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On the ensemble of (static, undirected, N — o) random
networks with degree distribution P,: is it possible to
accurately predict macroscopic outcomes for given
stochastic (binary-state) dynamical processes?
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SIS (susceptible-infected-susceptible) model for disease spread
Each node is either infected or susceptible.

Infected nodes become susceptible at rate y;
an infected node infects each of its susceptible neighbours at rate A.
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SIS (susceptible-infected-susceptible) model for disease spread
Each node is either infected or susceptible.

Infected nodes become susceptible at rate y;

an infected node infects each of its susceptible neighbours at rate A.

===p Mean-field (MF) theory:
Pastor-Satorras and Vespignani (2001)

Pair approximation (PA):
Levin and Durrett (1996); Eames and Keeling (2002)

=== Approx. Master Equations (AME):
Marceau et al, PRE (2010), Lindquist et al, J. Math. Biol. (2011)



On the ensemble of (static, undirected, N — o) random networks with
degree distribution Pj: is it possible to accurately predict macroscopic
outcomes for given stochastic (binary-state) dynamical processes?

Voter model

Each node has an opinion (let’s call these “infected” or “susceptible”). At
each time step (dt = 1/N), a randomly-chosen node is updated.

The chosen node updates its opinion by picking a neighbour at random
and copying the opinion of that neighbour.

===p MF: Sood and Redner (2005)
PA: Vazquez and Eguiluz (2008)



General binary-state stochastic dynamics:

= Each node (of N) is in one of two states at any time — call these states
“susceptible” and “infected”.

= Arandomly-chosen fraction p(0) of nodes are initially infected.
= |nasmall time step dt, a fraction dt of nodes are updated (often dt = 1/N).

= A updating node that is susceptible becomes infected with probability Fy ., dt,

where k is the node’s degree and m is the number of its neighbours that are
infected:

N
O ®
* Notation: Fy,, dt = infection probability for a k-degree susceptible node
with m infected neighbours.

® O

= Similarly: Ry ., dt = recovery probability for a k-degree infected node
with m infected neighbours.



Examples

Voter model

Each node has an opinion (let’s call these “infected” or “susceptible”).
At each time step (dt = 1/N), a randomly-chosen node is updated.
The chosen node updates its opinion by picking a neighbour at random
and copying the opinion of that neighbour.
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Examples

SIS (susceptible-infected-susceptible) model for disease spread
Each node is either infected or susceptible.
Infected nodes become susceptible at rate y;

an infected node infects each of its susceptible neighbours at rate A.

)
O ‘ Fk,m = Am

® O Rim =1
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Synergy in Spreading Processes: From Exploitative to Explorative Foraging Strategies
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An epidemiological model which incorporates synergistic effects that allow the infectivity and/or
susceptibility of hosts to be dependent on the number of infected neighbors is proposed. Constructive
synergy induces an exploitative behavior which results in a rapid invasion that infects a large number of
hosts. Interfering synergy leads to a slower and sparser explorative foraging strategy that traverses larger
distances by infecting fewer hosts. The model can be mapped to a dynamical bond percolation with spatial
correlations that affect the mechanism of spread but do not influence the critical behavior of epidemics.
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Abstract

Many behavioral phenomena have been found to spread interpersonally through social networks, in a manner similar to
infectious diseases. An important difference between social contagion and traditional infectious diseases, however, is that
behavioral phenomena can be acquired by non-social mechanisms as well as through social transmission. We introduce a

ovel thenretlcal framewnrk for studylng these phennmena (the SISa model) by adapting a classic disease mndel to include
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Dynamic Opinion Model and Invasion Percolation

Jia Shao,' Shlomo Havlin,” and H. Eugene Stanley'
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*Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel
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We propose|a “‘nonconsensus” opinion model that allows for stable coexistence of two opinions|by
forming clusters of agents holding the same opinion. We study this nonconsensus model on lattices,
several model complex networks, and a real-life social network. We find that the model displays a phase
transition behavior characterized by a large spanning cluster of nodes holding the same opinion appearing
when the concentration of nodes holding the same opinion (even minority) 1s above a certain threshold.
Because of the clustering (community support) of agents holding the same opinion, these clusters cannot
be invaded by the other opinion (similar to incompressible fluids). Our extensive simulations show that the
nonconsensus opinion model appears to belong to the same universality class as invasion percolation.




