Structure of Correlations in Neuronal Networks

Krešimir Josić University of Houston

James Trousdale (UH), Yu Hu (UW) Eric Shea-Brown (UW)

The Connectome

Van J. Wedeen, MGH/Harvard

Monday, May 21, 2012

The Connectome

0

Van J. Wedeen, MGH/Harvard

Song, et al. 2004

Are neuronal responses dependent or independent?

Tolias, Dragoi, Smirnakis, Angelaki,

How are structure and dynamics related in neuronal networks?

How are structure and dynamics related in neuronal networks?

Synchrony - is probably atypical

Correlation - a measure of dependence

her neuron I

heuron 2

n_i - (random) number of spikes of neuron *i* during a time T.
Correlation coefficient of the output is

$$\rho_T = \frac{\text{Cov}(n_1, n_2)}{\sqrt{\text{Var}(n_1)\text{Var}(n_2)}}$$

n_i - (random) number of spikes of neuron *i* during a time T.
Correlation coefficient of the output is

$$\rho_T = \frac{\text{Cov}(n_1, n_2)}{\sqrt{\text{Var}(n_1)\text{Var}(n_2)}}$$

low correlation

n_i - (random) number of spikes of neuron *i* during a time T.
Correlation coefficient of the output is

$$\rho_T = \frac{\text{Cov}(n_1, n_2)}{\sqrt{\text{Var}(n_1)\text{Var}(n_2)}}$$

high correlation

Short vs long timescale correlations

Cross-Correlation Function

Conditional probability of spike in B, given spike in A.

Cross-Correlation Function

Conditional probability of spike in B, given spike in A.

Short-timescal (synchrony)

Cross-Correlation Function, $C_{i,j}(\tau)$

Conditional probability of spike in B, given spike in A.

After normalization

$$\mathbf{C}_{ij}(\tau) = \operatorname{cov}\left(y_i(t+\tau), y_j(t)\right)$$

Correlations Impact Neural Computation

TkaČik, et al. 2010

Models of Neurons - Integrate and Fire

$$\frac{dV}{dt} = -\frac{V}{\tau_m} + \Psi(V) + \mu + \sqrt{2D}\eta(t)$$

$$V(t) = V_{\theta} \Rightarrow V(t^+) = V_{\text{reset}}$$

Subthreshold membrane potential

Fire and Reset

Rate r - number of spikes per second

Structure or correlations in networks

 $y_{j}(t) = \sum_{i} \delta(t - t_{i}^{j}) \quad \text{output spike train of cell } j$ $f_{i}(t) = \sum_{j} (\mathbf{J}_{ij} * y_{j})(t) \quad \text{synaptic coupling}$ $\mathbf{J}_{ij}(t) = \begin{cases} \mathbf{W}_{ij} \left(\frac{t - \tau_{D,j}}{\tau_{S,j}^{2}}\right) \exp\left[-\frac{t - \tau_{D,j}}{\tau_{S,j}}\right] & t \ge \tau_{D,j} \\ 0 & t < \tau_{D,j} \end{cases}$

Nykamp

The output of a model neuron is a spike train

$$y_j(t) = \sum_i \delta(t - t_i^j)$$

Linear response gives the output rate as

$$r(t) = r_0 + (A * X)(t)$$

The output of a model neuron is a spike train

$$y_j(t) = \sum_i \delta(t - t_i^j)$$

Linear response gives the output rate as

$$r(t) = r_0 + (A * X)(t)$$

How do we use this to compute the cross-correlation?

