 0 represents the absence

of a synaptic connection from cell j to cell i.

Table 1 provides an overview of all parameters and variables.

Measures of spike time correlation

We quantify dependencies between the responses of cells in the network using the spike train auto-

and cross-correlation functions [Gabbiani and Cox, 2010]. For a pair of spike trains, yi(t), yj(t), the

cross-correlation function Cij(τ) is defined as

Cij(τ) = cov (yi(t + τ), yj(t)) .

The auto-correlation function Cii(t) is the cross-correlation between a spike train and itself, and

C(t) is the matrix of cross-correlation functions. Denoting by Nyi(t1, t2) =
� t2
t1

yi(s)ds the number

of spikes over a time window [t1, t2], the spike count correlation, ρij(τ), over windows of length τ
is defined as,

ρij(τ) =
cov

�
Nyi(t, t + τ), Nyj (t, t + τ)

�
�

var (Nyi(t, t + τ)) var
�
Nyj (t, t + τ)

� .

We assume stationarity of the spiking processes so that ρij does not depend on t. The spike count

covariance is related to the cross-correlation function by [Bair et al., 2001, Shadlen and Newsome,

1998b]

cov
�
Nyi(t, t + τ), Nyj (t, t + τ)

�
=

� τ

−τ
Cij(s)(τ − |s|)ds.

3

After normalization

Cross-Correlation Function,Ci,j(τ)
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distributions Phð ~hÞ. The first is the binary distribution, where h1;2
take one of two equally likely discrete values (#1), with a
covariance Covðh1;h2Þ ¼ α (useful when the biological correlate
of the input is the spiking of upstream neurons). In this case
Phð−1; −1Þ ¼ Phð1;1Þ ¼ ð1þ αÞ∕4 and Phð−1;1Þ ¼ Phð1; −1Þ ¼
ð1 − αÞ∕4.

The second is a Gaussian distribution, where inputs take a
continuum of values (useful when the input is a convolution of
a stimulus with a receptive field). In this case, we also take
the means to vanish (hh1i ¼ hh2i ¼ 0), unit standard deviations
(σh1 ¼ σh2 ¼ 1), and covariance Covðh1;h2Þ ¼ Covð ~hÞ ¼ α. In
both cases, αmeasures input correlation and ranges from −1 (per-
fectly anticorrelated) to 1 (perfectly correlated). We asked what
interaction strength J between the two neurons (Fig. 2A and
Eq. 2) would maximize information, as the correlation in the
input ensemble (parameterized by α) and the reliability of neu-
rons (parameterized by β) were varied.

For the binary input distribution, the mutual information of
Eq. 5 can be computed exactly as a function J, α, and β (see
SI Appendix), and the optimal coupling J&ðα;βÞ is obtained by
maximizing this quantity for each α and β (Fig. 2B). When β is
small, the optimal coupling takes the same sign as the input
covariance. In this case, interactions between the two neurons
enhance the correlation present in the stimulus. The resulting
redundancy helps counteract loss of information to noise. As
reliability (β) increases, the optimal coupling J& decreases in mag-
nitude as compared to the input strength j ~hj (see Discussion).
This is because, in the absence of noise, a pair of binary neurons
has the capacity to carry complete information about a pair of
binary inputs. Thus, in the noise-free limit the neurons should
act as independent encoders (J& ¼ 0) of binary inputs.

For a Gaussian distribution of inputs, we maximized the mu-
tual information in Eq. 5 numerically (Fig. 2 C and D). For small
β, the optimal coupling J& has the same sign as the input correla-
tion, as in the binary input case, thus enhancing input correlations
and using redundancy to counteract noise. However, for large β,
the optimal coupling has a sign opposite to the input correlation.

Thus the neural output decorrelates its inputs (Fig. 2E). This
occurs because binary neurons do not have the capacity to encode
all the information in continuous inputs. Therefore, in the ab-
sence of noise, the best strategy is to decorrelate inputs to avoid
redundant encoding of information. The crossover in strategies is
at β ∼ 1 and is driven by the balance of output and noise entropies
in Eq. 6, as shown in Fig. S1. In all regimes more information is
conveyed with the optimal coupling (J&) than by an independent
(J ¼ 0) network. The information gain produced by this interac-
tion is larger for strongly correlated inputs (Fig. 2F).

For both binary and Gaussian stimulus ensembles, the biases
toward firing (h0i ) in the optimal network adjusted themselves
so that individual neurons were active about half of the time (see
SI Appendix). Adding a constraint on the mean firing rates would
shift the values of h0i in the optimal network, but would leave the
results for the optimal coupling J& qualitatively unchanged.

Thus, information represented by a pair of neurons is maxi-
mized if their interaction is adjusted to implement different func-
tions (independence, decorrelation to remove redundancy, and
averaging to reduce noise) depending on the input distribution
and neural reliability.

Networks of Neurons. We then asked what would be the optimal
interaction network for larger populations of neurons. First, we
considered a network of N neurons responding to an input en-
semble of K equiprobable N-bit binary patterns chosen randomly
from the set of 2N such patterns. For N ≲ 10 it remained possible
to numerically choose couplings h0i and Jij that maximized infor-
mation about the input ensemble represented in network
responses. We found qualitatively similar results to two neurons
responding to a binary stimulus: For unreliable neurons (low β),
the optimal network interactions matched the sign of input cor-
relations, and for reliable neurons (high β), neurons became
independent encoders. Input decorrelation was never an optimal
strategy, and the capacity of the network to yield substantial
improvements in information transmission was greatest when
K ∼N (see SI Appendix). Our results suggest that decorrelation
will never appear as an optimal strategy if the input entropy is less
than or equal to the maximum output entropy.

We then examined the optimal network encoding correlated
Gaussian inputs drawn from a distribution with zero mean and
a fixed covariance matrix. The covariance matrix was chosen at
random from an ensemble of symmetric matrices with exponen-
tially distributed eigenvalues (SI Appendix). As for the case of
binary inputs, we numerically searched the space of g for a choice
maximizing the information for N ¼ 10 neurons and different
values of neural reliability β. As β is changed, the optimal (J&)
and uncoupled (J ¼ 0) networks behave very differently. In the
uncoupled case (Fig. 3A), decreasing β increases both the output
and noise entropies monotonically. In the optimal case (Fig. 3B),
the noise entropy can be kept constant and low by the correct
choice of couplings J&, at the expense of losing some output
entropy. The difference of these two entropies is the information,
plotted in Fig. 3C. At low neural reliability β, the total information
transmitted is low, but substantial relative increases (almost
twofold) are possible by the optimal choice of couplings. The
optimal couplings are positively correlated with their inputs, gen-
erating a redundant code to reduce the impact of noise (Fig. 3D).
At high β, the total information transmitted is high, and optimal
couplings yield smaller, but still significant, relative improvements
(∼10%). The couplings in this case are anticorrelated with the
inputs, and the network performs input decorrelation.

For unreliable neurons our results give evidence that the
network uses redundant coding to compensate for errors. But
theoretically there are many different kinds of redundant
error-correcting codes—e.g., codes with checksums vs. codes that
distribute information widely over a population. Thus we sought
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Fig. 2. Information transmission in a network of two neurons. (A) Schematic
of a two-neuron network, fσ1;σ2g, coupled with strength J, receiving corre-
lated binary or Gaussian inputs. α ¼ CovðhÞ ¼ input correlation; CovðσÞ ¼
hσ1σ2i − hσ1ihσ2i ¼ correlation between output spike trains. (B) Optimal J&

as a function of input correlation, CovðhÞ, and neural reliability β for binary
inputs. (C) Optimal J& as a function of input correlation and neural reliability
for Gaussian inputs. (D) J& as a function of input correlation for three values
of reliability (β ¼ 0.5, 1, 2, grayscale) and Gaussian inputs; these are three
horizontal sections through the diagram in C. At high reliability the optimal
J& has an opposite sign to the input correlation; at low reliability it has the
same sign. (E) Output correlation as a function of input correlation and
reliability for Gaussian inputs. At high reliability (β ¼ 2) the network decorr-
elates the inputs. At low reliability (β ¼ 1∕2) the input correlation is
enhanced. (F) Fractional improvement in information transmission in optimal
(J&) vs. uncoupled (J ¼ 0) networks.
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distributions Phð ~hÞ. The first is the binary distribution, where h1;2
take one of two equally likely discrete values (#1), with a
covariance Covðh1;h2Þ ¼ α (useful when the biological correlate
of the input is the spiking of upstream neurons). In this case
Phð−1; −1Þ ¼ Phð1;1Þ ¼ ð1þ αÞ∕4 and Phð−1;1Þ ¼ Phð1; −1Þ ¼
ð1 − αÞ∕4.

The second is a Gaussian distribution, where inputs take a
continuum of values (useful when the input is a convolution of
a stimulus with a receptive field). In this case, we also take
the means to vanish (hh1i ¼ hh2i ¼ 0), unit standard deviations
(σh1 ¼ σh2 ¼ 1), and covariance Covðh1;h2Þ ¼ Covð ~hÞ ¼ α. In
both cases, αmeasures input correlation and ranges from −1 (per-
fectly anticorrelated) to 1 (perfectly correlated). We asked what
interaction strength J between the two neurons (Fig. 2A and
Eq. 2) would maximize information, as the correlation in the
input ensemble (parameterized by α) and the reliability of neu-
rons (parameterized by β) were varied.

For the binary input distribution, the mutual information of
Eq. 5 can be computed exactly as a function J, α, and β (see
SI Appendix), and the optimal coupling J&ðα;βÞ is obtained by
maximizing this quantity for each α and β (Fig. 2B). When β is
small, the optimal coupling takes the same sign as the input
covariance. In this case, interactions between the two neurons
enhance the correlation present in the stimulus. The resulting
redundancy helps counteract loss of information to noise. As
reliability (β) increases, the optimal coupling J& decreases in mag-
nitude as compared to the input strength j ~hj (see Discussion).
This is because, in the absence of noise, a pair of binary neurons
has the capacity to carry complete information about a pair of
binary inputs. Thus, in the noise-free limit the neurons should
act as independent encoders (J& ¼ 0) of binary inputs.

For a Gaussian distribution of inputs, we maximized the mu-
tual information in Eq. 5 numerically (Fig. 2 C and D). For small
β, the optimal coupling J& has the same sign as the input correla-
tion, as in the binary input case, thus enhancing input correlations
and using redundancy to counteract noise. However, for large β,
the optimal coupling has a sign opposite to the input correlation.

Thus the neural output decorrelates its inputs (Fig. 2E). This
occurs because binary neurons do not have the capacity to encode
all the information in continuous inputs. Therefore, in the ab-
sence of noise, the best strategy is to decorrelate inputs to avoid
redundant encoding of information. The crossover in strategies is
at β ∼ 1 and is driven by the balance of output and noise entropies
in Eq. 6, as shown in Fig. S1. In all regimes more information is
conveyed with the optimal coupling (J&) than by an independent
(J ¼ 0) network. The information gain produced by this interac-
tion is larger for strongly correlated inputs (Fig. 2F).

For both binary and Gaussian stimulus ensembles, the biases
toward firing (h0i ) in the optimal network adjusted themselves
so that individual neurons were active about half of the time (see
SI Appendix). Adding a constraint on the mean firing rates would
shift the values of h0i in the optimal network, but would leave the
results for the optimal coupling J& qualitatively unchanged.

Thus, information represented by a pair of neurons is maxi-
mized if their interaction is adjusted to implement different func-
tions (independence, decorrelation to remove redundancy, and
averaging to reduce noise) depending on the input distribution
and neural reliability.

Networks of Neurons. We then asked what would be the optimal
interaction network for larger populations of neurons. First, we
considered a network of N neurons responding to an input en-
semble of K equiprobable N-bit binary patterns chosen randomly
from the set of 2N such patterns. For N ≲ 10 it remained possible
to numerically choose couplings h0i and Jij that maximized infor-
mation about the input ensemble represented in network
responses. We found qualitatively similar results to two neurons
responding to a binary stimulus: For unreliable neurons (low β),
the optimal network interactions matched the sign of input cor-
relations, and for reliable neurons (high β), neurons became
independent encoders. Input decorrelation was never an optimal
strategy, and the capacity of the network to yield substantial
improvements in information transmission was greatest when
K ∼N (see SI Appendix). Our results suggest that decorrelation
will never appear as an optimal strategy if the input entropy is less
than or equal to the maximum output entropy.

