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positive integers d = (d1,d>,...,dp).

If 3 simple graph G(V,E) with d(G)=d
= d is a graphical sequence
G realizes d.
Question: how to decide whether d is graphical?
- Tutte's f-factor theorem (1952) - applied for K,
polynomial algorithm to decide
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Let < the lexicographic order on [n] x [n]
Then < implies lexicographic order on V s.t.
[n]" = degrees, [n]* = subscripts
- Ng(v) denotes the neighbors of v in realization G then

Theorem (Havel's Lemma, 1955)

IfH cV\{v}and|H| =|Ng(v)| and Ng(v) < H then there
exists realization G’ such that Ng/(v) = H.

there exists canonical realization
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PL. Erdds Hakimi rediscovered (On the realizability of a set of integers as degrees of
Definitions the vertices of a simple graph. J. SIAM Appl. Math. 10 (1962), 496—506.)
) (TR from that time on it is called Havel-Hakimi algorithm

J. K. Senior: Partitions and their Representative Graphs, Amer. J. Math., 73

(1951), 663-689.

all possible graphs with multiple edges but no loops

to find all possible molecules with given composition
introduced swaps (but called transfusion)

another method: Erd6s-Gallai theorem (Graphs with prescribed
degree of vertices (in Hungarian), Mat. Lapok 11 (1960), 264—274.)
used Havel's theorem in the proof
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Let d graphical degree sequence, G and G’ two realizations
looking for a sequence of realizations
e G1=Ho,Hy, ..., Hc =Gz

st Vi=0,....,k —1 dswap operation H; — Hj,1

Lemma

Jswap Hy — Hi;; then dJswapHj; 3 — H;

P.L. Erdos

Theorem (Petersen, 1891 - see Erd6s-Gallai paper)

by Havel-Hakimi's lemma such swap-sequence always
exists

fori =1,2 (HGi — canonical realizations
swap-distance < O(>_d;)
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Erdés-Gallai type result for bipartite graphs

Dl D. Gale A theorem on flows in networks,

and History
Pacific J. Math. 7 (2) (1957), 1073-1082.  flow theory
H.J. Ryser combinatorial properties of matrices of zeros and ones,

Canad. J. Math. 9 (1957), 371-377.  binary matrices
for both it was byproduct to prove EG-type results for
directed graphs: no multiply edges, but possible loops

Both used bipartite graph representation of directed graphs

Ryser used swap-sequence transformation from one
realization to an other one



Swap-

distances

PL. Erdos

Undirected
swap-
sequences

Undirected swap-sequences



/blue graphs

Swap- G simple graph with red/blue edges - r(v) / b(v) degrees

distances

oL Erdoe G is balanced : W € V(G) r(v) =Db(v).

Undirected
swap-
sequences



/blue graphs

o G simple graph with red/blue edges - r(v) / b(v) degrees

e G is balanced : W € V(G) r(v) =Db(v).
trail - no multiple edges circuit - closed trail

Undirected
swap-
sequences



/blue graphs

Swap- G simple graph with red/blue edges - r(v) / b(v) degrees

distances

L (=T G is balanced : W € V(G) r(v) =Db(v).

trail - no multiple edges circuit - closed trail
Undirected Lemma

swap-

sequences balanced = E(G) decomposed to alternating circuits




/blue graphs

Swap- G simple graph with red/blue edges - r(v) / b(v) degrees

distances

L ST G is balanced : W € V(G) r(v) =Db(v).
trail - no multiple edges circuit - closed trail

Lemma

Undirected
swap-

sequences balanced = E(G) decomposed to alternating circuits

Lemma

C =vy,Va,...Vp, alternating; v; = v; with j — i is even.
C can be decomposed into two, shorter alternating circuits.




/blue graphs

Swap- G simple graph with red/blue edges - r(v) / b(v) degrees

distances

L ST G is balanced : W € V(G) r(v) =Db(v).
trail - no multiple edges circuit - closed trail

Lemma

Undirected
swap-

sequences balanced = E(G) decomposed to alternating circuits

Lemma

C =vy,Va,...Vp, alternating; v; = v; with j — i is even.
C can be decomposed into two, shorter alternating circuits.

\Y



/blue graphs

Swap- G simple graph with red/blue edges - r(v) / b(v) degrees

distances

L ST G is balanced : W € V(G) r(v) =Db(v).
trail - no multiple edges circuit - closed trail

Lemma

Undirected
swap-

sequences balanced = E(G) decomposed to alternating circuits

Lemma

C =vy,Va,...Vp, alternating; v; = v; with j — i is even.
C can be decomposed into two, shorter alternating circuits.

\Y



/blue graphs 2

Swap-
distances

PL. Erdos

maxC,(G) = # of circuits in a max. circuit decomposition

Undirected
swap-
sequences



/blue graphs 2

Swap-
distances

P.L. Erdos

maxC,(G) = # of circuits in a max. circuit decomposition

Undirected circuit C is elementary if

swap-

SUETEEE no vertex appears more than twice in C,

Ji,j s.t. v; and v; occur only once in C and they have
different parity (their distance is odd).