$$\frac{dV}{dt} = -\frac{V}{\tau_m} + \Psi(V) + \mu_0 + \sqrt{2D}\eta(t)$$
$$y_0(t) = \sum_i \delta(t - t_i^0)$$

$$\frac{dV}{dt} = -\frac{V}{\tau_m} + \Psi(V) + \mu_0 + \sqrt{2D}\eta(t) + X(t)$$
$$y_0(t) = \sum_i \delta(t - t_i^0)$$

$$\frac{dV}{dt} = -\frac{V}{\tau_m} + \Psi(V) + \mu_0 + \sqrt{2D\eta(t)} + X(t)$$

$$\frac{dV}{dt} = -\frac{V}{\tau_m} + \Psi(V) + \mu_0 + \sqrt{2D}\eta(t) + X(t)$$
$$y(t) = \sum_i \delta(t - t_i)$$

$$\frac{dV}{dt} = -\frac{V}{\tau_m} + \Psi(V) + \mu_0 + \sqrt{2D\eta(t)} + X(t)$$
$$y(t) = \sum_i \delta(t - t_i)$$

Use linear response to obtain a mixed point/continuous process

$$y(t) \approx y^{1}(t) = y^{0}(t) + (A * X)(t)$$

$$\frac{dV}{dt} = -\frac{V}{\tau_m} + \Psi(V) + \mu_0 + \sqrt{2D\eta(t)} + X(t)$$
$$y(t) = \sum_i \delta(t - t_i)$$

Use linear response to obtain a mixed point/continuous process

$$y(t) \approx y^{1}(t) = y^{0}(t) + (A * X)(t)$$

Which averages out to the right thing

$$r(t) \approx r_0 + (A * X)(t)$$

Approximate network correlations

The linear response approximation now takes the form

$$y_i^1(t) = y_i^0(t) + \sum_{\text{all inputs}} \left(\mathbf{K}_{i,j} * [y_j^0 - r_j] \right) (t)$$
$$\mathbf{K}_{i,j} = (A_i * \mathbf{J}_{i,j})(t)$$

We can use this to approximate the cross-covariances

$$\begin{aligned} \mathbf{C}_{ij}(\tau) &\approx \mathbf{C}_{ij}^{1}(\tau) = \mathbf{E} \{ (y_{i}^{1}(t+\tau) - r_{i})(y_{j}^{1}(t) - r_{j}) \} \\ &= \delta_{ij} \mathbf{C}_{ii}^{0}(\tau) + (\mathbf{K}_{ij} * \mathbf{C}_{jj}^{0})(\tau) + (\mathbf{K}_{ji}^{-} * \mathbf{C}_{ii}^{0})(\tau) + \sum_{k} (\mathbf{K}_{ik} * \mathbf{K}_{jk}^{-} * \mathbf{C}_{kk}^{0})(\tau) \end{aligned}$$

Ostojic, Brunel, Hakim, 2009, Trousdale, Yu, Shea-Brown, Josić, 2011

Impact of non-immediate neighbors

We use an iterative construction

$$\mathbf{y}^{n+1}(t) = \mathbf{y}^{0}(t) + (\mathbf{K} * [\mathbf{y}^{n} - \mathbf{r}])(t)$$
$$= \mathbf{y}^{0}(t) + \sum_{k=1}^{n+1} \left(\mathbf{K}^{(k)} * [\mathbf{y}^{0} - \mathbf{r}] \right)(t)$$

Which gives the *n*-th approximation to the cross-correlation After taking the Fourier transform, and the limit $n \to \infty$

$$\tilde{\mathbf{C}}^{\infty}(\omega) = \lim_{n \to \infty} \tilde{\mathbf{C}}^{n}(\omega) = (\mathbf{I} - \tilde{\mathbf{K}}(\omega))^{-1} \tilde{\mathbf{C}}^{0}(\omega) (\mathbf{I} - \tilde{\mathbf{K}}^{*}(\omega))^{-1}$$

Impact of non-immediate neighbors

We use an iterative construction

$$\mathbf{y}^{n+1}(t) = \mathbf{y}^{0}(t) + (\mathbf{K} * [\mathbf{y}^{n} - \mathbf{r}])(t)$$

= $\mathbf{y}^{0}(t) + \sum_{k=1}^{n+1} \left(\mathbf{K}^{(k)} * [\mathbf{y}^{0} - \mathbf{r}] \right)(t)$

