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Complex networks

• Complex networks everywhere

• Nodes and links. Real or virtual.

• Something more

• New paradigms of complex networks
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Multidimensional  
networks

• Social networks:

• kinship networks 

• friendship

• professional
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Interconnected networks4 H. E. Stanley

Fig. 2. – Cartoon of a typical cascade obtained by implementing the described model on the real
coupled system in Italy. Over the map is the network of the Italian power network and, slightly
shifted to the top, is the communication network. Every server was considered to be connected
to the geographically nearest power station. (After Buldyrev et al. [15])

i.e., the emergence of a giant cluster when nodes (or links) are sequentially added to the
network [19, 20, 21, 22, 23]. Due to symmetry reasons, for a single network, the problem
can also be formulated in the inverse way. Let us consider an initial configuration of a
network made of nodes and links connecting them. How the fraction of nodes in the giant
cluster (largest one) is changed when a fraction 1−p of nodes (or links) is removed? The
fraction of the giant component is called the order parameter in the language of critical
phenomena [19, 20].

Several models of networks have been proposed. Their description and critical prop-
erties can be found elsewhere [5, 6]. In this article we focus on two types of model
networks: a random graph (Erdős-Rényi) [21, 22, 23] and a scale-free network (Barabási-
Albert) [24]. The Erdős-Rényi (ER) network is a random graph obtained by randomly
distributing M links between N nodes, being a statistical ensemble with equal probabil-
ity for any generated configuration. The scheme in Fig. 3.a is one possible configuration.
On the other hand, the Barabási-Albert (BA) is a network which was grown under the
preferential attachment rule, i.e., at each iteration a new node is added to the network
and connected to m already existing nodes with a probability of linking to a certain node
proportional to the actual degree (number of links) of that node. A typical configuration
obtained with this model is shown in Fig. 3.b.

These two models of generating networks lead to different topologies and statistical
properties. For the ER network, since links are distributed in an uncorrelated way, the

Buldyrev et al.,  Nature 464, 1025 (2010)
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Network of networks 2
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FIG. 1: Multiscale mobility networks and gravity law fit. A) Continental US airline transportation network. B) Continental
US commuting network. The width and color (from blue to red) of the edges represent on a logarithmic scale the intensity
of the mobility flow. C) Commuting flux obtained from data (w(D)) rescaled by the gravity law’s dependence on origin and
destination populations (N↵

i N�
j ), as a function of the distance between subpopulations. The number of people commuting

between di�erent urban areas decreases exponentially with distance up to 300 kms. D)-E)-F) Ratio of commuting flux obtained
from data (w(D)) to corresponding commuting flux predicted by the gravity model with fitted parameters (w(M)), as a function
of distance, population of origin and population of destination, respectively. The three plots provide values spread around
1, showing that the synthetic networks generated by the functional form (see Table 1) reproduce well the commuting fluxes
obtained from data. Solid lines in all panels are guides to the eye.

the full multiscale mobility network are compared to the simulations in which only the large scale coupling of the
airline transportation network is included. Our analysis shows that while commuting flows are, on average, one order
of magnitude larger than the long range airline tra⌅c, the global spatio-temporal patterns of disease spreading are
mainly determined by the airline network. Short range commuting interactions have on the other hand a role in
defining a larger degree of synchronization of nearby subpopulations and specific regions which can be considered
weakly connected by the airline transportation system. In particular, it is possible to show that short range mobility
has an impact in the definition of the subpopulation infection hierarchy. The techniques developed here allow for
an initial understanding of the level of data integration required to obtain reliable results in large scale modeling of
infectious diseases.

II. MODEL DESCRIPTION

Simulations of worldwide epidemic spread are generally based on structured metapopulation models that consider
data-driven schemes for long range mobility at the inter-population level coupled with coarse-grained techniques
within each subpopulation [7, 8, 9, 10, 25, 26, 27]. In this paper, we use the GLobal Epidemic and Mobility (GLEaM)
computational scheme based on a georeferenced metapopulation approach in which the world is partitioned into
geographical census regions coupled by population movements. This defines a subpopulation network where the
connections between subpopulations represent the fluxes of individuals due to the transportation infrastructures and
mobility patterns. Inside each subpopulation, the evolution of the infection is described by compartmental schemes in
which the discrete stochastic dynamics of the individuals among the di�erent compartments depends on the specific
etiology of the disease considered (see Material and Methods).

airline transportation 
network

commuting network

Balcan et al., PNAS 196, 21484 (2009)
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Dynamics OF complex 
networks

• S.H. Strogatz, “Exploring complex networks”, 
Nature (2001) 410, 268 
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Strogatz 2001

• But networks are inherently difficult to understand, as the 
following list of possible complications illustrates.