(Monotone) threshold models of “complex contagion”
[ Granovetter (1978), Watts (2002), Centola & Macy (2007) ]

Each node i has a (frozen) threshold 7;, and a binary state
(“susceptible”/“infected”).

» A randomly-chosen fraction p(0) of nodes are initially infected.

= Asynchronous updating: A fraction dt of nodes update in time step
dt.

= Update rule: compare the fraction of infected neighbours m;/k; to r;.
Node i is infected if m;/k; = r;, but unchanged otherwise

O ®
" [, dt = infection probability for a k-degree susceptible node with m infected
neighbours.
= For example, if all thresholds are identical (r; =r V i):
F,. = {0 form < kr
‘ 1 form = kr

= Monotone case: no recovery,so Ry, =0



Monotone threshold model g— 0 form < kr
o ® Fk'm:{l form = kr

Mean-field (MF)

theory
random 3-regular graph, r = 2/3
——p Numerical
simulations

p(t)
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Random
z-regular
graphs

Sm(t) =

im (1)

Sm—1 class Sm class Sm+1 class
L,,,—1 class L, class L, 41 class

size of S, class attime t (form=0,1,...,2)

fraction of nodes which are
susceptible and have m infected
neighbours at time t 5m(0) = (1 = p(0))B;m (p(0))

fraction of nodes which are im(0) = p(0)B, ,m(p(0))

infected and have m infected

neighbours at time ¢ [cf. Marceau et al, PRE (2010),

Lindquist et al, J. Math. Biol. (2011)]



Sm—q class Sm class Sm+q class
_1 class L, class Lyn41 class

Sm (t) = fraction of nodes which are

susceptible and have m C)/‘ = number of S-l edges
infected neighbours at time ¢t z
L, (t) = fraction of nodes which are =N Z msm

infected and have m infected
neighbours at time t



Sm—1 class Sm class Sm+1 class

Fin
L, class
d
Esm: _FmSm-l_ form=0,1,...,Z
Sm (t) = fraction of nodes which are
susceptible and have m
infected neighbours at time ¢t e.g., threshold model on random z-
E,, dt = infection probability for a regular graph:
OA‘ susceptible node with m F=F = {0 form < zr
infected neighbours m=— zm 1 form = zr



Sm—1 class Sm class Sm+1 class
ﬁS

L, class

d

acom = —FSm —B°(z —m)spy+ -+ form=01,..,z



Sm—1 class Sm class Sm+1 class
B> B>

L, class

d

Esm = —FuSm —L°(z—m)sp+f°(z—m+1)sp—1 form=0,1,..,z



Sm—1 class Sm class Sma+1 class
B> p°
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d
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Sm—1 class Sm class Sma+1 class
B> p°

Fm
I,,_1 class L, class I, +1 class
d
—Sm = —FnSm =B (2 =m)sp+f*(z—m+ Dspy form=0,1,...
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Sm—1 class S, class Sma+1 class
B> p°

I,,_1 class L, class I, +1 class

—Sm = —Fusm —B°(z—m)sp+f°(z—m+1)s,-y form =0,1,...




Sm—1 class S, class Sma+1 class
B> p°

Fm
I,,_1 class L, class I, +1 class
d
Esm = —F.Sm —p°(z — m)Sm"',BS(Z —m+ 1)Sm—1 form=20/1,..,z

Sm(o) = (1 - p(O))BZ,m(p(O))

zZ

PO =1= ) sm(®)

m=0
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p(t)
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Monotone threshold model g— {0 form < kr

0.3
0

1 form > kr

Mean-field (MF)
theory

random 3-regular graph, r = 2/3

Approximate
master equation
(AME)
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Sm—1 class S, class Sma+1 class
B> p°

Fm
I,,_1 class L, class I, +1 class
d
—Sm = —FnSm =B (2 =m)sp+f*(z—m+ Dspy form=0,1,...

Sm(o) = (1 - p(O))BZ,m(p(O))

p = _Zsm

m=0



Sm—1 class S, class Sma+1 class

I,,,_1 class

at Sm = _FmSm

pe p°
— > />

L, class I, +1 class

=B (z=m)spm+f*(z—m+ Dsp—q  form =0,1,...