Which gives the *n*-th approximation to the cross-correlation After taking the Fourier transform, and the limit $n \to \infty$

$$\tilde{\mathbf{C}}^{\infty}(\omega) = \lim_{n \to \infty} \tilde{\mathbf{C}}^{n}(\omega) = (\mathbf{I} - \tilde{\mathbf{K}}(\omega))^{-1} \tilde{\mathbf{C}}^{0}(\omega) (\mathbf{I} - \tilde{\mathbf{K}}^{*}(\omega))^{-1}$$
$$\mathbf{K}_{i,j} = (A_{i} * \mathbf{J}_{i,j})(t)$$

The iterative construction

Rangan 2009 Pernice, Staube, Cardanobile, Rotter 2011 Trousdale, Yu, Shea-Brown, Josić, 2011

The iterative construction

Rangan 2009 Pernice, Staube, Cardanobile, Rotter 2011 Trousdale, Yu, Shea-Brown, Josić, 2011

The iterative construction

Rangan 2009 Pernice, Staube, Cardanobile, Rotter 2011 Trousdale, Yu, Shea-Brown, Josić, 2011

The approximation works well

Cross-correlation between two excitatory cells as we shift from balance to excess inhibition

Expansion in terms of paths through the graph

$$\mathbf{C}^{\infty}(\tau) = \lim_{n \to \infty} \sum_{k,l}^{n} \left(\mathbf{K}^{(k)} * \mathbf{C}^{0} * \mathbf{K}^{(l)T} \right) (\tau)$$

How does local structure determine correlations?

Song, et al. 2005

How do small motifs impact the e?

Sporns and Kötter, 2004

How do small motifs impact that

converging

chain

 $q_{\rm con}$

ı

^d Kötter, 2004

 $q_{\rm ch}$

Mean correlations in structured networks

How do small motifs impact the correlation structure?

converging

chain

Correlations with homogeneity

$$\tilde{\mathbf{C}}^{\infty}(\omega) = (\mathbf{I} - \tilde{\mathbf{K}}(\omega))^{-1} \langle \tilde{y}^{0}(\omega) \tilde{y}^{0*}(\omega) \rangle (\mathbf{I} - \tilde{\mathbf{K}}^{*}(\omega))^{-1}$$

Assuming homogeneity in uncoupled cells, and evaluating at $\omega = 0$

$$\tilde{\mathbf{C}}^{\infty}(0) = \tilde{C}^{0}(0)(\mathbf{I} - \tilde{A}\mathbf{W})^{-1}(\mathbf{I} - \tilde{A}\mathbf{W}^{T})^{-1}$$

After expanding and truncating at second order in connection strength, writing $wW^0 = W$

$$\frac{\tilde{\mathbf{C}}^{\infty}}{\tilde{C}^{0}} \approx I + \tilde{A}w\mathbf{W}^{0} + \tilde{A}w\mathbf{W}^{0T} + \left(\tilde{A}w\right)^{2}\mathbf{W}^{0}\mathbf{W}^{0T} + \left(\tilde{A}w\right)^{2}\left(\mathbf{W}^{0}\right)^{2} + \left(\tilde{A}w\right)^{2}\left(\mathbf{W}^{0T}\right)^{2}$$

Averagd network correlations

$$\frac{\tilde{\mathbf{C}}^{\infty}}{\tilde{C}^{0}} \approx I + \tilde{A}w\mathbf{W}^{0} + \tilde{A}w\mathbf{W}^{0T} + \left(\tilde{A}w\right)^{2}\mathbf{W}^{0}\mathbf{W}^{0T} + \left(\tilde{A}w\right)^{2}\left(\mathbf{W}^{0}\right)^{2} + \left(\tilde{A}w\right)^{2}\left(\mathbf{W}^{0T}\right)^{2}$$