/blue graphs 2

Swap-
distances

P.L. Erdos

maxC,(G) = # of circuits in a max. circuit decomposition

Undirected circuit C is elementary if

swap-

SUETEEE no vertex appears more than twice in C,

Ji,j s.t. v; and v; occur only once in C and they have
different parity (their distance is odd).

Lemma

LetCq,...,C, be a max. size circuit decomposition of G.
= each circuit is elementary.
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Swap-
disgiges Proof.

P.L. Erdos

(i) no vertex occurs 3 times
(i) when v occurs twice - their distance is odd
Undirested (iii) 3 vertex v occurring once - INDIRECT with min.
swap- distance

sequences

(iv) by pigeon hole: 3 > 2 vertices occurring once
(V) by p.h. : Ju, v occurring once with odd distance O
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Undirected if E(G) is one alternating elementary circuit C of length 2¢
et = J swap sequence of length ¢/ — 1 from G; to G,.

sequences
Proof.

G; start (stop) graphs, induction on actual |EgzatAEgop|
dv € C occurring once, starting a red edge
u red edges miss stop graph
if (U,V) € Eq,Ep
one swap in stop graph
start graph did not change;
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Swap- G, and G, realizations of d.
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oL Erdoe dist,(Gy, G2) = length of the shortest swap sequence
maxC,(G1,G,) = # of circuits in a
max. circuit decomposition of E{AE;
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swap-
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Theorem (Erd6s-Kiraly-Mikl6s, 2012)

For all pairs of realizations G;, G, we have

|E1AE;|

diStu(Gl,Gz) = — maxCu(Gl,Gz).

Very probably the values are NP-complete to be computed
New upper bound:

|E1AEp|

1
2

diStu (Gl, Gz) <
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Why a shortest swap-sequences?

o How to find a typical realization of a degree sequence?
- large social networks only # of connections known (PC)
- online growing network modeling

P.L. Erdos

Undirected huge # of realizations - no way to generate all & choose
swap-

sequences Sampling realizations uniformly - MCMC methods
to estimate mixing time - need to know distances

< - . —
disty(Gy,G2) > 1 an

< <Z min(d, |V | do) (% _ 3%)
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(ib) assume shortest circuit C; is the shortest among all
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Proof of shortest swap sequences length

Swap- (i) < - take a maximal alternating circuit decomposition

distances
PL. Erdos Cl» ey CmaxCu(Gl,Gz)
(ib) assume shortest circuit C; is the shortest among all
circuits in all possible minimal circuit decomposition

Undirected

swap-
sequences

Lemma

A edge in any other circuits which divides C, into two
odd-long trails.

consider the (actual) symmetric difference,

find a maximal circuit decomposition with a shortest
elementary circuit,

apply the procedure of one elementary circuit,

repeat the whole process with the new (and smaller)
symmetric difference.
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Bipartite degree sequences

Swap- G(U,V; E) simple bipartite graph, bipartite degree

distances

P.L. Erdos Sequence (f S k)

bd(G) = ((al,...,ak), (bl,...,bg)>,

everything goes through - but be careful - f.e. with swap
maximum circuit decomposition = set of elementary cycles

Bipartite

. the cycles can be processed in an arbitrary order
. E(B1)AE(B (-1
dIStu(Bl, Bz) ‘ ( 1)2 ( 2)‘ . 7

< 2 (Zmin (ai,é—ai)> <% _ 2%)
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Possible problems in E(B;)AE(B>)

e Goal: apply results on bipartite degree sequences for
PL. Erdos directed degree sequences.

there are two problems

Directed

degree

sequences @ ° @ @

ifa=x
y.z # X where /A SWapinua,Vp,Uc,Vx
X,y,z € V(G) ifb #y

3 swap in vp, Uc, Vx, Uy
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distances () JuageCst.va gC

PL. Erdos (i) if VX :ux € C < vy € Chut Ix @ [vy — ux| # 3

(i) if ¥x : ifup=ux € Candvj,; = C but|C| > 6
all these swaps are C,-swaps

(iv)if ¥x : ifui =ux € Candvj;1 =vC but|C| =6
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triangular Cg-swaps can be necessary
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Analyzing triangular Cg

o Whenever a triangular Cg kisses another elementary cycle

PL. Erdos in the decomposition, they can be re-decomposed without
triangular Cg

Lemma

maximum size C of E; AE, having minimum # triangular Cg
Then no triangular Cg kisses any other cycle.

Directed weighted swap distance
degree

sequences weight(C4-swap) = 1; weight(triangular Cg-swap) = 2

Theorem

Let dd be a directed degree sequence with él and éz
realizations. Then
_ |E1AE,|

diStd(él,éz) = > —maxCd(Gl,Gz).
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M.Drew LaMar’s result

Swap-

distances Directed 3-Cycle Anchored Digraphs And Their Application
P oS In The Uniform Sampling Of Realizations From A Fixed
Degree Sequence, in ACM 2011 Winter Simulation
Conference (2011), 1-12.

Theorem

Each directed degree sequence realization can be

) transformed into another one with C,4- and triangular
Direct
mER Cg-swaps

sequences

- allowing all Cg-swaps with weight 2 we have

Theorem

distq (él, éz) can be achieved with C,4- and triangular
Cg-swaps only
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swap sequence generated by Greenhill cannot be a minimal
of course this was never a requirement
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