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introduced swaps (but called transfusion)

another method: Erdős-Gallai theorem (Graphs with prescribed

degree of vertices (in Hungarian), Mat. Lapok 11 (1960), 264–274.)
used Havel’s theorem in the proof
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G1 = H0,H1, . . . ,Hk = G2

s.t. ∀i = 0, . . . , k − 1 ∃ swap operation Hi → Hi+1
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∃ swap Hi → Hi+1 then ∃ swap Hi+1 → Hi

Theorem (Petersen, 1891 - see Erdős-Gallai paper)

by Havel-Hakimi’s lemma such swap-sequence always
exists
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(
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Erdős-Gallai type result for bipartite graphs
D. Gale A theorem on flows in networks,

Pacific J. Math. 7 (2) (1957), 1073–1082. flow theory
H.J. Ryser Combinatorial properties of matrices of zeros and ones,

Canad. J. Math. 9 (1957), 371–377. binary matrices
for both it was byproduct to prove EG-type results for
directed graphs: no multiply edges, but possible loops

Both used bipartite graph representation of directed graphs

Ryser used swap-sequence transformation from one
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maxCu(G) = # of circuits in a max. circuit decomposition

circuit C is elementary if

1 no vertex appears more than twice in C,

2 ∃i , j s.t. vi and vj occur only once in C and they have
different parity (their distance is odd).

Lemma

Let C1, . . . ,Cℓ be a max. size circuit decomposition of G.

⇒ each circuit is elementary.
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G1 and G2 realizations of d.
distu(G1,G2) = length of the shortest swap sequence
maxCu(G1,G2) = # of circuits in a

max. circuit decomposition of E1∆E2

Theorem (Erdős-Király-Miklós, 2012)

For all pairs of realizations G1,G2 we have

distu(G1,G2) =
|E1∆E2|

2
− maxCu(G1,G2).

Very probably the values are NP-complete to be computed
New upper bound:

distu(G1,G2) ≤
|E1∆E2|

2
− 1
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(ia) and realizations G1 = H0,H1, . . . ,Hk−1,Hk = G2 s.t.
∀i realizations Hi and Hi+1 differ exactly in Ci .

- each circuit is elementary
- for all pairs Hi ,Hi+1 the previous theorem is applicable
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(i) ≤ - take a maximal alternating circuit decomposition
C1, ...,CmaxCu(G1,G2)

(ib) assume shortest circuit C1 is the shortest among all
circuits in all possible minimal circuit decomposition

Lemma

6 ∃ edge in any other circuits which divides C1 into two
odd-long trails.

# of circuits unchanged, ∃ shorter circuit - contradiction
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(i) ≤ - take a maximal alternating circuit decomposition
C1, ...,CmaxCu(G1,G2)

(ib) assume shortest circuit C1 is the shortest among all
circuits in all possible minimal circuit decomposition

Lemma

6 ∃ edge in any other circuits which divides C1 into two
odd-long trails.

1 consider the (actual) symmetric difference,

2 find a maximal circuit decomposition with a shortest
elementary circuit,

3 apply the procedure of one elementary circuit,

4 repeat the whole process with the new (and smaller)
symmetric difference.
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(ii) LHS ≥ RHS - we realign the inequality:

maxCu(G1,G2) ≥
|E1∆E2|

2
− distu(G1,G2).

G1 = H0,H1, . . . ,Hk−1,Hk = G2 minimum real. sequence
∀i the graphs Hi and Hi+1 are in swap-distance 1

swap subsequence from Hi to Hj also a minimum one

induction on i - find circuit decomposition with i circuits:

maxCu(G1,Hi) ≥
|E1∆E(Hi)|

2
− distu(G1,Hi)

analyze the intersection of E(Hi)∆E(Hi+1) with E1∆E(Hi)
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(ii) LHS ≥ RHS - we realign the inequality:

maxCu(G1,G2) ≥
|E1∆E2|

2
− distu(G1,G2).

G1 = H0,H1, . . . ,Hk−1,Hk = G2 minimum real. sequence
∀i the graphs Hi and Hi+1 are in swap-distance 1

swap subsequence from Hi to Hj also a minimum one

induction on i - find circuit decomposition with i circuits:

maxCu(G1,Hi) ≥
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2
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analyze the intersection of E(Hi)∆E(Hi+1) with E1∆E(Hi)
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(ii) LHS ≥ RHS - we realign the inequality:

maxCu(G1,G2) ≥
|E1∆E2|
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G1 = H0,H1, . . . ,Hk−1,Hk = G2 minimum real. sequence
∀i the graphs Hi and Hi+1 are in swap-distance 1

swap subsequence from Hi to Hj also a minimum one

induction on i - find circuit decomposition with i circuits:

maxCu(G1,Hi) ≥
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(ii) LHS ≥ RHS - we realign the inequality:

maxCu(G1,G2) ≥
|E1∆E2|

2
− distu(G1,G2).

G1 = H0,H1, . . . ,Hk−1,Hk = G2 minimum real. sequence
∀i the graphs Hi and Hi+1 are in swap-distance 1

swap subsequence from Hi to Hj also a minimum one

induction on i - find circuit decomposition with i circuits:

maxCu(G1,Hi) ≥
|E1∆E(Hi)|

2
− distu(G1,Hi)

analyze the intersection of E(Hi)∆E(Hi+1) with E1∆E(Hi)
empty not empty �
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G(U,V ;E) simple bipartite graph, bipartite degree
sequence: (ℓ ≤ k)

bd(G) =
(

(

a1, . . . ,ak
)

,
(

b1, . . . ,bℓ

)

)

,
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everything goes through - but be careful - f.e. with swap
maximum circuit decomposition = set of elementary cycles
the cycles can be processed in an arbitrary order

distu(B1,B2) ≤
|E(B1)∆E(B2)|

2
·
ℓ− 1
ℓ

≤ 2

(

∑

i

min
(

ai , ℓ− ai
)

)

(

1
2
−

1
2ℓ

)

≤

(

∑

i

ai

)

ℓ− 1
ℓ

.
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Analyzing triangular C6

Whenever a triangular C6 kisses another elementary cycle
in the decomposition, they can be re-decomposed without
triangular C6

Lemma

maximum size C of E1∆E2 having minimum # triangular C6

Then no triangular C6 kisses any other cycle.

weighted swap distance
weight(C4-swap) = 1; weight(triangular C6-swap) = 2

Theorem

Let dd be a directed degree sequence with ~G1 and ~G2

realizations. Then

distd(~G1,
~G2) =

|E1∆E2|

2
− maxCd (G1,G2).
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Directed 3-Cycle Anchored Digraphs And Their Application
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Degree Sequence, in ACM 2011 Winter Simulation
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Directed 3-Cycle Anchored Digraphs And Their Application
In The Uniform Sampling Of Realizations From A Fixed
Degree Sequence, in ACM 2011 Winter Simulation
Conference (2011), 1–12.

Theorem

Each directed degree sequence realization can be
transformed into another one with C4- and triangular
C6-swaps

- allowing all C6-swaps with weight 2 we have

Theorem

distd (~G1,
~G2) can be achieved with C4- and triangular

C6-swaps only
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for sampling regular directed graphs, arXiv 1105.0457v4
(2011), 1–48.

Theorem

for regular DD sequences C4-swaps only are sufficient
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b

c

d e

g

swap sequence generated by Greenhill cannot be a minimal
of course this was never a requirement
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