We then examined the optimal network encoding correlated
Gaussian inputs drawn from a distribution with zero mean and
a fixed covariance matrix. The covariance matrix was chosen at
random from an ensemble of symmetric matrices with exponen-
tially distributed eigenvalues (SI Appendix). As for the case of
binary inputs, we numerically searched the space of g for a choice
maximizing the information for N ¼ 10 neurons and different
values of neural reliability β. As β is changed, the optimal (J&)
and uncoupled (J ¼ 0) networks behave very differently. In the
uncoupled case (Fig. 3A), decreasing β increases both the output
and noise entropies monotonically. In the optimal case (Fig. 3B),
the noise entropy can be kept constant and low by the correct
choice of couplings J&, at the expense of losing some output
entropy. The difference of these two entropies is the information,
plotted in Fig. 3C. At low neural reliability β, the total information
transmitted is low, but substantial relative increases (almost
twofold) are possible by the optimal choice of couplings. The
optimal couplings are positively correlated with their inputs, gen-
erating a redundant code to reduce the impact of noise (Fig. 3D).
At high β, the total information transmitted is high, and optimal
couplings yield smaller, but still significant, relative improvements
(∼10%). The couplings in this case are anticorrelated with the
inputs, and the network performs input decorrelation.

For unreliable neurons our results give evidence that the
network uses redundant coding to compensate for errors. But
theoretically there are many different kinds of redundant
error-correcting codes—e.g., codes with checksums vs. codes that
distribute information widely over a population. Thus we sought
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Fig. 2. Information transmission in a network of two neurons. (A) Schematic
of a two-neuron network, fσ1;σ2g, coupled with strength J, receiving corre-
lated binary or Gaussian inputs. α ¼ CovðhÞ ¼ input correlation; CovðσÞ ¼
hσ1σ2i − hσ1ihσ2i ¼ correlation between output spike trains. (B) Optimal J&

as a function of input correlation, CovðhÞ, and neural reliability β for binary
inputs. (C) Optimal J& as a function of input correlation and neural reliability
for Gaussian inputs. (D) J& as a function of input correlation for three values
of reliability (β ¼ 0.5, 1, 2, grayscale) and Gaussian inputs; these are three
horizontal sections through the diagram in C. At high reliability the optimal
J& has an opposite sign to the input correlation; at low reliability it has the
same sign. (E) Output correlation as a function of input correlation and
reliability for Gaussian inputs. At high reliability (β ¼ 2) the network decorr-
elates the inputs. At low reliability (β ¼ 1∕2) the input correlation is
enhanced. (F) Fractional improvement in information transmission in optimal
(J&) vs. uncoupled (J ¼ 0) networks.
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Subthreshold membrane potential

Fire and Reset

Models of Neurons - Integrate and Fire

Vθ

Vreset

Rate r - number of spikes per second 

dV

dt
= −

V

τm

+ Ψ(V ) + µ +
√

2Dη(t)

V (t) = Vθ ⇒ V (t+) = Vreset
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Linear response kernel, A(t)

Additionally, we can interpret the covariance as the conditional probability that cell j spikes at

time t + τ given that cell i spiked at time t. The conditional intensity,

Hij(τ) = lim
∆t→0

1

∆t
Pr

�
Nyj (t + τ, t + τ + ∆t) > 0 | Nyi(t, t + ∆t) > 0

�
,

is the firing rate of cell j conditioned on a spike in cell i at τ units in the past. We then have

Cij(τ) = ri(Hij(τ) − rj). We also use the total correlation coefficient ρij(∞) = limτ→∞ ρij(τ) to

characterize dependencies between the processes yi and yj over arbitrarily long timescales.

Linear response for individual cells

Neuronal network models are typically described by a complex system of coupled nonlinear stochas-

tic differential equations. Their behavior is therefore difficult to analyze directly. We will use linear

response theory [Brunel et al., 2001, Gabbiani and Cox, 2010, Lindner and Schimansky-Geier, 2001,

Risken, 1996] to approximate the cross-correlations between the outputs of neurons in a network.

We first review the linear approximation to the response of a single cell. We illustrate the ap-

proach using current-based IF neurons, and explain how it can be generalized to other models in

the Discussion.

The membrane potential of an IF neuron receiving input X(t), with vanishing temporal average,

�X(t)� = 0, evolves according to

τ v̇ = −(v − EL) + ψ(v) + E +

√
σ2τξ(t) + X(t). (3)

The time-dependent firing rate, r(t), is determined by averaging the resulting spike train, y(t) =�
j δ(t − tj), across different realizations of noise, ξ(t), for a fixed input X(t). Linear response

approximates the firing rate by

r(t) = r0 + (A ∗X)(t), (4)

where r0 is the stationary firing rate in the absence of the signal X(t). The linear response kernel,

A(t), characterizes the firing rate response to first order in the strength of the input X(t). A rescal-

ing of the function A(t) gives the spike-triggered average of the cell, to first order in input strength,

and is hence equivalent to the optimal Weiner kernel in the presence of the signal ξ(t). [Barreiro

et al., 2010, Gabbiani and Cox, 2010] In Fig. 1A, we compare the approximate firing rate obtained

from Eq. (4) to that obtained numerically from Monte Carlo simulations.

The linear response kernel A(t) depends implicitly on model parameters, but is independent

of the statistics of the input, X(t). In particular, A(t) is sensitive to the value of the mean input

current, E. We emphasize that the presence of noise in Eq. (3) is essential to the theory.

Linear response in recurrent networks

The linear response kernel can be used to approximate the response of a cell to an external input.

However, the situation is more complicated in a network where a neuron can affect its own activity

through recurrent connections. To extend the linear response approximation to networks we follow

the approach introduced by Lindner et al. [2005]. Instead of using the linear response kernel to

approximate the firing rate of a cell, we use it to approximate a realization of its output

y(t) ≈ y1
(t) = y0

(t) + (A ∗X)(t). (5)

Here y0
(t) represents a realization of the spike train generated by an integrate-and-fire neuron

obeying Eq. (3) with X(t) = 0.

4

X(t),
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Structure or correlations in networks

synaptic connectionsspike generating current

Nykamp

the correlation structure of a network.

Network model

To illustrate the results we consider a network of N nonlinear integrate-and-fire (IF) neurons with

membrane potentials modeled by

τiv̇i = −(vi − EL,i) + ψ(vi) + Ei +

�
σ2

i τiξi(t) + fi(t) + ηi(t). (1)

Here Ei represents the mean input from parts of the system not explicitly modeled. A spike-

generating current ψ(vi) may be included to emulate the rapid onset of action potentials. Un-

less otherwise specified, we utilize the exponential IF model (EIF), so that ψ(v) ≡ ∆T exp[(v −
vT )/∆T ] [Fourcaud-Trocmé et al., 2003]. Cells are subject to internally induced fluctuations due to

channel noise [White et al., 2000], and externally induced fluctuations due to inputs not explicitly

modelled [Renart et al., 2004]. We model both by independent, Gaussian, white noise processes,�
σ2

i τiξi(t) [Burkitt, 2006]. An external signal to cell i is represented by ηi(t).

Upon reaching a threshold vth, an action potential is generated, the membrane potential is reset

to vr, and held constant for an absolute refractory period τref . The output of cell i is characterized

by the times, ti,k, at which its membrane potential reaches threshold, resulting in an output spike

train yi(t) =
�

k δ(t− ti,k). Synaptic interactions are modeled by delayed α-functions

fi(t) =

�

j

(Jij ∗ yj)(t), where Jij(t) =





Wij

�
t−τD,j

τ2
S,j

�
exp

�
− t−τD,j

τS,j

�
t ≥ τD,j

0 t < τD,j

. (2)

The N × N matrix J contains the synaptic kernels, while the matrix W contains the synaptic

weights, and hence defines the network architecture. In particular, Wij = 0 represents the absence

of a synaptic connection from cell j to cell i.

Table 1 provides an overview of all parameters and variables.

Measures of spike time correlation

We quantify dependencies between the responses of cells in the network using the spike train auto-

and cross-correlation functions [Gabbiani and Cox, 2010]. For a pair of spike trains, yi(t), yj(t), the

cross-correlation function Cij(τ) is defined as

Cij(τ) = cov (yi(t + τ), yj(t)) .

The auto-correlation function Cii(t) is the cross-correlation between a spike train and itself, and

C(t) is the matrix of cross-correlation functions. Denoting by Nyi(t1, t2) =
� t2
t1

yi(s)ds the number

of spikes over a time window [t1, t2], the spike count correlation, ρij(τ), over windows of length τ
is defined as,

ρij(τ) =
cov

�
Nyi(t, t + τ), Nyj (t, t + τ)

�
�

var (Nyi(t, t + τ)) var
�
Nyj (t, t + τ)

� .

We assume stationarity of the spiking processes so that ρij does not depend on t. The spike count

covariance is related to the cross-correlation function by [Bair et al., 2001, Shadlen and Newsome,

1998b]

cov
�
Nyi(t, t + τ), Nyj (t, t + τ)

�
=

� τ

−τ
Cij(s)(τ − |s|)ds.

3

the correlation structure of a network.

Network model

To illustrate the results we consider a network of N nonlinear integrate-and-fire (IF) neurons with

membrane potentials modeled by

τiv̇i = −(vi − EL,i) + ψ(vi) + Ei +

�
σ2

i τiξi(t) + fi(t) + ηi(t). (1)

Here Ei represents the mean input from parts of the system not explicitly modeled. A spike-

generating current ψ(vi) may be included to emulate the rapid onset of action potentials. Un-

less otherwise specified, we utilize the exponential IF model (EIF), so that ψ(v) ≡ ∆T exp[(v −
vT )/∆T ] [Fourcaud-Trocmé et al., 2003]. Cells are subject to internally induced fluctuations due to

channel noise [White et al., 2000], and externally induced fluctuations due to inputs not explicitly

modelled [Renart et al., 2004]. We model both by independent, Gaussian, white noise processes,�
σ2

i τiξi(t) [Burkitt, 2006]. An external signal to cell i is represented by ηi(t).

Upon reaching a threshold vth, an action potential is generated, the membrane potential is reset

to vr, and held constant for an absolute refractory period τref . The output of cell i is characterized

by the times, ti,k, at which its membrane potential reaches threshold, resulting in an output spike

train yi(t) =
�

k δ(t− ti,k). Synaptic interactions are modeled by delayed α-functions

fi(t) =

�

j

(Jij ∗ yj)(t), where Jij(t) =





Wij

�
t−τD,j

τ2
S,j

�
exp

�
− t−τD,j

τS,j

�
t ≥ τD,j

0 t < τD,j

. (2)

The N × N matrix J contains the synaptic kernels, while the matrix W contains the synaptic

weights, and hence defines the network architecture. In particular, Wij = 0 represents the absence

of a synaptic connection from cell j to cell i.

Table 1 provides an overview of all parameters and variables.

Measures of spike time correlation

We quantify dependencies between the responses of cells in the network using the spike train auto-

and cross-correlation functions [Gabbiani and Cox, 2010]. For a pair of spike trains, yi(t), yj(t), the

cross-correlation function Cij(τ) is defined as

Cij(τ) = cov (yi(t + τ), yj(t)) .

The auto-correlation function Cii(t) is the cross-correlation between a spike train and itself, and

C(t) is the matrix of cross-correlation functions. Denoting by Nyi(t1, t2) =
� t2
t1

yi(s)ds the number

of spikes over a time window [t1, t2], the spike count correlation, ρij(τ), over windows of length τ
is defined as,

ρij(τ) =
cov

�
Nyi(t, t + τ), Nyj (t, t + τ)

�
�

var (Nyi(t, t + τ)) var
�
Nyj (t, t + τ)

� .

We assume stationarity of the spiking processes so that ρij does not depend on t. The spike count

covariance is related to the cross-correlation function by [Bair et al., 2001, Shadlen and Newsome,

1998b]

cov
�
Nyi(t, t + τ), Nyj (t, t + τ)

�
=

� τ

−τ
Cij(s)(τ − |s|)ds.

3

output spike train of cell j

synaptic coupling

yj(t) =
∑

i

δ(t − tji )

dVi

dt
= −

Vi

τm

+ Ψ(Vi) + µ̃ +
√

2Dη(t) + (fi − 〈fi〉)
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Can we estimate the correlation structure?

