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A directed graph (or digraph) G = (V,A) consists of a set V

of vertices and a set A of arcs, where each arc is an ordered

pair of distinct vertices (v, w).

Our digraphs are finite, so assume that V = [n] = {1,2, . . . n}.



Let v be a vertex in a digraph G. The in-degree of v in G is

the number of arcs (w, v) ∈ A which terminate at v, while

the out-degree of v is the number of arcs (v, w) ∈ A which

originate at v.

Given two vectors of nonnegative integers d
− = (d−1 , . . . , d

−
n )

and d
+ = (d+1 , . . . , d

+
n ) with the same sum, let S(n,d−,d+)

be the set of all directed graphs with vertex set [n] such that

vertex i has in-degree d−i and out-degree d+i for all i ∈ [n].

Note: the entries of d
−,d+ may depend on n.



Here d
− = (1,2,2,1,2,1,1,2) and d

+ = (0,2,1,2,2,1,2,2):
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In many applications we would like an efficient algorithm for

sampling uniformly from S(n,d−,d+).



Sampling digraphs with fixed degrees

Polynomial time means in time poly(n, dmax) where

dmax = max{d−1 , . . . , d−n , d
+
1 , . . . , d

+
n }.

• The configuration model (Bollobás, 1980) performs

uniform sampling in expected polynomial time if

dmax = O(
√
logn).

• An algorithm of McKay & Wormald (1990) can be adapted

to perform uniform sampling in expected polynomial time if

dmax = O(logn).

I know of no other efficient uniform sampling algorithms for

S(n,d−,d+). So, we will try approximately uniform sampling

in (deterministic) polynomial time using a Markov chain.



Related work

Kim, Del Genio, Bassler & Toroczkai (2012) gave a polynomial-

time algorithm for sampling directed graphs with fixed in-

and out-degrees, from a specific, computable, non-uniform

distribution. (They can also do exhaustive generation.)

Then biased sampling can be used to calculate (unweighted)

averages of various statistics.

I think we will hear more about this after coffee.



A very natural Markov chain on S(n,d−,d+) uses switches.

We call this chain the switch chain.

From G ∈ S(n,d−,d+) do

choose an unordered pair of distinct arcs

{(i, j), (k, ℓ)} ⊆ A(G) uniformly at random;

if |{i, j, k, ℓ}| = 4 and {(i, ℓ), (k, j)} ∩A(G) = ∅ then

replace these arcs with {(i, ℓ), (k, j)};
else

do nothing.
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Ryser (1963) used switches to study 0-1 matrices.

Markov chains based on switches have been introduced by

* Besag & Clifford (1989), for 0-1 matrices,

* Diaconis and Sturmfels (1995) and Holst (1995), for

contingency tables,

* Rao, Jana & Bandyopadhyay (1996), for digraphs.



Restrict to regular digraphs

If every vertex v ∈ V has in-degree d and out-degree d then

we say that G is d-regular (or d-in, d-out).

Let Sn,d be the set of all d-regular digraphs on the vertex

set [n]. Here d = d(n) might depend on n, and satisfies

1 ≤ d(n) ≤ n− 1 for all n.



Rao, Jana & Bandyopadhyay (1996) showed that the switch

chain is not always irreducible on S(n,d−,d+), but that you

obtain an irreducible Markov chain if you reverse a directed

3-cycle occasionally.

LaMar (2009) gave a characterisation of degree sequences

(d−,d+) for which the switch chain is irreducible. (See also

Berger & Müller-Hannemann 2009.)

It follows from this characterisation that the switch chain is

irreducible on Sn,d.

The switch chain is aperiodic and its stationary distribution

is uniform.



In 2011 I proved that the switch chain on Sn,d converges

to within ε of the uniform distribution (in total variation

distance) after at most

50d25n9(dn log(dn) + log(1/ǫ))

steps. The analysis used a multicommodity flow argument,

building on the undirected case (Cooper, Dyer & Greenhill,

2007).

Main steps:

• For each X 6= Y ∈ Sn,d, define a set of paths from X to

Y , where each step is a transition of the switch chain.

• Analyse the congestion of the set of all paths: are any

transitions heavily loaded? Then apply Sinclair (1992).



Defining the flow

Given X 6= Y ∈ Sn,d, consider the symmetric difference H of

X and Y . Colour X − Y black and Y −X red.

For each vertex v ∈ [n], pair up each in-arc at v with an

in-arc of a different colour, and similarly for out-arcs. This

gives a pairing of H.

We define a path γψ(X, Y ) from X to Y for each pairing ψ
of H.



First we pull H apart into a sequence of 1-circuits and

2-circuits, following ψ. Here w is the start vertex which

is traversed exactly once on a 1-circuit, exactly twice on a

2-circuit.

w

w

x y

These can be processed as in CDG (2007) unless x = y.



We have to deal with some grisly 2-circuits that do not arise

in the undirected case:

w

w

But these can be handled, by extending the argument from

CDG (2007) and using results from LaMar (2009) for the

triangle.



Analysing the flow:

Let (Z,W ) be a transition which occurs on a path γψ(X, Y )

from X to Y .

Y

X

Z

W

How much information do you need to uniquely reconstruct

X and Y from (Z,W,ψ)?



Identify elements of Sn,d with their n×n adjacency matrices

and let

L = X + Y − Z.

The matrix L is called an encoding. Note, every row of

L sums to d, and the same for the columns. Entries of L

belong to {−1,0,1,2} and entries not equal to 0 or 1 are

called defects.

A defect entry of −1 corresponds to an arc which is present

in Z but absent in both X and Y .

A defect entry of 2 corresponds to an arc which is absent in

Z but present in both X and Y .



An encoding is shown below: red arcs are labelled 2 and

green arcs are labelled −1.

Fact: Given (Z,W,ψ, L), there are at most four choices for

(X, Y ) such that (Z,W ) ∈ γψ(X, Y ).

Next we must show that there are at most poly(n, d) |Sn,d|
encodings.



Critical Fact: at most three switches are needed to move

from an arbitrary encoding to an element of Sn,d.

αα ββ

γ γ δδ

This follows since there are at most 5 defects in any

encoding, and the defects satisfy some other structural

properties.



What about irregular degree sequences?

• First check that the switch chain is irreducible for the given

in- and out-degrees using LaMar (2009);

• We can define the multicommodity flow exactly as in the

regular case;

• Many steps of the analysis go through unchanged. But it

is no longer clear that every encoding is within some small

number of switches of a defect-free digraph.

This is a serious problem!



Questions/Future work:

• Can the regularity condition be relaxed at all? In the

undirected case Erdős, Miklós and Soukup (arXiv, 2010)

show that the undirected switch chain for bipartite graphs

is efficient so long as the degrees on one side of the vertex

bipartition are regular.

• Bayati, Kim & Saberi (2009) presented a sequential

importance sampling algorithm for sampling undirected graphs

with fixed degrees almost uniformly. Their algorithm is

efficient if dmax = o(m1/4) (but with a small failure

probability). Adapt this for directed graphs?