Sm(o) = (1 - p(O))BZ,m(p(O))

p = _Zsm

m=0



Sm—1 class S, class Sma+1 class

B> B>

Rm Fm
I,,_1 class L, class I, +1 class
%Sm = —FuSm + Ryl — (Vm + B5(z = m)) sy +8°(z —m + Vs +7° (M + D)sppyq
D
® O

R,,, dt = recovery probability for an

_ infected node with m infected
neighbours
& e.g., non-monotone threshold model:

R ={1f0rm<kr
fe,m 0 form > kr




Sm—1 class S, class Sma+1 class

o
-
o

L1 class L, class I, 41 class

%Sm = —FuSm + Ryl — (Vm + B5(z = m)) sy +8°(z —m + Vs +7° (M + D)sppyq
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Sm—1 class

Sm class Sm+1 class
Rm Fm
B! ?
]/i
L,,,—1 class L, class L, 41 class
d
—Sm = —FnSm + Rl — (y"m + (2 = m)) sy +

da .

(z-—m+1)s,,_1+
i im = —Rim + Fp S — (yim + ' (z— m))im +

(m + 1)5m+1
(z—m+ Diyq vy m+ Digeq

?n: (z—m)Fmsm
BS = 0

?n:()(z_m)sm

S _ 7Zn:0(z_m)Rmim

?n:O(Z_m) lm

) z
ﬁl _ 2im=0 MEmSm
- z
m=o0 msSm

sm(0) = (1 = p(0))B, 1, (0(0))
im(0) = p(O)Bz,m(p(O))




Sm—q class Sm+q class

[ i
14 L, class 14
d

arom = —FnSm + Ryl — (r"m 4+ B5(z = m))sp+f° (2 = m + D)sp_1+y (M + D)spyq
d . . ; . . : .
—im = —Riplm + Fpsm — (ym+ /' (z=m)ip+ /' (z—=m+ Dip_q +y'(m+ Dipyq

L = S N
im(0) = p(O)Bz,m(p(O))
s

VA VA

p = Zimzl_zsm

m=0 m=0




Non-monotone threshold model OA‘ P _ {O form < kr
fe,m 1 form > kr
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Random Sm-1 class
z-regular

— -

Sm+q class

[
4 14
L, class
d
dt

—Sm = —FnSm + Ryl — (V"m + B5(2 = m))sp+f°(z —m + D)spp_1+y (M + 1) S04
d

Eim = =R im + FSm — (yim + ' (z — m))im + 0 (z=m4+ Dip_q +y'(m+ )i

L = S N
im(0) = p(O)Bz,m(p(O))

VA VA
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General Sk m—1 class Sk m class Sk m+1 class

degree BS s
distribution /ﬂ /ﬂ
Py

B B!

14 Iy, m class 14
d .
Esk,m = —FymSkm T Rk,mlk,m - ’m+ Lk — m))sk,m"'ﬁs(k —m+ 1)Sk,m—1+ys(m + 1)Sk,m+1
d . . , . . - .
= lem = ~Rimbim + FiomSigm — (ym+ "k —=m)igm+/ (k—=m+ Digmey +v (M + Digmas

el ottt
ik,m(0) = pr(0)By,m (px (0))

k

,Bi — 2 Pk Z$n=o MFr mSkm
Y Pr 2K _omSkm p = z Py Z ik,m
k m

=0




Non-monotone threshold model e _ (0 form < kr
O ‘ Fk,m - {
1 form = kr

S
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Poisson degree distribution
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SIS (susceptible-infected-susceptible) model for disease spread
Each node is either infected or susceptible.
Infected nodes become susceptible at rate y;

an infected node infects each of its susceptible neighbours at rate A.

)
O ‘ Fk,m = Am

® O Rim =1

[cf. Marceau et al, PRE (2010),
Lindquist et al, J. Math. Biol. (2011)]
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SIS (contact process): O ® F.,,=Am

RRG,z=3,A=1, u=14
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Satorras and
Vespignani (2001)
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/ \ Pair Approximation: using the binomial ansatz
Yvyvy Sk,m(t) = (1 - Pk(t))Bk,m(p(t))’

()

Y_Y_Y it (8) = pic(O)Biem (a(0)),
e = ~FiSkam + Rmitom — G+ (k= m)smt8°(c = m + Dsgm_1#°(m+ Vs | MomMents of the approximate master equation
L itm = ~Rimim + FonSim = ('m + 7 (e = m))ixgm + (e = m + Diggmor 47/ (m+ Ditgmas give equations for py (t), q(t) and p(¢).

