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Introduction

We investigate the propagation and the propagation death of excitation waves on
small-world networks. We observe a sharp boundary in the rewiring probability beyond
which propagation of excitation waves is not observed anymore. This is reminiscent
of an upper boundary in rewiring probability for finding sustained activity in small-
world networks [SIN07b]. We are able to approximate this boundary in a mean field
model. We also observe another effect we do not yet fully understand, which makes
propagation death occur at unusually low rewiring probabilities for distinct values of
nearest-neighbor number and coupling strength.

Model

Dynamics: The nodes in our network obey the FitzHugh-Nagumo differential
equations [IZH06]. They are coupled by the difference in the activator concentration
(diffusive coupling of the activator).

u̇i = ui −
u3i
3
− vi + κ

∑

j

Aij (uj − ui) ,

v̇i = ǫ (ui − β) , (1)

with Aij being the adjacency matrix of the network.
The parameters of the FitzHugh-Nagumo model are chosen as β = 1.1, ǫ = 0.04,
such that the model is in the excitable regime. The coupling strength κ will be varied.
Topology: We examine the dynamics on a Watts-Strogatz small-world model
[WAT98]. In constructing the model we start out with a ring network with N nodes
and nearest-neighbor number 2k.
For the construction of this model, every link is chosen for rewiring with a probability
p. One of the ends of such a chosen link is connected to a new node which is chosen
at random from the entire network.

→

Ring network with N = 25 and k = 2, as is and rewired with p = 0.1.

Initial Conditions: In order to examine the fate of traveling waves on small world
networks, we use as initial condition for the simulation a traveling wave on the ring
network that the small-world model is constructed from.
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Initial conditions for N = 250, k = 3 and κ = 0.2 by node index and in a nullcline diagram.

Numerical Results

We simulated the dynamics on small-world networks generated from rings with
N = 250, 500, 1000, 2000 and k = 3, 4, 5. The small-world networks were
generated with 81 rewiring probabilities from p = 10−5 to p = 100 and for each
probability (and network) 200 realizations were generated. Each simulation was
done with coupling strengths from κ = 0.05 to κ = 2.0, with the proper travel-
ing waves as initial conditions. For every simulation, the time until the collapse of
the solution was recorded. (Cutoff at 6000 time units as maximal simulation time).
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The fraction of solutions with survival times Tsurv <= 6000 as a function of log10(p) and κ. The red line is the

approximation by the mean-field model.

Meanfield Model

The first approximation we do is to say that the small-world shortcuts are added to
the network (instead of replacing). This way, the adjacency matrix can be viewed as
a sum

Aij = Dij + Sij (2)

of the adjacency matrix of a regular ring network Dij and that of a random network
Sij. We can understand the nodes of a regular ring network as discretization points
(with distance between the nodes dx = 1) of an excitable medium. For large enough
probabilities p, and broad enough waves, we can approximate the effect of the random
links in Sij by a mean-field term. The expression for this excitable medium is

u̇ = u−
u3

3 − v +D∆u + δ(u− ū)

v̇ = ǫ (u− β) (3)

with an effective diffusion coefficient and mean-field strength

D = κ
∑k

j=1 j
2, δ = κkp. (4)

When raising δ, we come across a fold bifurcation at δ0(D). Using AUTO to track
δ0(D) and calculating p0(κ) using (4), we can approximate the point of propagation
death.

Resonance effects

When having a close look at the survival rates for N = 1000 and k = 4, for instance,
one notices that the survival rate at a coupling strength of κ = 1.4 begins to deteriorate
very early. The coupling strength at which this happens is the same for N = 2000
and k = 4 but it changes when the nearest-neighbor number changes. We have an
exemplary look at the time series for one realization of a small-world network with
N = 1000, k = 4 and p = 10−4. In this particular realization there is only one
small-world shortcut present.
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Three timeslices for coupling strength κ = 1.2
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The solution with κ = 1.4 suffers propagation death shortly after the last displayed
timeslice, whereas the other two depicted solutions propagate until maximum simula-
tion time is reached.

Acknowledgments

This work was done in the SFB910, project A1. The author would like to thank Eck-
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[SIN07b] S. Sinha, J. Saramäki, and K. Kaski: Emergence of self-sustained patterns
in small-world excitable media, Phys. Rev. E 76 (2007).

[WAT98]D. J. Watts and S. H. Strogatz: Collective dynamics of ’small-world’ networks,
Nature 393, 440–442 (1998).

International workshop: MAPCON12, Mathematical Physics of Complex Networks: From Graph Theory to Biological Physics, Dresden, Germany May 14-18, 2012 , contact: physikant@gmail.com