Linear response gives the output rate as

yj(t) =
∑

i

δ(t − tji )

The output of a model neuron is a spike train

Additionally, we can interpret the covariance as the conditional probability that cell j spikes at

time t + τ given that cell i spiked at time t. The conditional intensity,

Hij(τ) = lim
∆t→0

1

∆t
Pr

�
Nyj (t + τ, t + τ + ∆t) > 0 | Nyi(t, t + ∆t) > 0

�
,

is the firing rate of cell j conditioned on a spike in cell i at τ units in the past. We then have

Cij(τ) = ri(Hij(τ) − rj). We also use the total correlation coefficient ρij(∞) = limτ→∞ ρij(τ) to

characterize dependencies between the processes yi and yj over arbitrarily long timescales.

Linear response for individual cells

Neuronal network models are typically described by a complex system of coupled nonlinear stochas-

tic differential equations. Their behavior is therefore difficult to analyze directly. We will use linear

response theory [Brunel et al., 2001, Gabbiani and Cox, 2010, Lindner and Schimansky-Geier, 2001,

Risken, 1996] to approximate the cross-correlations between the outputs of neurons in a network.

We first review the linear approximation to the response of a single cell. We illustrate the ap-

proach using current-based IF neurons, and explain how it can be generalized to other models in

the Discussion.

The membrane potential of an IF neuron receiving input X(t), with vanishing temporal average,

�X(t)� = 0, evolves according to

τ v̇ = −(v − EL) + ψ(v) + E +

√
σ2τξ(t) + X(t). (3)

The time-dependent firing rate, r(t), is determined by averaging the resulting spike train, y(t) =�
j δ(t − tj), across different realizations of noise, ξ(t), for a fixed input X(t). Linear response

approximates the firing rate by

r(t) = r0 + (A ∗X)(t), (4)

where r0 is the stationary firing rate in the absence of the signal X(t). The linear response kernel,

A(t), characterizes the firing rate response to first order in the strength of the input X(t). A rescal-

ing of the function A(t) gives the spike-triggered average of the cell, to first order in input strength,

and is hence equivalent to the optimal Weiner kernel in the presence of the signal ξ(t). [Barreiro

et al., 2010, Gabbiani and Cox, 2010] In Fig. 1A, we compare the approximate firing rate obtained

from Eq. (4) to that obtained numerically from Monte Carlo simulations.

The linear response kernel A(t) depends implicitly on model parameters, but is independent

of the statistics of the input, X(t). In particular, A(t) is sensitive to the value of the mean input

current, E. We emphasize that the presence of noise in Eq. (3) is essential to the theory.

Linear response in recurrent networks

The linear response kernel can be used to approximate the response of a cell to an external input.

However, the situation is more complicated in a network where a neuron can affect its own activity

through recurrent connections. To extend the linear response approximation to networks we follow

the approach introduced by Lindner et al. [2005]. Instead of using the linear response kernel to

approximate the firing rate of a cell, we use it to approximate a realization of its output

y(t) ≈ y1
(t) = y0

(t) + (A ∗X)(t). (5)

Here y0
(t) represents a realization of the spike train generated by an integrate-and-fire neuron

obeying Eq. (3) with X(t) = 0.
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Can we estimate the correlation structure?

Linear response gives the output rate as

back. The analytical solution described well the phenomenon
of oscillations caused by the interaction of correlated stimuli
and internal feedback in neural networks of weakly electric
fish.

Our intentions in the present paper are as follows. First,
we will generalize our theory to finite network size. We also
develop expressions for other spectral quantities of interest
which are accessible experimentally, such as the cross spec-
tra between stimulus and single spike train or between the
spike trains of distinct neurons. Furthermore, we want to
explore the parameter space of the model including varia-
tions of system size, of the delay time, and of the internal
noise intensity. We will show that an oscillation is already
present for a single neuron and that the oscillation induced in
a large network is enhanced by increasing the delay time and
decreasing the internal noise intensity. We will also discuss
the kind of synchrony in firing induced by the correlated
input and the feedback, respectively.

Our paper is organized as follows. In Sec. II we introduce
the neuron and network models as well as the spectral statis-
tics we are interested in. In Sec. III we calculate the spectral
measures for the case of a band-limited input stimulus !Sec.
III A" and a white-noise stimulus of unlimited bandwidth
!Sec. III B"; in this section we also state the analytical results
for a single leaky integrate-and-fire neuron !Sec. III C" that
enable us to give explicit expressions for the spectral mea-
sures. Simulation results are compared to the theoretical ones
in Sec. IV: the role of the network size will be studied in Sec.
IV A; effects of varying the delay time and internal noise
strength are explored in Sec. IV B; finally, the issue of net-
work synchronization is addressed in Sec. IV C. We will
summarize our results and draw some conclusions in Sec. V.

II. MODEL AND SPECTRAL STATISTICS

We consider a neural network with global inhibitory cou-
pling as sketched in Fig. 1. The membrane voltage of the
single neuron follows leaky-integrate-and-fire dynamics

v̇i = − vi + Ii!t" , !1"

with i=1,… ,N. Here time is measured in units of the mem-
brane time constant, the resistance of the cell membrane is

lumped into the current, and the voltage variable and current
are rescaled by a typical value such that all variables and
parameters are nondimensional. The dynamics Eq. !1" is
complemented by the well-known fire-and-reset rule: when-
ever the voltage reaches a prescribed constant threshold vT,
the neuron fires and the voltage is kept fixed for an absolute
refractory period !R and then reset to a value vR. In the
following we set vT=1 and vR=0. The output of the ith LIF
neuron is a " spike train determined by the jth instants of
threshold crossing of the ith neuron ti,j

yi!t" = #
j

"!t − ti,j" . !2"

The input current Ii!t" consists of the following components
$11%:

Ii!t" = # + $i!t" + &1 − c%i!t" + &c%c!t" + f!t" . !3"

The constant base current # and the internal noise $i!t" of
intensity D belong to the autonomous stochastic dynamics of
the neuron itself. The internal noise processes of distinct neu-
rons are Gaussian and uncorrelated !in time and among neu-
rons"

'$i!t"( = 0, '$i!t"$ j!t!"( = 2D"i,j"!t − t!" . !4"

The noise processes %i!t" and %c!t" are also uncorrelated
among each other and represent the external inputs, which
are specific for each or common to all neurons, respectively.
The power spectrum of these processes is Sst!&" $all pro-
cesses %i!t" , %c!t" share the same statistics%. We note that
because of the scaling by the factors &1−c and &c in Eq. !3"
the total external input has a fixed intensity irrespective of
the value of the correlation parameter c. The latter parameter
can be varied between 0 and 1; c sets the spatial correlation
coefficient of the external noise: for c=0 all external noise is
uncorrelated among neurons whereas for c=1 each neuron
receives an identical external stimulus.

The last term in Eq. !3" stands for the delayed inhibitory
feedback of all spike trains generated by the network

f!t" =
G

N
)

!D

'

d!
! − !D

!S
2 exp*−

! − !D

!S
+#

i=1

N

yi!t − !" . !5"

This represents a convolution of the sum of all spike trains
with a delayed ( function. The feedback strength G)0 is
negative, indicating an inhibitory feedback; the decay time !S
is related to the typical synaptic transmission time and is the
inverse of the rate ( used in our previous work $11%. Note
that the arguments !D have been inadvertently omitted in Eq.
!3" in $11%.

In our modeling of pyramidal cells in the ELL of the
weakly electric fish $10,11%, the feedback kernel represents a
distant neural population. This so-called NP nucleus receives
the spikes generated by the ELL network and feeds them
back after a convolution !corresponding mainly to the syn-
aptic transmission to and from the distant population" and a
transmission delay !D. We note that the above network dy-
namics applies to an even simpler situation, namely, to a
network with delayed inhibitory all-to-all pulse coupling.

FIG. 1. The network model. Pyramidal cells !circles" receive
correlated and uncorrelated external stimuli as well as inhibitory
feedback of their spike trains. This feedback consists of the sum of
all spike trains convoluted by an ( function with time constant !S
and delayed by a constant !D corresponding to the finite axonal
transmission time.

LINDNER, DOIRON, AND LONGTIN PHYSICAL REVIEW E 72, 061919 !2005"

061919-2

Idea goes back to 
Lindner, Doiron, Longtin, 2005

How do we use this to compute the cross-correlation?

yj(t) =
∑

i

δ(t − tji )

The output of a model neuron is a spike train

Additionally, we can interpret the covariance as the conditional probability that cell j spikes at

time t + τ given that cell i spiked at time t. The conditional intensity,

Hij(τ) = lim
∆t→0

1

∆t
Pr

�
Nyj (t + τ, t + τ + ∆t) > 0 | Nyi(t, t + ∆t) > 0

�
,

is the firing rate of cell j conditioned on a spike in cell i at τ units in the past. We then have

Cij(τ) = ri(Hij(τ) − rj). We also use the total correlation coefficient ρij(∞) = limτ→∞ ρij(τ) to

characterize dependencies between the processes yi and yj over arbitrarily long timescales.

Linear response for individual cells

Neuronal network models are typically described by a complex system of coupled nonlinear stochas-

tic differential equations. Their behavior is therefore difficult to analyze directly. We will use linear

response theory [Brunel et al., 2001, Gabbiani and Cox, 2010, Lindner and Schimansky-Geier, 2001,

Risken, 1996] to approximate the cross-correlations between the outputs of neurons in a network.

We first review the linear approximation to the response of a single cell. We illustrate the ap-

proach using current-based IF neurons, and explain how it can be generalized to other models in

the Discussion.

The membrane potential of an IF neuron receiving input X(t), with vanishing temporal average,

�X(t)� = 0, evolves according to

τ v̇ = −(v − EL) + ψ(v) + E +

√
σ2τξ(t) + X(t). (3)

The time-dependent firing rate, r(t), is determined by averaging the resulting spike train, y(t) =�
j δ(t − tj), across different realizations of noise, ξ(t), for a fixed input X(t). Linear response

approximates the firing rate by

r(t) = r0 + (A ∗X)(t), (4)

where r0 is the stationary firing rate in the absence of the signal X(t). The linear response kernel,

A(t), characterizes the firing rate response to first order in the strength of the input X(t). A rescal-

ing of the function A(t) gives the spike-triggered average of the cell, to first order in input strength,

and is hence equivalent to the optimal Weiner kernel in the presence of the signal ξ(t). [Barreiro

et al., 2010, Gabbiani and Cox, 2010] In Fig. 1A, we compare the approximate firing rate obtained

from Eq. (4) to that obtained numerically from Monte Carlo simulations.

The linear response kernel A(t) depends implicitly on model parameters, but is independent

of the statistics of the input, X(t). In particular, A(t) is sensitive to the value of the mean input

current, E. We emphasize that the presence of noise in Eq. (3) is essential to the theory.

Linear response in recurrent networks

The linear response kernel can be used to approximate the response of a cell to an external input.

However, the situation is more complicated in a network where a neuron can affect its own activity

through recurrent connections. To extend the linear response approximation to networks we follow

the approach introduced by Lindner et al. [2005]. Instead of using the linear response kernel to

approximate the firing rate of a cell, we use it to approximate a realization of its output

y(t) ≈ y1
(t) = y0

(t) + (A ∗X)(t). (5)

Here y0
(t) represents a realization of the spike train generated by an integrate-and-fire neuron

obeying Eq. (3) with X(t) = 0.
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dV

dt
= −

V

τm

+ Ψ(V ) + µ0 +
√

2Dη(t)

y0(t) =
∑

i

δ(t − t0i )
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Can we estimate the correlation structure?

y(t) =
∑

i

δ(t − ti)

dV

dt
= −

V

τm

+ Ψ(V ) + µ0 +
√

2Dη(t) +X(t)
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Can we estimate the correlation structure?

y(t) =
∑

i

δ(t − ti)

dV

dt
= −

V

τm

+ Ψ(V ) + µ0 +
√

2Dη(t) +X(t)

Use linear response to obtain a mixed point/continuous process

Additionally, we can interpret the covariance as the conditional probability that cell j spikes at

time t + τ given that cell i spiked at time t. The conditional intensity,

Hij(τ) = lim
∆t→0

1

∆t
Pr

�
Nyj (t + τ, t + τ + ∆t) > 0 | Nyi(t, t + ∆t) > 0

�
,

is the firing rate of cell j conditioned on a spike in cell i at τ units in the past. We then have

Cij(τ) = ri(Hij(τ) − rj). We also use the total correlation coefficient ρij(∞) = limτ→∞ ρij(τ) to

characterize dependencies between the processes yi and yj over arbitrarily long timescales.