Note: in general, this does not give an exact
solution of the AME.

d
T Pe = —szkaBkm(CI) +(1— pk)sz mBi,m (D)
1 k
_t 1—wzk:zpkz i e ((1 Pi) FiemBiem (P) — PkkaBkm(CI))
k
w = Epkpk 1-q@w=p(1—-w) Pzzpkpk
K

Further approximating p(t) and q(t) by w(t) gives
a Mean Field approximation:

d
apPr = Pk Z Rk mBrm(w) + (1 — pg) Z Fy mBi,m ()
m m




/ \ Number of differential equations, if

) ¢
szﬁg\_f?' P, # 0fork =0,1,2, .., K:
Y_Y Y
%Sk,m = —FimSkm + Rimim — °m+po(k— m))sk,m"'ﬁs(k -m+ 1)Sk,m—1+)’s(m + 1)Sk,m+1 (K + 2) (K + 1)
%ik,m = _Rk,mik,m + Fk,msk,m - (Vim + (k - m))ik,m + (k -—m+ 1)ik,m—l +yi(m + 1)ik,m+1

d
dtpk = _pszkmBkm(Q) + (1 - pk)szmBkm(p)
1 k
_t 1 —wzk:zpkz 1 tp- 2 ((1 Pr )i mBrm (@) — PkkaBkm(CI)) K+ 2
k
®= ) —Pip 1-q@w=p(1—-w) p=szpk
X

d
apPr = Pk Z Ry mBym(w) + (1 — py) Z FymBim(w) K+1
m m




; N\ SIS (contact process):

Y—Y—Y

— Tm— A

v ¥y © @ fem=dm
—_— ) ——

d ) ,

2 Skm = ~FmSiem + Rigmlim — 0 *m+ Bk —m)) s m+B°(k —m + DS m-1+7° (M + 1S 41 ‘ O Rk m = ‘u,

—lkm = _Rk,mlk,m + Fk,msk,m - (Vlm + (k - m))lk,m + (k -—m+ 1) lgm-1 +VL(m + 1) lg,m+1

N

d
g Pre = ~Pr z Rk mBrm(q) + (1 — Pk)z i 1))

_t 1—wz PRE 1+p— 2 ((1 Pr )i mBrm (@) — PkkaBkm(CI))

W = Zzpkpk (1-q)w=p(1—-w) p=szpk
X

k

d
apPr = Pk Z Ri mBrm(w) + (1 — pg) Z Fy mBi,m ()
m m




4 Yc?jcy )
Y Y Y

d . .
Esk,m = —FimSkm + Rk,mlk,m -'m+ Bk — m))sk,m"'ﬁs(k -m+ l)sk,m—1+y5(m + 1)Sk,m+1

d

E ik,m = _Rk,mik,m + Fk,msk,m - (Vim + (k - m))ik,m + (k -—m+ 1) ik,m—l +yi(m + 1) ik,m+1

N\

d

a7 P = —Hpi + AL = pidkp

d 1
P =2A-p)+T— [1p(1 — p)w, + u(w + pw — 2p)]

k k2
w=Z—PkPk w2=z—Pk(1—Pk)
rad z

k

d

a7 P = ~Hpe AL = pkaw

SIS (contact process):

g
O ‘ Fk,m = Am

® O Rym=u

PA of House and Keeling
(2010)

MF theory of Pastor-Satorras
and Vespignani (2001)



/ \ Voter model:

Y—X—Y — m
( ) O o F km — E
Y_Y
Y Y g— k—m
=Sk = —FimSim + Rimim — (°m + 55 (k = m))sien+° U = m + DSem-1+7° (M + DS ‘ O Rk,m — T
L iem = —Rimbem + FemSiom — (r'm + ' (k = m))igm + /7 (e = m + Diggmor +7 0+ Diggmass

N

d
g Pre = ~Pr z Rk mBrm(q) + (1 — Pk)z i 1))

_t 1—wz PRE 1+p— 2 ((1 Pr )i mBrm (@) — PkkaBkm(CI))

W = Zzpkpk (1-q)w=p(1—-w) p=szpk
X

k

d
apPr = Pk Z Ri mBrm(w) + (1 — pg) Z Fy mBi,m ()
m m
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Yf_:‘ig;c“?’
Y Y Y