Averaging over the network

$$\frac{\langle \tilde{\mathbf{C}}^{\infty} \rangle}{\tilde{C}^{0}} \approx \frac{1}{N} + 2\tilde{A}wp + 3N\left(\tilde{A}w\right)^{2}p^{2} + N\left(\tilde{A}w\right)^{2}q_{\mathrm{div}} + 2N\left(\tilde{A}w\right)^{2}q_{\mathrm{ch}}$$

 $pq_{\rm div}p$

Resumming

$$\begin{aligned} \frac{\langle \tilde{\mathbf{C}}^{\infty} \rangle}{\tilde{C}^{0}} &= \frac{1}{N} \left(1 - \sum_{n=1}^{\infty} (N \tilde{A} w)^{n} \mathbf{L}^{T} \mathbf{W}_{n}^{0} \mathbf{L} \right)^{-1} \left(1 + \sum_{n,m=1}^{\infty} (N \tilde{A} w)^{n+m} \mathbf{L}^{T} \mathbf{W}_{n,m}^{0} \mathbf{L} \right) \\ & \cdot \left(1 - \sum_{m=1}^{\infty} (N \tilde{A} w)^{m} \mathbf{L}^{T} \mathbf{W}_{m}^{0T} \mathbf{L} \right)^{-1}, \end{aligned}$$

Keeping contribution of second order motifs

$$\frac{\langle \tilde{\mathbf{C}}^{\infty} \rangle}{\tilde{C}^{0}} = \frac{1}{N} \frac{1 + \left(N \tilde{A} w \right)^{2} q_{\text{div}}}{\left[1 - \left(N \tilde{A} w \right) p - \left(N \tilde{A} w \right)^{2} q_{\text{ch}} \right]^{2}}.$$

Resumming

$$\begin{aligned} \frac{\langle \tilde{\mathbf{C}}^{\infty} \rangle}{\tilde{C}^{0}} &= \frac{1}{N} \left(1 - \sum_{n=1}^{\infty} (N \tilde{A} w)^{n} \mathbf{L}^{T} \mathbf{W}_{n}^{0} \mathbf{L} \right)^{-1} \left(1 + \sum_{n,m=1}^{\infty} (N \tilde{A} w)^{n+m} \mathbf{L}^{T} \mathbf{W}_{n,m}^{0} \mathbf{L} \right) \\ & \cdot \left(1 - \sum_{m=1}^{\infty} (N \tilde{A} w)^{m} \mathbf{L}^{T} \mathbf{W}_{m}^{0T} \mathbf{L} \right)^{-1}, \end{aligned}$$

Keeping contribution of second order motifs

$$\boxed{\frac{\langle \tilde{\mathbf{C}}^{\infty} \rangle}{\tilde{C}^{0}} = \frac{1}{N} \frac{1 + \left(N \tilde{A} w \right)^{2} q_{\text{div}}}{\left[1 - \left(N \tilde{A} w \right) p - \left(N \tilde{A} w \right)^{2} q_{\text{ch}} \right]^{2}} \frac{1}{2.8}}{\left[1 - \left(N \tilde{A} w \right) p - \left(N \tilde{A} w \right)^{2} q_{\text{ch}} \right]^{2}}$$

Theory extends to EI

Excitatory-Excitatory Average

Nonlin

Resumming

0.1

0.2

Monday, May 21, 2012

1

3

5

Conclusion

- Linear response theory can be used to understand the statistical structure of population activity.

- Cross-correlation functions can be understood in terms of contributions from paths through the network. Thus architecture and population activity can be related.

- This local theory applies to any network where interactions can be linearized

- There is a lot more to do - see Bullmore and Sporns, Nat Neurosci, 2009

University of Houston

Manisha Bhardwaj Becky Chen Manuel Lopez **Robert Rosenbaum** (Pitt) **James Trousdale**

University of Washington, Seattle Eric Shea-Brown Yu Hu

University of Pittsburgh Brent Doiron