Linear response for individual cells

Neuronal network models are typically described by a complex system of coupled nonlinear stochas-

tic differential equations. Their behavior is therefore difficult to analyze directly. We will use linear

response theory [Brunel et al., 2001, Gabbiani and Cox, 2010, Lindner and Schimansky-Geier, 2001,

Risken, 1996] to approximate the cross-correlations between the outputs of neurons in a network.

We first review the linear approximation to the response of a single cell. We illustrate the ap-

proach using current-based IF neurons, and explain how it can be generalized to other models in

the Discussion.

The membrane potential of an IF neuron receiving input X(t), with vanishing temporal average,

�X(t)� = 0, evolves according to

τ v̇ = −(v − EL) + ψ(v) + E +

√
σ2τξ(t) + X(t). (3)

The time-dependent firing rate, r(t), is determined by averaging the resulting spike train, y(t) =�
j δ(t − tj), across different realizations of noise, ξ(t), for a fixed input X(t). Linear response

approximates the firing rate by

r(t) = r0 + (A ∗X)(t), (4)

where r0 is the stationary firing rate in the absence of the signal X(t). The linear response kernel,

A(t), characterizes the firing rate response to first order in the strength of the input X(t). A rescal-

ing of the function A(t) gives the spike-triggered average of the cell, to first order in input strength,

and is hence equivalent to the optimal Weiner kernel in the presence of the signal ξ(t). [Barreiro

et al., 2010, Gabbiani and Cox, 2010] In Fig. 1A, we compare the approximate firing rate obtained

from Eq. (4) to that obtained numerically from Monte Carlo simulations.

The linear response kernel A(t) depends implicitly on model parameters, but is independent

of the statistics of the input, X(t). In particular, A(t) is sensitive to the value of the mean input

current, E. We emphasize that the presence of noise in Eq. (3) is essential to the theory.

Linear response in recurrent networks

The linear response kernel can be used to approximate the response of a cell to an external input.

However, the situation is more complicated in a network where a neuron can affect its own activity

through recurrent connections. To extend the linear response approximation to networks we follow

the approach introduced by Lindner et al. [2005]. Instead of using the linear response kernel to

approximate the firing rate of a cell, we use it to approximate a realization of its output

y(t) ≈ y1
(t) = y0

(t) + (A ∗X)(t). (5)

Here y0
(t) represents a realization of the spike train generated by an integrate-and-fire neuron

obeying Eq. (3) with X(t) = 0.
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Can we estimate the correlation structure?

y(t) =
∑

i

δ(t − ti)

dV

dt
= −

V

τm

+ Ψ(V ) + µ0 +
√

2Dη(t) +X(t)

Which averages out to the right thing

r(t) ≈ r0 + (A ∗ X)(t)

Use linear response to obtain a mixed point/continuous process

Additionally, we can interpret the covariance as the conditional probability that cell j spikes at

time t + τ given that cell i spiked at time t. The conditional intensity,

Hij(τ) = lim
∆t→0

1

∆t
Pr

�
Nyj (t + τ, t + τ + ∆t) > 0 | Nyi(t, t + ∆t) > 0

�
,

is the firing rate of cell j conditioned on a spike in cell i at τ units in the past. We then have

Cij(τ) = ri(Hij(τ) − rj). We also use the total correlation coefficient ρij(∞) = limτ→∞ ρij(τ) to

characterize dependencies between the processes yi and yj over arbitrarily long timescales.

Linear response for individual cells

Neuronal network models are typically described by a complex system of coupled nonlinear stochas-

tic differential equations. Their behavior is therefore difficult to analyze directly. We will use linear

response theory [Brunel et al., 2001, Gabbiani and Cox, 2010, Lindner and Schimansky-Geier, 2001,

Risken, 1996] to approximate the cross-correlations between the outputs of neurons in a network.

We first review the linear approximation to the response of a single cell. We illustrate the ap-

proach using current-based IF neurons, and explain how it can be generalized to other models in

the Discussion.

The membrane potential of an IF neuron receiving input X(t), with vanishing temporal average,

�X(t)� = 0, evolves according to

τ v̇ = −(v − EL) + ψ(v) + E +

√
σ2τξ(t) + X(t). (3)

The time-dependent firing rate, r(t), is determined by averaging the resulting spike train, y(t) =�
j δ(t − tj), across different realizations of noise, ξ(t), for a fixed input X(t). Linear response

approximates the firing rate by

r(t) = r0 + (A ∗X)(t), (4)

where r0 is the stationary firing rate in the absence of the signal X(t). The linear response kernel,

A(t), characterizes the firing rate response to first order in the strength of the input X(t). A rescal-

ing of the function A(t) gives the spike-triggered average of the cell, to first order in input strength,

and is hence equivalent to the optimal Weiner kernel in the presence of the signal ξ(t). [Barreiro

et al., 2010, Gabbiani and Cox, 2010] In Fig. 1A, we compare the approximate firing rate obtained

from Eq. (4) to that obtained numerically from Monte Carlo simulations.

The linear response kernel A(t) depends implicitly on model parameters, but is independent

of the statistics of the input, X(t). In particular, A(t) is sensitive to the value of the mean input

current, E. We emphasize that the presence of noise in Eq. (3) is essential to the theory.

Linear response in recurrent networks

The linear response kernel can be used to approximate the response of a cell to an external input.

However, the situation is more complicated in a network where a neuron can affect its own activity

through recurrent connections. To extend the linear response approximation to networks we follow

the approach introduced by Lindner et al. [2005]. Instead of using the linear response kernel to

approximate the firing rate of a cell, we use it to approximate a realization of its output

y(t) ≈ y1
(t) = y0

(t) + (A ∗X)(t). (5)

Here y0
(t) represents a realization of the spike train generated by an integrate-and-fire neuron

obeying Eq. (3) with X(t) = 0.
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Approximate network correlations

The linear response approximation now takes the form

The central assumption we make is that a cell acts approximately as a linear filter of its inputs.

Note that Eq. (5) defines a mixed point and continuous process, but averaging y(t) in Eq. (5) over

realizations of y0
gives Eq. (4) [Vilela and Lindner, 2009]. Hence, Eq. (5) can be viewed as a natural

generalization of Eq. (4) where the unperturbed output of the cell is represented as a point process,

y0
(t), instead of the firing rate, r0.

We first use Eq. (5) to describe spontaneously evolving networks where ηi(t) = 0. Eq. (1) can

then be rewritten as

τiv̇i = −(vi − EL,i) + ψ(vi) + E�
i +

�
σ2

i τiξi(t) + (fi(t)− �fi�), (6)

where �·� represents the temporal average, and E�
i = Ei + �fi�.

As a first approximation of the spiking output of cells in the coupled network, we start with

realizations of spike trains, y0
i , generated by IF neurons obeying Eq. (6) with fi(t) = �fi(t)�. This is

equivalent to considering neurons isolated from the network, with adjusted DC inputs (due to mean

network interactions). Following the approximation given by Eq. (5), we use a frozen realization of

all y0
i to find a correction to the output of each cell, with X(t) set to the mean-adjusted synaptic

input,

X(t) = fi(t)− �fi(t)�.

As noted previously, the linear response kernel is sensitive to changes in the mean input current. It

is therefore important to include the average synaptic input in the definition of the effective mean

input, E�
i.

The input from cell j to cell i is filtered by the synaptic kernel Jij(t). The linear response of

cell i to a spike in cell j is therefore captured by the interaction kernel Kij defined by

Kij(t) ≡ (Ai ∗ Jij)(t). (7)

The output of cell i in response to mean-adjusted input, y0
j (t)−rj , from cell j can be approximated

to first order in input strength using the linear response corrections

y1
i (t) = y0

i (t) +

�

j

(Kij ∗ [y0
j − rj ])(t). (8)

The method of calculating the stationary rates, rj , is given in the Methods.

We can use Eq. (8) to approximate the cross-correlation between a pre-synaptic cell with index

j and post-synaptic cell with index i. By averaging over realizations of the independent process y0
j ,

we find (See Methods)

E
�
(y1

i (t + τ)− ri)(y
0
j (t)− rj)

�
= δijC0

ii(τ) + (Kij ∗C0
jj)(τ), (9)

where C0
is the matrix of auto-correlation functions for the processes y0

i ,

C0
ii(τ) = E[(y0

i (t + τ)− ri)(y
0
i (t)− ri)].

We next extend this approach to approximate the full impact of recurrent connections in the

network. The cross-correlation between the processes y1
i (t) in Eq. (8) gives a first approximation

to the cross-correlation function between the cells (See Methods),

Cij(τ) ≈ C1
ij(τ) = E

�
(y1

i (t + τ)− ri)(y
1
j (t)− rj)

�

= δijC0
ii(τ) + (Kij ∗C0

jj)(τ) + (K−
ji ∗C0

ii)(τ) +

�

k

(Kik ∗K−
jk ∗C0

kk)(τ), (10)

5

We can use this to approximate the cross-covariances

Ostojic, Brunel, Hakim, 2009,
Trousdale, Yu, Shea-Brown, Josić, 2011

y1
i (t) = y0

i (t) +
∑

all inputs

(

Ki,j ∗ [y0
j − rj ]

)

(t)

Ki,j = (Ai ∗ Ji,j)(t)
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Impact of non-immediate neighbors

We use an iterative construction 

Which gives the n-th approximation to the cross-correlation
After taking the Fourier transform, and the limit n → ∞

The nth approximation to the matrix of cross-correlations can be written in terms of the inter-
action kernels, Kij , and the autocorrelations of the base processes y0 as (See Methods)

Cij(τ) ≈ Cn(τ) = E
�
(yn(t + τ)− r)(yn(t)− r)T

�

=
n�

k,l=0

(K(k) ∗C0 ∗ (K−)(lT ))(τ), n ≥ 0,
(13)

where K−(t) = K(−t), XkT = (Xk)T , and Xk is the k-fold matrix convolution of X with itself.
If we apply the Fourier transform, f̃(ω) = F [f(t)](ω) ≡

�∞
−∞ f(t)e−2πiωtdt, to Eq. (13), we find

that for each ω,

C̃n(ω) = E[ỹn(ω)ỹn∗(ω)] =
n�

k,l=0

K̃k(ω)E[ỹ0(ω)ỹ0∗(ω)](K̃∗)l(ω)

=

�
n�

k=0

K̃k(ω)

�
E[ỹ0(ω)ỹ0∗(ω)]

�
n�

l=0

(K̃∗)l(ω)

�
,

(14)

where ∗ denotes the conjugate transpose. The zero-mean Fourier transforms ỹn
i of the spiking

processes yn
i is defined by ỹn

i = F [yn
i − ri], and f̃ = F(f) for all other quantities.

For a suitable matrix norm || · ||, when ||K̃|| < 1, we can take the limit n→∞ in Eq. (14) [Katō,
1995], to obtain an approximation to the full array of cross-spectra

C̃∞(ω) = lim
n→∞

C̃n(ω) = (I− K̃(ω))−1C̃0(ω)(I− K̃∗(ω))−1. (15)

This equation can also be obtained by generalizing the approach of Lindner et al. [2005] (also
see [Beck et al., 2011]). In the limit n → ∞, directed paths of arbitrary length contribute to the
approximation. Eq. (15) therefore takes into account the full recurrent structure of the network.
We will use the norm || · ||2, and assume that in the networks we study ||K̃||2 < 1. This condition
is confirmed numerically when we use Eq. (15).

