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Rare events

Storms
Stock-market crashs
Floodings −→
Earth quakes ↓
...

Oldenburg August 2010
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Outline

Algorithm
Large-deviation graph properties
(ER/2d lattice random graphs)
largest component
number of components
Sampling of graphs
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Graphs
Graph G = (V ,E)

connected components:
transitive closure of
“connectivity relation”

diameter: longest among all
pairwise shortest paths
(within components)

Random graphs:

N vertices, each edge tentative (ij) with prob. p.

Erdös-Rényi: (ij) ∈ N(2), p = c/N → finite connect. c
two-dim. percolation: (ij) ∈ square lattice, p = const

N vertices, given (sampled) degree sequence k1. . . . , ki ,
e.g., scale-free P(k) ∼ k−γ

each graph with same probability (“configuration model”)
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Physics Approach
Idea:
model ↔ physical system
quenched realisation ↔ degrees of freedom ~x (state)
quantity “score” S ↔ energy E(~x)

(ground state: often known)
simulate at finite T
Monte Carlo moves:
change realisat. a bit

Simulation at different T
(using (MC)3/PT)
Example
(sequence alignment)
equilibration:
start with ground state/
with random state
Wang-Landau approach 0 5000 10000 15000 20000
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Distribution of Scores

Raw result −→
(simple↔ T =∞)
at low T :
high scores prefered
MC moves: ~x → ~x ′

change on “element”
probability = fa
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Pr(acceptance) = min{1, exp(S(~x ′)/T )
exp(S(~x)/T )

} = min{1,e∆S/T}

⇒ equilibrium distribution QT (~x) = P(~x)eS(~x)/T/Z (T )
with P(~x) =

∏
i fxi , Z (T ) =

∑
~x P(~x)eS(~x)/T

⇒ pT (S) =
∑

~x ,S(~x)=S QT (~x) = exp(S/T )
Z (T )

∑
~x ,S(~x)=S P(~x)

⇒ p(S) = pT (S)Z (T )e−S/T [AKH, PRE 2001]
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Match Distriutions

[
p(S) = pT (S)Z (T ) exp(−S/T )

]
rescaling with exp(−S/T )
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agrees with large statistics simple sampling
agrees with (for this example) known exact result
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Results: Erdős-Rényi

Size S of largest component (connectivity c)

[AKH, Eur. Phys. J. B (2011)]
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Rate function Φ(s) ≡ − 1
N log P(s), s = S/N

Comparison with exact asymptotic result
[M. Biskup, L. Chayes, S.A. Smith, Rand. Struct. Alg. 2007]

→ evaluate algorithm→ works very well
→ finite-size corrections visible
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Phase transition

Cluster size as function of (artificial) temperature
1st order transition in percolating phase

→ large system sizes not fully accessible (→ use
Wang-Landau algorithm here)

10 / 15



Bias in Configuration model
Configuration model: k “stubs” for each node of degree k .
Randomly draw pairs of stubs. If multiple/self edge:
refusal: start graph from scratch
repetition: redraw pair
Repetition is biased: relevant for measurements (N →∞)?
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 γ = 2.5

[H. Klein-Hennig, AKH, Phys. Rev. E 2012]

→ Markov chains/ hidden variables/ throw-away edges/ ...
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Two-dimensional percolation

N = L× L, edge density p
No exact result known (to me)
Results comparable to Erdős-Rényi random graphs
but stronger finite-size effects
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Graph Diameter
Diameter d? :=
Longest of all
shortest i → j paths
Random graphs: (c < 1): Gumbel distribution

PrG(d? = d) = λe−λ(d−d0)e−e−λ(d−d0)

(sloppy) explanation:
graph = forest
d = maxtrees T d(T )
→ Gumbel distribution
Fit to

P(d) = PG(d)e−a(d−d0)2

“gaussianized” Gumbel
[AKH, M. Mézard, in preparation] 0 50 100
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Close to c = 1, asymptotically

λ(c) = − log c

[T. Luczak, Rand.Struct.Alg., 1998]
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Percolating region:
more complex distributions
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Summary

Large-deviation properties
Physics approach:
study system at artificial finite temperature
(or, in principle, Wang-Landau algorithm + modifications)

Full distribution of size of largest component
Erdős-Rényi random graphs: matches well analytics
1st order transition in percolating phase
(also: number of components, 2d percolation, diameter)
Simple sampling of configuration model is biased

Work more efficiently: read/write/edit scientific paper summaries
www.papercore.org (open access)

Summer school: Efficient Algorithms in Computational Physics
Bad Honnef (Germany), 10-14. September 2012
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