~

d . .
Zsk,m = —FimSkm + Rk,mlk,m -'m+ Bk — m))sk,m"'ﬁs(k -m+ l)sk,m—l"')’s(m + 1)Sk,m+1

d

N\

E ik,m = _Rk,mik,m + Fk,msk,m - (Vim + (k - m))ik.,m + (k -—m+ 1) ik,,m—l +yi(m + 1) ik,m+1

d P

apk _Z(w — Pk)
d 2p
P = —%(p(z— - (z-2)w)
d

dt

pPr = —pr + p(0)

Voter model:

H m
O o Fk,m:E
k_

S m
® O Rim=—7—

PA of Vazquez and Eguiluz (2008)

MF theory of Sood and Redner (2005)
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Y_Y_ Y —
%Sk.m = —FimSiim + Rigmigm — (v m + B (k = m)sgm+B° (k —m + Dsgm—1+7 (M + DS mia O ‘ Fk'm
% ik.m = _Rk,mik,m + F/c,msk,m - (Vim + (k= m))ik.m +/'(k—m+ 1)ik,m—1 +yi(m + 1)ik,m+1 A
\ ® O Rim
Other example of binary-state dynamics:
Process Frm Ry
SIS Am M
Voter model m/k I = Fim
, i I 20 (1 —1 _F
Glauber dynamics [1 +exp(Z(k—2m))] | — Fp,,
Q if m<<k/2
Majority-vote 1/2 it m=k/2 I — Fi

|l —Q itm>k/2
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A A
S — — A
( ) O ‘ E km
%Sk,m = _FI(,nzsk,m + Rk,mik,m - ()/Sm + ﬁg(k - m))sk,m"'ﬁs(k -—m+ 1)Sk,m—1+ys(m + 1)Sk,m+1 ‘ O Rk;m
%ik,m = —Rimigm + FromSem — (Yim + (k= m))ik,m + (k= m+ Digmey +r (M + Digman

Approximate master equation approach gives high-accuracy approximations for a
range of non-monotone binary dynamics (defined by Fj, ,, and Ry, ).

Moreover, it:

“Automatically” generates pair approximation and mean-field equations.
Enables dynamical systems analysis (e.g. bifurcation theory).
Allows extensions to coevolving dynamics and networks.

[ Durrett et al. (2012) ]

PRL 107, 068701 (2011) %Pk = _kakaBkm(Q) +(1- pk)szmBkm(p)

PNAS 109, 3682 (2012) d sz 14p-22

P = Pr)FiemBrm(p) — PkRk,mBk,m(CI))

k
w—z P px 1-qw=p(1-w) p:ZPkpk
3

k



)

Further results (in progress) O ® fim
)
‘ O Rk m

* Matlab m-files for solving the approximate master equations, pair approximation,
and mean-field theory equations for given Py, Fy ,, and Ry

now available to download from www.ul.ie/gleesonj

* Pair approximation solutions and master equation solutions are identical for all
time if:

Rkm =0 and  Fy,, = A(k) + B(k)m
e.g., Sl disease-spread model (A = 0). Note B may be negative...
e Spin systems: pair approximation solutions and master equation solutions are

identical in the limit t = oo for Ising model Glauber dynamics, but not for other
(non-equilibrium) spin systems.


http://www.ul.ie/gleesonj
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A A
S — — A
( ) O ‘ E km
%Sk,m = _FI(,nzsk,m + Rk,mik,m - ()/Sm + ﬁg(k - m))sk,m"'ﬁs(k -—m+ 1)Sk,m—1+ys(m + 1)Sk,m+1 ‘ O Rk;m
%ik,m = —Rimigm + FromSem — (Yim + (k= m))ik,m + (k= m+ Digmey +r (M + Digman

Approximate master equation approach gives high-accuracy approximations for a
range of non-monotone binary dynamics (defined by Fj, ,, and Ry, ).

Moreover, it:

“Automatically” generates pair approximation and mean-field equations.
Enables dynamical systems analysis (e.g. bifurcation theory).
Allows extensions to coevolving dynamics and networks.

[ Durrett et al. (2012) ]

PRL 107, 068701 (2011) %Pk = _kakaBkm(Q) +(1- pk)szmBkm(p)

PNAS 109, 3682 (2012) d sz 14p-22

P = Pi)FrmBrm (p) — PkRk,mBk,m(CI))
www.ul.ie/gleesonj

. ] w—z Prpk 1-q9Qw=p(1-w) P=Zpkpk
james.gleeson@ul.ie e 7
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