Finally, consider the network response to an external signals, ηi(t), with zero mean and finite
variance. The response of the neurons in the recurrent network can be approximated iteratively by

yn+1 = y0 + K ∗ [yn − r] + A ∗ η, (16)

where A = diag(Ai) and η(t) = [ηi(t)]. External signals and recurrent synaptic inputs are both
linearly filtered to approximate a cell’s response, consistent with a generalization of Eq. (4). As in
Eq. (13), the nth approximation to the matrix of correlations is

C(τ) ≈ Cn(τ) =
n�

k,l=0

(K(k) ∗C0 ∗ (K−)(lT ))(τ) +
n−1�

k,l=0

(A(k) ∗Cη ∗ (A−)(lT ))(τ), (17)

where Cη(τ) = E
�
η(t + τ)η(t)T

�
. We can again take the Fourier transform and the limit n→∞,

and solve for C̃(ω). If ||K̃|| < 1,

C̃∞(ω) = (I− K̃(ω))−1(C̃0(ω) + Ã(ω)C̃η(ω)Ã∗(ω))(I− K̃∗(ω))−1. (18)

We may also calculate C̃∞(ω) when the signals comprising η are white (and possibly correlated),
but an extra correction must be made to account for the change in spectrum and response properties

7

yn+1(t) = y0(t) + (K ∗ [yn
− r]) (t)

= y0(t) +
n+1
∑

k=1

(

K(k)
∗ [y0

− r]
)

(t)
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Figure 1: A) Illustrating Eq. (4). i) The input to the neuron is a spike train which is convolved with

a synaptic kernel. ii) The output firing rate, r(t), is obtained by averaging over realizations of the

output spike train with fixed input, and independent realizations of noise, ξ(t). The rate obtained

using Monte Carlo simulations (shaded in gray) matches predictions of linear response theory

obtained using Eq. (4) (black). iii) Raster plot of 100 realizations of output spike trains. A dot in a

bin represents a spike in that bin on a single trial. iv) A sample voltage path for the post-synaptic

cell. B) An example recurrent network. C-E) A sequence of graphs determines the successive

approximations to the output of neuron 1. Processes defined by the same iteration of Eq. (12)

have equal color. C) In the first iteration of Eq. (12), the output of neuron 1 is approximated

using the unperturbed outputs of its neighbours. D) In the second iteration the results of the first

iteration are used to define the inputs to the neuron. For instance, the process y1
2 depends on the

base process y0
1 which represents the unperturbed output of neuron 1. Neuron 4 receives no inputs

from the rest of the network, and all approximations involve only its unperturbed output, y0
4. E)

Cells 3 and 4 are not part of recurrent paths, and their contributions to the approximation are

fixed after the second iteration. However, the recurrent connection between cells 1 and 2 implies

that subsequent approximations involve contributions of directed chains of increasing length.
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Figure 4: All–to–all networks and the importance of higher order motifs A) Cross-correlations

between two excitatory cells in an all–to-all network (NE = 80, NI = 20) obtained using Eq. (27)

(Solid – balanced network with µ̃ ≡ 0 (GE = 175 mV·ms, GI = (NE/NI)GE = 700 mV·ms, τE =

τI = 10 ms), dashed – unbalanced network with µ̃ �= 0 (GE = 210 mV·ms, GI = 1050 mV·ms, τE =

10 ms, τI = 5 ms). B) Comparison of first and second order contributions to the cross-correlation

function in panel A in the balanced (left) and unbalanced (right) network. C) Some of the submotifs

contributing to correlations in the all-to-all network.

the same linear response kernel. The excitatory and inhibitory connection strengths are GE/(pNE)

and −GI/(pNI), respectively. The timescales of excitation and inhibition may differ, but are again

identical for cells within each class.

The exact solution of Eq. (15) now depends on the realization of the connectivity matrix. For a

fixed realization the equations can be solved numerically to approximate the correlation structure

(See Fig. 5A). However, as we show next, the average cross-correlation between a pair of cells of

given types is invariant to first order in 1/N .

The cross-spectrum averaged over all cell pairs of a given type is (See SI Section 1)
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Ã

1− Ãµ̃
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 + O(1/N2
), (31)

when i �= j. Hence, to leading order in 1/N , the mean cross-spectrum between two cells in a

given class equals that in the all–to–all network (see Eq. (28)). Therefore our previous discussion

relating network architecture to the shape of cross-correlations in the all-to-all network extend to

the average correlation structure in the random network.

Pernice et al. [2011] derived similar expressions for the correlation functions in networks of

interacting Hawkes processes [Hawkes, 1971a,b] by assuming either the network is regular or has

a narrow degree distribution. There are important similarities and distinctions between our ap-

proaches. First, our analysis depends only on having fixed in-degrees, and not fully regular networks.

Both approaches lead to results that hold approximately (for large enough N) when the in-degree

is not fixed. Pernice et al. [2011] also related terms in the expansion of an analog of Eq. (31) and

connectivity motifs.

However, our approaches differ in important ways: Pernice et al. [2011] did not attempt to match

their results to more physiological cell models, and did not account for the response properties of

individual cells. They also only studied total spike count covariances - i.e., the total integral of

the cross-correlation function. However, their approach could be extended to obtain a detailed

description of the temporal structure of correlations in the Hawkes model.
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Expansion in terms of paths through the graph

path from one cell to the other. Likewise, the approximate power spectra contain only even powers

of the kernels corresponding to directed paths that connect a cell to itself (See Fig. 3A).

The contributions of different sub-motifs to the cross- and auto-correlations are shown in

Figs. 3C, D when the isolated cells are in a near-threshold excitable state. The auto-correlations are

significantly affected by network interactions. We also note that chains of length two and three (the

second and third submotifs in Fig. 3A) provide significant contributions. Earlier approximations

did not capture such corrections [Ostojic et al., 2009].

The operating point of a cell is set by its parameters (τi, EL,i, etc.) and the statistics of

its input (Ei, σi). A change in operating point can significantly change a cell’s response to an

input. Using linear response theory, these changes are reflected in the response functions Ai, and

the power spectra of the isolated cells, C̃
0. To highlight the role that the operating point plays

in the approximation of the correlation structure given by Eq. (15), we elevated the mean and

decreased the variance of background noise by increasing Ei and decreasing σi in Eq. (1). With

the chosen parameters the isolated cells are in a super-threshold, low noise regime and fire nearly

periodically. After the cells are coupled, this oscillatory behavior is reflected in the cross- and auto-

correlations where the dominant contributions are due to first and zeroth order terms, respectively

(See Figs. 3F,G).

Orders of coupling interactions: It is often useful to expand Eq. (15) in terms of powers of

K̃ [Pernice et al., 2011]. The term K̃
n
C̃

0(K̃∗)m in the expansion is said to be of order n + m.

Equivalently, in the expansion of C̃
∞
ij , the order of a term refers to the sum of the powers of all

constituent interaction kernels K̃ab. We can also associate a particular connectivity submotif with

each term. In particular, terms of the form

K̃ian−1K̃an−1an−2 · · · K̃a1jC̃
0
jj

are associated with a directed path j → a1 → · · · → an−2 → an−1 → i from cell j to cell i.
Similarly, the term C̃

0
iiK̃

∗
ia1

· · · K̃∗
an−2an−1

K̃
∗
an−1j corresponds to a n-step path from cell i to cell j.

A term of the form

K̃ian−1K̃an−1an−2 · · · K̃a1a0C̃
0
a0a0

K̃
∗
a0b1 · · · K̃∗

bm−2bm−1
K̃
∗
bm−1j

represents the effects of an indirect common input n steps removed from cell i and m steps removed

from cell j. This corresponds to a submotif of the form i ← an−1 ← · · · ← a0 → b1 → · · · →
bn−1 → j consisting of two branches originating at cell a0 (See the discussion around Eqs. (20,22)

and Fig. 4C).

Statistics of the response of large networks

Although these techniques can be used to analyze the joint response of cells in a microcircuit,

their full power becomes evident when considering larger networks. We again illustrate the theory

using several examples. In networks where inhibition and excitation are exactly balanced, the

theory shows that only local interactions contribute to correlations. When the balance is broken

the contributions of terms corresponding to longer paths through the network shape the cross-

correlation functions. For instance, relative increase in inhibition can lead to elevated network

synchrony. We end this section by showing how conditional averages across cell pairs in a random

network can be used to provide a tractable, yet accurate approximation of the correlation structure

in the network.
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How does local structure determine 
correlations?

distribution of few-node connectivity patterns, or motifs
[26,27]. Another such approach is analyzing the utilization
(or, in this case, the strength) of connections [28,29,30].

In this paper, we apply a combination of statistical methods
to a large dataset from hundreds of simultaneous quadruple
whole-cell recordings from visual cortex in developing rats.
Our results confirm previous indications of nonrandomness
and point out several new ones. In particular, we show that
the distribution of connection strengths between pyramidal
neurons is non-Poisson and find correlations in the strength
of the connections sharing pre- or postsynaptic neurons.
Also, we find several overrepresented three-neuron connec-
tivity patterns, or motifs. Surprisingly, we find that some few-
neuron motifs can play an important role in the dynamics of
layer 5 local cortical networks because they are composed of
exceptionally strong connections. This suggests a novel view
of the local cortical network, in which a skeleton of stronger
connections is immersed in a sea of weaker ones.

Results

We studied connectivity among thick tufted layer 5
neurons in rat visual cortex with quadruple whole-cell
recordings (Figure 1A and 1B). Thick tufted layer 5 pyramidal
neurons are important projection neurons from the cerebral
cortex to subcortical areas [9,31,32]. Synaptic connection
strengths were assessed by evoking action potentials in each
of the four cells and measuring the averaged peak excitatory
postsynaptic potential (EPSP) amplitudes in the other three
cells (see Figure 1C and Materials and Methods). Results of
these measurements for a sample quadruple recording are
shown in Figure 1D. Each arrow indicates a detected
connection with the corresponding connection strengths.

The dataset contained a total of 816 quadruple recording
attempts (some of these attempts contained data for only two
or three neurons, if whole-cell configuration was not
successfully established with all four cells). As previously
reported [5], the rate of connectivity was p = 11.6% (931
connections out of 8,050 possible connections), which is
similar to that reported for rat somatosensory cortex layers 5
[6,9] and 2/3 [11], as well as those previously reported for rat
visual cortical layers 5 [3,10] and 2/3 [11].

Two-Neuron Patterns
We started by assessing how well a randomly connected

network [33] describes our dataset. In this model, the
existence of a connection between any two neurons is
independently chosen with a uniform probability p
(Figure 2A). We test the predictions of this model by
classifying all simultaneously recorded pairs of neurons into
three classes: unconnected, unidirectionally connected, and
bidirectionally connected. Given connection probability p
and total number of pairs N, the expected number of
unconnected pairs should be N(1! p)2. The expected number
of unidirectionally connected pairs should be 2Np(1! p), and
the expected number of bidirectionally connected pairs
should be Np2. We find that the actual number of bidirec-
tionally connected pairs is four times that of the expected
numbers (p , 0.0001) (Figure 2B). The observed over-
representation of reciprocally connected layer 5 neurons
confirms previous reports [5,6]. Such overrepresentation has
also been observed in layer 2/3 of the rat visual cortex [11].
However, whether projections between layers observe this
pattern remains an open question.
Can the overrepresentation of reciprocal connections

reflect an experimental artifact? Indeed, such overrepresen-

Figure 1. Illustration of a Quadruple Whole-Cell Recording

(A) Dodt contrast image showing four thick-tufted L5 neurons before patching on.
(B) Fluorescent image of the same four cells in whole-cell configuration.
(C) Average EPSP waveform measured in the postsynaptic neuron (bottom) while evoking action potentials in the presynaptic neuron (top).
(D) Diagram of detected synaptic connections and their strengths for this quadruple recording.
DOI: 10.1371/journal.pbio.0030068.g001
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of the data from 14 to 16-d-old animals when the majority of
measurements were performed (see Figure S5). We found that
bidirectional connections are also overrepresented in this
subset of data. Results of other analyses that will be described
later in the paper are also confirmed on this subset
(Figure S5).

Finally, it is possible that some extreme degree of
inhomogeneity in connections probability is able to explain
the observed overrepresentation of reciprocal pairs, but this
would probably reflect large local inhomogeneity in cortical
connectivity patterns—possibly differences between sub-
classes [6,35], rather than experimental artifacts—and is in
line with the main conclusions of this paper.

Three-Neuron Patterns
We extended our analysis by comparing the statistics of

three-neuron patterns to those expected by chance [26,27].
We classify all triplets into 16 classes and count the number of
triplets in each class. In order to avoid reporting over-
represented three-neuron patterns just because they contain
popular two-neuron patterns, we have revised the null
hypothesis[26,27]. The control distribution was obtained
numerically by constructing random triplets where constit-
uent pairs are chosen independently, but with the same
probability of bidirectional and unidirectional connections
as in data (Figure 4A). For example, the actual probability of a
unidirectional connection is (according to Figure 2B) 495/
(3312 þ 495 þ 218) = 0.123. Then the probability of
unidirectional connection from A to B is 0.123/2 = 0.0615,
the same as from B to A (see Figure 4A). The probability of
bidirectional connection is (according to Figure 2B) 218/
(3312 þ 495 þ 218) = 0.0542. The probability of finding the
particular triplet class in Figure 4A by chance is the product
of the probabilities of finding the three constituent pairs and
a factor to account for permutations of the three neurons.
The ratio of the observed counts and the expected counts for
each class are plotted in Figure 4B. The actual counts are
given as numbers on top of the bars. Although triplets from
several of these patterns have been reported previously [9,10],
small numbers of recordings have precluded statistical
analysis.

According to Figure 4B, several triplet patterns are
overrepresented. Is this overrepresentation statistically sig-
nificant? Because we look for overrepresentation in many
pattern classes at the same time, the raw p-values (Figure 4C)
overestimate the true significance (underestimate the true p-
value). To correct the raw p-values, one has to apply a
multiple-hypothesis testing procedure. We chose to correct
the p-values by applying a step-down min-P-based multiple-
hypothesis testing correction procedure (see Materials and
Methods). The corrected p-values (Figure 4C) give the
probability of mistakenly reporting at least one of the
patterns as overrepresented when it is not.

Two-neuron correlations are summarized by saying that if
neuron A synapses onto neuron B, then the probability of B
synapsing onto A is several times greater than chance. Three-
neuron correlations are summarized roughly by saying that if
A connects with B and B connects with C (regardless of
direction), the probability of connection between A and C is
several times greater than chance. Interestingly, similar
results have been obtained in the analysis of the Caenorhabditis
elegans wiring diagram [36], which was reconstructed from

serial section electron microscopy [1]. Because different
techniques have different biases, the similarity of results
suggests that correlations in synaptic connectivity represent a
general property of neuronal circuits. Such property may
represent evolutionary conservation from invertebrates to
mammals or convergence driven by similar computational
constraints.
Although individual connectivity patterns containing more

than three neurons could not be analyzed statistically for the
existing dataset (Table S1), we found a 70% overrepresenta-
tion of ‘‘chain’’ quadruplets (patterns number 21 23 24 26 28
29 31 32 33 34 35 38 39 41 43 as defined in Figure S6, p=0.004)
relative to the null hypothesis requiring that a random matrix
has the actual proportion of triplet classes.

Distribution of Synaptic Connection Strengths
Next, we turned our attention to the distribution of

synaptic connection strengths as characterized by EPSP
amplitude (Figure 5A). We estimated the probability density
function by binning connection strengths and dividing the
number of occurrences in each bin by the bin size. Since
there are many more weak connections than strong ones, we

Figure 4. Several Three-Neuron Patterns Are Overrepresented as
Compared to the Random Network

(A) Null hypothesis for three-neuron patterns assumes independent
combinations of connection probabilities of two kinds of two-neuron
patterns.
(B) Ratio of actual counts (numbers above bars) to that predicted by
the null hypothesis. Error bars are standard deviations estimated by
bootstrap method.
(C) Raw (open bars) and multiple-hypothesis testing corrected (filled
bars) p-values. p-values above 0.5 are not shown.
DOI: 10.1371/journal.pbio.0030068.g004
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How do small motifs impact the 
correlation structure?

Sporns and Kötter,  2004

3.1 Frequency of network motifs

A motif is a subgraph composed of a small number of cells. We classify motifs according to
the number of edges they contain. Let us consider directed networks composed of identical
cells. First order motifs contain one connection and hence come in only one type — two
interacting cells. Second order motifs contain two connections, and therefore involve at most
three interacting cells. These motifs come in three types: diverging, converging and chain
motifs (See Fig. 1). We will consider mainly the impact of second order motifs. Note that in
our definition, a cell can appear twice in the triplet of cells that define a second order motif.
For example, the chain motif in Fig. 1 is equivalent to a bidirectionally coupled pair of cells
when i = j.

As we show below, the three motifs shown in Fig. 1 arise naturally in our analysis of
correlated spiking activity. In particular, we will show that the frequency at which each
motif occurs in the network can accurately predict levels of correlation across the network.

We next introduce notation that will allow us to make these ideas precise. Let W0 be
the adjacency matrix, so that W0

i,j = 1 indicates the presence of a directed connection from
cell j to cell i, and W0

i,j = 0 indicates its absence. To quantify the frequency of a motif in a
given graph, we first count the total number of times at which the motif occurs, and divide
by the total number if of possible occurrences in a graph of the given size. For first order
motifs this definition gives the empirical connection probability,

p =

�
�

i,j

W0
i,j

�
/N2. (12)

The preponderance of second order motifs is measured by similarly normalizing the motif
count, but then subtracting the value expected in a reference graph,

qdiv =
�

i,j,k

(W0
i,kW

0
j,k)/N

3 − p2 =

�
�

i,j

(W0W0T )i,j

�
/N3 − p2 (13)

qcon =

�
�

i,j

(W0TW0)i,j

�
/N3 − p2 (14)

qch =

�
�

i,j

(W0W0)i,j

�
/N3 − p2, (15)

where W0T denotes the transpose of W0. Consider the expression defining qdiv: the sum
in the first equality simply counts the total number of connections from one cell (k) to two
others (i and j), and divides by the total number of possible connections of this type. This
can be written as matrix multiplication followed by a sum over all entries i, j, as shown. In
each case we subtract the value p2, which corresponds to the asymptotic frequency of the
motif in an Erdös-Rényi graph as the number of cells, N, diverges to infinity. Indeed, for
Erdös-Rényi graphs any edge is present with chance p, and any second-order motif requires
the presence of two edges. The other measures in Eqs. (13-15) have similar interpretations.
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... so people get the idea of counting?] [YH: Added a draft of network example, please

comment on revising.] As in [Song et al., 2005], we measure this prevalence by comparing

the observed motif counts with what we would have expected to find under the simplest

model for a random graph. This is a regular network which has the same total number of

connections, and in which each cell has the same, evenly divided number of incoming and

outgoing connections (i.e, the same in and out degree). Importantly, due to the law of large

numbers, the (relative) motif counts for such regular graphs agree with those in the classical

model of random graph, the Erdös-Rényi model in the limit of large network size; thus, when

we refer to the prevalence of network motifs, this means in comparison to either a regular or

Erdös-Rényi graph.
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Figure 1: The different types of second order motifs (Right). (Left) Counting motifs in a

network.

Figure 2 illustrates the importance of network motifs in setting the average correlation

across the network. Here, we simulate 265 (give number of dots) different networks of

excitatory and inhibitory [Dayan and Abbot, 2001], exponential integrate and fire cells (this

is a frequently used model of spiking cells that has been shown to give an accurate description

of the dynamics of cortical neurons [Fourcaud-Trocmé et al., 2003]). Importantly, we bias

each neuron so that it fires with the same rate, regardless of its connectivity: as we explain in

much more detail below, this is important to isolate the effects of network connectivity alone.

First, the black dots give the average correlation for Erdös-Rényi networks that have different

connection probabilities p. As expected, correlations increase with connection probability.

The grey dots show correlation in networks that all have the same connection probability

(p = 0.2), but each have a different prevalence of motifs that the corresponding Erdös-

Rényi model. Interestingly, the range of correlation values obtained at this fixed connection

probability p is as large as that obtained in the Erdös-Rényi networks by ranging p up to

twice the fixed value (i.e., up to p = 0.4). Thus, motifs play a strong role in determining the

strength of correlations across a network.
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across the network. Here, we simulate 265 (give number of dots) different networks of

excitatory and inhibitory [Dayan and Abbot, 2001], exponential integrate and fire cells (this
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of the dynamics of cortical neurons [Fourcaud-Trocmé et al., 2003]). Importantly, we bias

each neuron so that it fires with the same rate, regardless of its connectivity: as we explain in

much more detail below, this is important to isolate the effects of network connectivity alone.
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twice the fixed value (i.e., up to p = 0.4). Thus, motifs play a strong role in determining the

strength of correlations across a network.

4

network (maybe just 5 cells), and highlighting the diverging, converging, etc motifs inside

... so people get the idea of counting?] [YH: Added a draft of network example, please

comment on revising.] As in [Song et al., 2005], we measure this prevalence by comparing

the observed motif counts with what we would have expected to find under the simplest

model for a random graph. This is a regular network which has the same total number of

connections, and in which each cell has the same, evenly divided number of incoming and

outgoing connections (i.e, the same in and out degree). Importantly, due to the law of large

numbers, the (relative) motif counts for such regular graphs agree with those in the classical
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is a frequently used model of spiking cells that has been shown to give an accurate description

of the dynamics of cortical neurons [Fourcaud-Trocmé et al., 2003]). Importantly, we bias

each neuron so that it fires with the same rate, regardless of its connectivity: as we explain in

much more detail below, this is important to isolate the effects of network connectivity alone.

First, the black dots give the average correlation for Erdös-Rényi networks that have different

connection probabilities p. As expected, correlations increase with connection probability.

The grey dots show correlation in networks that all have the same connection probability

(p = 0.2), but each have a different prevalence of motifs that the corresponding Erdös-

Rényi model. Interestingly, the range of correlation values obtained at this fixed connection

probability p is as large as that obtained in the Erdös-Rényi networks by ranging p up to

twice the fixed value (i.e., up to p = 0.4). Thus, motifs play a strong role in determining the

strength of correlations across a network.

4

3.1 Frequency of network motifs

A motif is a subgraph composed of a small number of cells. We classify motifs according to
the number of edges they contain. Let us consider directed networks composed of identical
cells. First order motifs contain one connection and hence come in only one type — two
interacting cells. Second order motifs contain two connections, and therefore involve at most
three interacting cells. These motifs come in three types: diverging, converging and chain
motifs (See Fig. 1). We will consider mainly the impact of second order motifs. Note that in
our definition, a cell can appear twice in the triplet of cells that define a second order motif.
For example, the chain motif in Fig. 1 is equivalent to a bidirectionally coupled pair of cells
when i = j.

As we show below, the three motifs shown in Fig. 1 arise naturally in our analysis of
correlated spiking activity. In particular, we will show that the frequency at which each
motif occurs in the network can accurately predict levels of correlation across the network.

We next introduce notation that will allow us to make these ideas precise. Let W0 be
the adjacency matrix, so that W0

i,j = 1 indicates the presence of a directed connection from
cell j to cell i, and W0

i,j = 0 indicates its absence. To quantify the frequency of a motif in a
given graph, we first count the total number of times at which the motif occurs, and divide
by the total number if of possible occurrences in a graph of the given size. For first order
motifs this definition gives the empirical connection probability,

p =

�
�

i,j

W0
i,j

�
/N2. (12)

The preponderance of second order motifs is measured by similarly normalizing the motif
count, but then subtracting the value expected in a reference graph,

qdiv =
�

i,j,k

(W0
i,kW

0
j,k)/N

3 − p2 =

�
�

i,j

(W0W0T )i,j

�
/N3 − p2 (13)

qcon =

�
�

i,j

(W0TW0)i,j

�
/N3 − p2 (14)

qch =

�
�

i,j

(W0W0)i,j

�
/N3 − p2, (15)

where W0T denotes the transpose of W0. Consider the expression defining qdiv: the sum
in the first equality simply counts the total number of connections from one cell (k) to two
others (i and j), and divides by the total number of possible connections of this type. This
can be written as matrix multiplication followed by a sum over all entries i, j, as shown. In
each case we subtract the value p2, which corresponds to the asymptotic frequency of the
motif in an Erdös-Rényi graph as the number of cells, N, diverges to infinity. Indeed, for
Erdös-Rényi graphs any edge is present with chance p, and any second-order motif requires
the presence of two edges. The other measures in Eqs. (13-15) have similar interpretations.
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Figure 2: Impact of changing motif frequencies on mean correlation in non-Erdös-Rényi
networks (gray dots) compared with the effect of changing connection probability in Erdös-
Rényi networks (black dots). The y-axis is mean correlation coefficients (averaged over all
cell pairs in the network) and the x-axis is the connection probability pstat in Erdös-Rényi
model. One get small mean correlation in Erdös-Rényi networks unless using large pstat as
0.4. On the other hand, even with small pstat = 0.2, non-Erdös-Rényi networks can have
similar strong correlation by varying second order motif frequencies. The curve is theoretical
predications of mean correlation based on Eq. (50). Networks has 51 excitatory neurons and
49 inhibitory neurons. For detail of network parameters see Fig. 3.

But which motifs contribute? And are the second-order motifs of Fig. 1 enough to
describe the impact on correlations, or must higher-order motifs (involving four or more
cells) be included? Figure 3 suggests part of the answer. [ESB: Are these same 265 as in
prev. figure? If so state that, and probably simplify text a bit.] [YH: Yes and changed text a
little bit.] Here we use the simulation data of the same 265 non-Erdös-Rényi network samples
in Fig. 2, gray dots, which have equal connection probability, but different frequencies of the
second order motifs. The top row of the figure show the dependence of the average network
correlations on the total motif counts in the network. The result is disappointing: there is
no clear relationship between motif counts and mean correlation level.

This relationship is revealed more clearly on the bottom row of Fig. 3, where we take a
more nuanced approach. First, we plot only the mean correlation among cell pairs of a given
type – here, excitatory cell pairs. Second, we do not simply count all motifs type together,
but instead calculate a weighted sum of motif counts that are classified according to types
of neurons that make them up. For example we separately weight divergent motif counts in
which the neuron i is excitatory and neuron j is inhibitory (see Fig. 1). We see now there is
a much clear trend, as correlation levels vary systematically with weighted motif counts for
the diverging and chain motifs, while there is no clear dependence on the converging motif.
This is confirmed by the R-square measure of linear regression (EE mean correlation against
the motif counts).

Our goal in the balance of this paper is to explain two aspects of the relationship above.

5

Mean correlations in structured networks
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and also replace f0(p) with f0(pstat) so that the theoretically-predicted regression relationship

becomes

�C̃∞�
C̃0

= f0(pstat) + fch(pstat)q
�
ch + fdiv(pstat)q

�
div.

Here, we have adjusted the definition of a motif frequency in order to account for finite-

size fluctuations in the empirical connection probability p. The linear regression fit to the

quantities q�ch, q
�
div is much improved, achieving an R2

measure of 0.99, up from 0.8 in the

case where we did not account for such fluctuations. In Fig. 15, we show the scatter plots

exploring the relationship between motifs and mean correlation after performing this scaling.

Figure 15: Reproduction of Fig. 5 where we have scaled motifs to account for fluctuations

in p, as described in the text.

E Proof of Proposition 4.1

Proof. We will make use of the following lemma, which may be verified by direct computa-

tion.

Lemma E.1. Let {xn}n≥1, {ym}m≥1, {znm}n,m≥1 be sequences which converge absolutely
when summed, and also satisfy

�����

∞�

n=1

xn

����� < 1,

�����

∞�

m=1

ym

����� < 1.

Then,
∞�

i=1

�

(n1,...,nk)∈{i}

�
k�

s=1

xns

�
=

∞�

i=1

� ∞�

n=1

xn

�i

, (66)

∞�

i,j=1

�

(n1,...,nk+1)∈{i}
(m1,...,ml+1)∈{j}

��
k�

s=1

xns

�
znk+1ml+1

�
l�

t=1

ymt

��
=




∞�

i=1

� ∞�

n=1

xn

�i



� ∞�

n,m=1

znm

�


∞�

j=1

� ∞�

m=1

ym

�j


 .

(67)
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How do small motifs impact the 
correlation structure?

network (maybe just 5 cells), and highlighting the diverging, converging, etc motifs inside

... so people get the idea of counting?] [YH: Added a draft of network example, please

comment on revising.] As in [Song et al., 2005], we measure this prevalence by comparing

the observed motif counts with what we would have expected to find under the simplest

model for a random graph. This is a regular network which has the same total number of

connections, and in which each cell has the same, evenly divided number of incoming and

outgoing connections (i.e, the same in and out degree). Importantly, due to the law of large

numbers, the (relative) motif counts for such regular graphs agree with those in the classical

model of random graph, the Erdös-Rényi model in the limit of large network size; thus, when

we refer to the prevalence of network motifs, this means in comparison to either a regular or

Erdös-Rényi graph.
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Figure 1: The different types of second order motifs (Right). (Left) Counting motifs in a

network.

Figure 2 illustrates the importance of network motifs in setting the average correlation

across the network. Here, we simulate 265 (give number of dots) different networks of

excitatory and inhibitory [Dayan and Abbot, 2001], exponential integrate and fire cells (this

is a frequently used model of spiking cells that has been shown to give an accurate description

of the dynamics of cortical neurons [Fourcaud-Trocmé et al., 2003]). Importantly, we bias

each neuron so that it fires with the same rate, regardless of its connectivity: as we explain in

much more detail below, this is important to isolate the effects of network connectivity alone.

First, the black dots give the average correlation for Erdös-Rényi networks that have different

connection probabilities p. As expected, correlations increase with connection probability.

The grey dots show correlation in networks that all have the same connection probability

(p = 0.2), but each have a different prevalence of motifs that the corresponding Erdös-

Rényi model. Interestingly, the range of correlation values obtained at this fixed connection

probability p is as large as that obtained in the Erdös-Rényi networks by ranging p up to

twice the fixed value (i.e., up to p = 0.4). Thus, motifs play a strong role in determining the

strength of correlations across a network.
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network.

Figure 2 illustrates the importance of network motifs in setting the average correlation

across the network. Here, we simulate 265 (give number of dots) different networks of

excitatory and inhibitory [Dayan and Abbot, 2001], exponential integrate and fire cells (this

is a frequently used model of spiking cells that has been shown to give an accurate description

of the dynamics of cortical neurons [Fourcaud-Trocmé et al., 2003]). Importantly, we bias

each neuron so that it fires with the same rate, regardless of its connectivity: as we explain in

much more detail below, this is important to isolate the effects of network connectivity alone.

First, the black dots give the average correlation for Erdös-Rényi networks that have different

connection probabilities p. As expected, correlations increase with connection probability.

The grey dots show correlation in networks that all have the same connection probability

(p = 0.2), but each have a different prevalence of motifs that the corresponding Erdös-

Rényi model. Interestingly, the range of correlation values obtained at this fixed connection

probability p is as large as that obtained in the Erdös-Rényi networks by ranging p up to

twice the fixed value (i.e., up to p = 0.4). Thus, motifs play a strong role in determining the

strength of correlations across a network.
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2.3 Linear response approximation of cell response covariance

Linear response theory [Gabbiani and Cox, 2010, Risken, 1996] can be used to approxi-
mate the response of single cells, and the joint response of cells in a network [Lindner and
Schimansky-Geier, 2001, Brunel et al., 2001, Lindner et al., 2005, Trousdale et al., 2012].
Consider an IF neuron obeying Eq. (1), but with the mean of the inputs f(t) absorbed into
the constant E. We denote the remaining, zero-mean input by �X(t), so that

τ v̇ = −(v − EL) + ψ(v) + E +
√

σ2τξ(t) + �X(t) . (4)

For fixed input fluctuations �X(t), the output spike train will be different for each realization
of the noise ξ(t), and each initial condition v(0). The time-dependent firing rate, is obtained
by averaging the resulting spike train over noise realizations and a stationary distribution
of initial conditions. For all values of �, this stationary distribution is taken to be the one
obtained when � = 0. We denote the resulting averaged firing rate as r(t) = �y(t)�. Linear
response theory approximates this firing rate as

r(t) = r0 + (A ∗ �X)(t), (5)

where r0 is the firing rate in the absence of input (� = 0), and the linear response kernel, A(t),
characterizes the response to first order in �. This approximation is remarkably accurate over
a wide range of parameters; for example, see [Ostojic et al., 2009, Richardson, 2009].

Next, we turn to the problem of approximating the output of a cell on a single trial,
rather than the average across trials. We denote the Fourier transform of a function f by
f̃ = F(f). Following [Lindner and Schimansky-Geier, 2001, Lindner et al., 2005, Trousdale
et al., 2012] we approximate the spiking output of a cell by

ỹi(ω) = ỹ0
i (ω) + Ãi(ω)

�
�

j

J̃ij(ω)ỹj(ω)

�
, (6)

where ỹ0
i (ω) is a realization of the output of cell i in the absence of input. Defining the

interaction matrix K̃ with entries Kij(t) ≡ (Ai ∗ Jij)(t), we can use Eq. (6) to obtain a
self-consistent approximation to the vector of Fourier transformed spike trains

ỹ(ω) = (I− K̃(ω))−1ỹ0(ω), (7)

and matrix of cross-spectra

C̃(ω) ≈ C̃∞(ω) = (I− K̃(ω))−1�ỹ0(ω)ỹ0∗(ω)�(I− K̃∗(ω))−1

= (I− ÃWF̃)−1C̃0(I− F̃∗WT Ã∗)−1 .
(8)

Here Ã, C̃0, F̃ are diagonal matrices: Ãii(ω) = Ãi(ω) is the linear response of cell i, C̃0
ii(ω) =

C̃0
i (ω) = �ỹ0

i (ω)ỹ0∗
i (ω)� is its unperturbed power spectrum of a single cell, and F̃ii(ω) = F̃i(ω)

is the Fourier transform of the synaptic coupling kernel from cell i. As noted later, our results

10

Correlations with homogeneity

and analysis will hold at all frequencies and thus can be used to study correlations at all

timescales. The weighted connectivity matrix W, defines the structure of the network.

To simplify the exposition, we initially assume certain symmetries in the network. For

instance, we consider homogeneous networks in which cells have identical (unperturbed)

power spectra, linear response functions, and synaptic kernels. In this case the diagonal

matrices in Eq. (8) act like scalars. We slightly abuse notation in this case, and replace

Ãii(ω)F̃ij by Ã(ω), and C̃0
ii(ω) by C̃0

(ω). This allows us to disentangle the effects of network

structure from the effects of neuronal responses on network activity. The resulting cross-

spectrum matrix at ω = 0 is

C̃∞(0) = C̃0
(0)(I− ÃW)

−1
(I− ÃWT

)
−1

(9)

We use this simpler expression in the majority of our paper, and return to heterogeneous

networks in Section 6. In what follows, we consider only total correlation, and thus omit

the dependence of the spike count correlation on window size T . In addition we evaluate all

spectral quantities at ω = 0, suppressing the dependence on ω. Finally, we define average

network correlation by

ρavg
=

1

N(N − 1)

N�

i�=j

ρij . (10)

[KJ: Add to the notation table C̃ = C̃(0) to remind readers we evaluate all spectral

quantities at ω = 0.]

In subsequent sections, we will examine the average covariance across the network

�C̃∞� =
1

N2

N�

ij

C̃∞ij . (11)

This average cannot be directly related to that in Eq. (10), where individual summands are

normalized, and diagonal terms are excluded. The motif-based theory we develop predicts

�C̃∞�, and gives no information about the specific entries C̃∞ij . However, ρavg
can be deter-

mined approximately from �C̃∞� alone. We describe these approximations in Appendix A.

2.4 Stability and dynamical regime

[KJ: This section still needs to be revised.] Here, we consider the “asynchrony” regime

of neuron activity. Such regime is required so that the linear response theory gives good

approximation to the integrate and fire neurons, which we verified ad hoc. For a complete

discussion see [Trousdale et al., 2012].

We assume additionally that the spectral radius Ψ(K̃(0)) is less than 1, which enable

the series expansion we described below (Sec. 4.2). Such condition corresponds to networks

where the effect of recurrent connection can be described by iterative propagations [Trousdale

et al., 2012]. For Erdös-Rényi networks [Rajan and Abbott, 2006] derived an asymptotic

characterization of the spectra and thus gives Ψ(K̃(0)) = ÃΨ(W): in single population

11

Assuming homogeneity in uncoupled cells, and evaluating at ω = 0

After expanding and truncating at second order in connection strength,
writing 

To relate second-order motif frequencies to mean correlations between pairs of cells, we
can truncate Eq. (20) at second order in (ÃW), giving

C̃∞

C̃0
≈ I + ÃwW0 + ÃwW0T +

�
Ãw

�2
W0W0T +

�
Ãw

�2 �
W0

�2
+

�
Ãw

�2 �
W0T

�2
(25)

To obtain the empirical average of pairwise covariances in the network, �C̃∞�, we multiply
both sides of Eq. (25) on the left and right by LT and L, respectively. Making use of
Eqs. (22-24), we obtain

�C̃∞�
C̃0

≈ 1

N
+ 2Ãwp + 3N

�
Ãw

�2
p2 + N

�
Ãw

�2
qdiv + 2N

�
Ãw

�2
qch. (26)

Figure 6 shows that Eq. (26) does not provide a good approximations to the average
correlations obtained using Eq. (8). The two give consistent predictions only at very small
coupling strengths. The terms which were discarded (all terms of third or higher order in
ÃW) can have an appreciable impact on average network correlation.

Figure 6: Scatter plot comparing the prediction for mean correlation obtained using Eq. (8)
(x-axes) to the second order truncation in Eq. (26) (y-axes). Each panel corresponds to a
different scaling of coupling strength for the same set of 512 adjacency matrices. The effective
coupling strength is characterized by the Erdös-Rényi spectral radius, and is recorded at the
top of each panel (See Section 2.4).

4.3 Resumming of the linear response approximation

A much better approximation of the average network correlation can be obtained by
considering the impact of second order motifs on higher order terms in the expansion given
by Eq. (20). Note that in an Erdös-Rényi network, every motif of order m occurs with
probability pm (with the exception of motifs which involve the same connection multiple
times). For non–Erdös-Rényi networks, the expected values of qdiv, qcon and qch are typically

18
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Ãw

�2
p2 + N

�
Ãw
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Averaging over the network
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Eqs. (22-24), we obtain

�C̃∞�
C̃0

≈ 1

N
+ 2Ãwp + 3N

�
Ãw

�2
p2 + N

�
Ãw

�2
qdiv + 2N

�
Ãw

�2
qch. (26)

Figure 6 shows that Eq. (26) does not provide a good approximations to the average
correlations obtained using Eq. (8). The two give consistent predictions only at very small
coupling strengths. The terms which were discarded (all terms of third or higher order in
ÃW) can have an appreciable impact on average network correlation.

Figure 6: Scatter plot comparing the prediction for mean correlation obtained using Eq. (8)
(x-axes) to the second order truncation in Eq. (26) (y-axes). Each panel corresponds to a
different scaling of coupling strength for the same set of 512 adjacency matrices. The effective
coupling strength is characterized by the Erdös-Rényi spectral radius, and is recorded at the
top of each panel (See Section 2.4).

4.3 Resumming of the linear response approximation

A much better approximation of the average network correlation can be obtained by
considering the impact of second order motifs on higher order terms in the expansion given
by Eq. (20). Note that in an Erdös-Rényi network, every motif of order m occurs with
probability pm (with the exception of motifs which involve the same connection multiple
times). For non–Erdös-Rényi networks, the expected values of qdiv, qcon and qch are typically
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Figure 8: Estimating the number of occurrence of a fourth order motif. Eq. (31) can be
understood by decomposing this motif into the constituent first and second order motifs.

The idea behind these two examples extend to all terms in the series in Eq. (27), assum-
ing absolute convergence. Each term in the resulting series contains a factor of the form
L

T (W0)i �
W

0T
�j

L corresponding to a motif of order i + j. This motif corresponds of two
chains of length i and j, respectively, emanating from the same root cell. To understand
the impact of second order motifs we need to decompose this motif as illustrated in Figs. 7
and 8. While this is a challenging combinatorial problem, we show that the answer can be
obtained by rearranging the terms in Eq. (27).

Each factor of the form L
T (W0)i �

W
0T

�j
L in Eq. (27) can be split by inserting I = H+Θ

between each occurrence of W
0 or W

0T , as in Eq. (28). The resulting expression can be
used to identify the impact of motifs of order k on terms in the expansion of order i+ j ≥ k.
The following Proposition, proved in Appendix E, formalizes these ideas.

Proposition 4.1. Let H be a rank-1 orthogonal projection matrix generated by the unit
N-vector u, i.e. H = uu

T , and Θ = I−H. For any N ×N matrix K, let

Kn = (KΘ)n−1
K = KΘK · · · ΘK� �� �

n factors of K

.

If the spectral radii Ψ(K) < 1 and Ψ(KΘ) < 1, then

u
T (I−K)−1(I−K

T )−1
u

=

�
1−

∞�

n=1

u
T
Knu

�−1 �
1 +

∞�

n,m=1

u
T
KnΘK

T
mu

� �
1−

∞�

m=1

u
T
K

T
mu

�−1

(32)

We will use Propositon 4.1 to derive a relation between second order motif strengths and
mean covariances. Assuming that Ψ(ÃwW

0), Ψ(ÃwW
0Θ) < 1, and setting u =

√
NL and
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K = ÃwW0
, Proposition 4.1 gives

�C̃∞�
C̃0

=
1

N

�
1−

∞�

n=1

(NÃw)
nLTW0

nL

�−1 �
1 +

∞�

n,m=1

(NÃw)
n+mLTW0

n,mL

�

·
�

1−
∞�

m=1

(NÃw)
mLTW0T

m L

�−1

,

(33)

where

W0
n =

1

Nn−1
W0ΘW0 · · · ΘW0
� �� �

n factors of W0

,

W0
n,m =

1

Nn+m−1
W0ΘW0 · · · ΘW0
� �� �

n factors of W0

ΘW0TΘW0T · · · ΘW0T
� �� �

m factors of W0T

.

Keeping only terms in Eq. (27) which can be expressed as polynomials of second order in

motif frequency and connection probability is equivalent to keeping only terms involving W0
1

(connection probability), W0
2 (chain) and W0

1,1 (diverging). If we keep only such terms in

Eq. (33), we obtain an expression which involves only first and second order motif frequencies:

�C̃∞�
C̃0

=
1

N

1 +

�
NÃw

�2
qdiv

�
1−

�
NÃw

�
p−

�
NÃw

�2
qch

�2 . (34)

To approximate the impact of motifs up to order r, we would similarly keep terms with

factors W0
n,W

0
n,m where n, n + m ≤ r in Eq. (34).

Figure 9 shows that this approximation to the covariance provides a significant improve-

ment over the second order truncation approximation in Eq. (26) (See Fig. 6).

We offer an intuitive explanation for the effectiveness of resumming theory based on

spectra analysis of W (Appendix H) [YH: referring to appendix.]
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NÃw

�
p−

�
NÃw
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Figure 9: A comparison of the mean correlation obtained using Eq. (8) (x-axes) to the
approximation in Eq. (34) (y-axes). Each panel corresponds to a different scaling of coupling
strength for the same set of 512 adjacency matrices. The effective coupling strength is
characterized by the Erdös-Rényi spectral radius, and is recorded at the top of each panel
(see Sec. 2.4).

If we expand the denominator in Eq. (34) as a power series in

��
NÃw

�
p +

�
NÃw

�2
qch

�
,

and keep only terms which are linear in qdiv, qch, we obtain

�C̃∞�
C̃0

=
1

N(1 − NÃwp)2
+

N(Ãw)2

(1 − NÃwp)2
qdiv +

2N(Ãw)2

(1 − NÃwp)3
qch + h.o.t. (35)

which is the linear relation used to estimate the regression coefficients in Fig. 5.
Similarly, we may estimate the mean covariance based only on the probability of occur-

rence of first order motifs, given simply by the connection probability. This is equivalent to
estimating the covariance in idealized Erdös-Rényi networks where qdiv and qch, and their
higher order analogs are precisely zero. In Eq. (33), we set all terms involving W to zero
save W0

1, giving
�C̃∞�
C̃0

=
1

N
�
1 − NÃwp

�2 . (36)

4.4 Correlations in external input

Suppose that we provide a correlated additive white noise input to the network having
covariance structure C̃η(ω) = σ2

XI + σ2
Xρinput(1NN − I) and the variance of external input

to each neuron is fixed (σ2
X) independent of ρinput. Eq. (9) now modified as (see [Trousdale

et al., 2012] for details):

C̃∞ =
�
I− ÃW

�−1 �
C̃0I + Ã2C̃η

� �
I− ÃWT

�−1

=
�
I− ÃW

�−1 ��
C̃0 + Ã2σ2

X

�
I +

�
Ã2σ2

Xρinput
�

(1NN − I)
� �

I− ÃWT
�−1
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Theory extends to EI
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Figure 4: Second order motifs in populations of excitatory and inhibitory cells: There are

20 subtypes of the main 3 motif types. Triangles represent excitatory neurons and circles

for inhibitory neurons.

While we aim to study the populations of interacting E and I cells, the number of dif-

ferent second order motifs in such networks leads to a notationally cumbersome theory. We

therefore first describe our ideas in a population of cells of a single type, before moving to

the case of two interacting populations.

3.2 Generating graphs with given motif frequency

To numerically examine the impact of motif frequency on dynamics, we need to generate

graphs that are equal in connection probability, but differ in the preponderance of second

order motifs. We use two ways of generating such graphs: the degree distribution method and

the SONET method (see details of both methods in [Zhao et al., 2011]). Network samples

generated using both methods cover the range of motif frequency observed experimentally

in cortical circuit [Song et al., 2005, Zhao et al., 2011]. Details are given in Appendix C.

We emphasize that our results do not assume any particular way of generating network

samples. While our approximations do not work for certain networks (a point to which we

will return below), they remain accurate for the networks generated using the two present

schemes.

4 Impact of second order motifs in networks of excita-
tory cells

As we have shown in Section 2, linear response theory can be used to approximate cross-

correlations between of cells in a neuronal network. We will use the approximation given in

Eq. (9) to relate the frequency of second order motifs to the average correlation across pairs

15

Figure 12: Predicting block-wise average correlations from nonlinear resumming theory. The
y axis is the average correlation(in a certain block) from original covariance matrix; the x axis
the quantity from respective approximation theory. Diagonal line is plotted for reference.
The spectral radius of ÃW under Erdös-Rényi assumption is 0.33 (see Sec. 2.4). Other
network parameters are the same as in Fig. 10. Coefficient of determination R2 are 0.93,
0.88, 0.87 respectively for the three panels.

Expanding the inverses in Eq. (48) in a power series, we can again obtain an approxima-
tion to block average correlations to linear order in Qch, and Qdiv,

�C̃∞�B/C̃0 ≈
�
I− ÃMD2

�−1
�
D−1

2 + Ã2Qch

�
I− ÃD2M

�−1
+

�
I− ÃMTD2

�−1
Ã2QT

ch

+ Ã2Qdiv

��
I− ÃD2M

T
�−1

.

(49)

As in the single population case, each entry of the 2 × 2 matrix on the right hand side of
Eq. (49) gives an approximation to the block-averaged correlations expressed in terms of
the scalars qZY X

ch , qXY,Z
div (see example for uniform connection probability in Appendix G),

providing an analytical estimated of regression coefficients plotted in Fig. 10. We note that
in general all sub-types of diverging and converging motif affect each block-wise average
correlation, which is a phenomenon not predicated by second order truncation Eq. 44.
Somewhat counterintuitively, qEI,E

div and qEI,I
div (index 3 and 4 in Fig. 4) can contribute

negatively to �C̃EE� as in the case of Fig. 10 . [YH: added a few sentences here.]
We may also retain contributions to mean correlation which can be expressed as functions

of first order motifs (connection probabilities) only. This yields the following approximation
of mean correlation valid for the two-population analog of Erdös-Rényi networks:

�C̃∞�B/C̃0 =
�
I− ÃMD2

�−1
D−1

2

�
I− ÃD2M

T
�−1

. (50)
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Specifically, in Fig. 14 we compare the block-wise mean correlations from IF simulation and
the predication based on nonlinear resumming theory. We find ... [ESB: describe more what
we see, is it good or bad approx. Also, state that is for same networks as used in xxxx other
figures ...].

Figure 14: Integrate and fire neuron simulations comparing with nonlinear resumming theory.
y-axis is mean correlation coefficient calculated from simulations of different EI networks
graph samples. x-axis is nonlinear resumming theory predication based on empirical statistics
of connection probability and second order motif frequencies. Diagonal line is plotted for
reference. The spectral radius of ÃW under Erdös-Rényi assumption is 0.33 (see Sec. 2.4).
The network samples are the same as in Fig. 3. Coefficient of determination R2 are 0.91,
0.87, 0.79 respectively for the three panels. [ESB: What precisely does this measure? Is it
corr. coeff. squared between x and y datapoints? If so, can we say this directly?]

8 Discussion

Summary: Predicting network-wide correlation from three cell mo-
tifs

[ESB: Agreed: we should have text that combines all of the below here. Will want to also
mention the heterogeneous theory results briefly. Also, want to remind reader of starting
point, where illustrated how second order motif structure makes large difference – Fig 0?]

In this paper we studied the impact of graphical features of neural network, namely mo-
tifs, on its dynamical property of correlations. We focus on three type of motifs that involve
two connections: diverging, converging and chain. We choose a standard spiking neuron
model, integrate and fire neurons, in constructing our recurrent networks (section 2). For
integrate and fire neuron [Trousdale et al., 2012] and other neuron models such as linear
nonlinear Poisson (LNP) model [Beck et al., 2011], one can use linear response approxima-
tion to get an explicit expression of the pairwise correlations in terms connectivity matrix
(Eq. (8)). We expand such expression in series, where each term has clear correspondence to
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Conclusion

- Linear response theory can be used to understand the 
statistical structure of population activity.

- Cross-correlation functions can be understood in terms of 
contributions from paths through the network.  Thus 
architecture and population activity can be related.

- This local theory applies to any network where interactions 
can be linearized

- There is a lot more to do - see Bullmore and Sporns, Nat 
Neurosci, 2009
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