1. Structural complexity: the wiring diagram could be an intricate tangle.

2.Network evolution: the wiring diagram could change over time. On 
the World-Wide Web, pages and links are created and lost every minute.

3. Connection diversity: the links between nodes could have different weights, directions and signs. 
Synapses in the nervous system can be strong or weak, inhibitory or excitatory.

4. Dynamical complexity: the nodes could be nonlinear dynamical systems. In a gene network or a 
Josephson junction array, the state of each node can vary in time in complicated ways.

5. Node diversity: there could be many different kinds of nodes. The biochemical network that controls 
cell division in mammals consists of a bewildering variety of substrates and enzymes.

6. Meta-complication: the various complications can influence each other. For example, the present layout 
of a power grid depends on how it has grown over the years — a case where network evolution (2) 
affects topology (1). When coupled neurons fire together repeatedly, the connection between them is 
strengthened; this is the basis of memory and learning. Here nodal dynamics (4) affect connection 
weights (3).
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Complex networks 
with time dependent 

topology
•Many examples of changing topology network in 

real systems
・social network: J.-P. Onnela et al., PNAS 104, 7332 

(2007)
・brain network: M. Valencia et al., Phys. Rev. E 77, 

050905R (2008)
・human mobility: M.C. González et al., Nature 453, 

779(2008);L. Isella et al. PLoS ONE 6 (2011)e17144
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Complex networks 
with time dependent 

topology

• Synchronization in time dependent networks is important 
・mobile devices (e.g. bluetooth): M Maróti et al., Proc. 2nd ACM 

Conf, 39(2004)
・consensus: R. Olfati-Saber, J. A. Fax, R. M. Murray, Proceedings 

IEEE 95, 215 (2007)
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Complex networks 
with time dependent 

topology

• Spreading in communication networks: M. 
Karsai et al., Phys. Rev. E 83 (2011) 1
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Contact networks: 
SocioPatterns

What's in a crowd? 
Analysis of face-to-
face behavioral 
networks.  

L. Isella et al. 

J. Theor. Bio. 271 
(2011) 166
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Recent review

• Temporal networks, P. Holme and J. Saramaki, 
arxiv:1108.1780
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Topology affects emergent 
collective properties
SYNCHRONIZATION

• One of the paradigmatic examples of emergent 
behavior

• Engineering: consensus, unmanned vehicle 
motion

• Nature: flashing fireflies, brain

• Society: people clapping, Millenium bridge

martes 15 de mayo de 12



Synchronization in complex nets

• Review
Interplay between topology and dynamics
A. Arenas, A.D.-G., J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)

• Spectral properties of Laplacian matrix
• Synchronizability = eigenratio

Master Stability Function:
M. Barahona and L. M. Pecora, Phys. Rev. Lett. 89, 054101 (2002)
N. Fujiwara, and J. Kurths, Eur. Phys. J. B 69, 45 (2009)

• Time to synchronize = 
J. Almendral, A.D-G, New J. Phys. 9, 187 (2007)

•Network topology is fixed

�n/�2

1/�2

martes 15 de mayo de 12



Synchronization in complex nets

• Review
Interplay between topology and dynamics
A. Arenas, A.D.-G., J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)

• Spectral properties of Laplacian matrix
• Synchronizability = eigenratio

Master Stability Function:
M. Barahona and L. M. Pecora, Phys. Rev. Lett. 89, 054101 (2002)
N. Fujiwara, and J. Kurths, Eur. Phys. J. B 69, 45 (2009)

• Time to synchronize = 
J. Almendral, A.D-G, New J. Phys. 9, 187 (2007)

•Network topology is fixed

What happens if topology changes in time?
Is spectral approach possible? 

�n/�2

1/�2
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Fast switching (mean field) 
approximation

• Approximation when the time scale of the 
agents’ motion is much shorter than that of the 
oscillator dynamics
M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, Phys. Rev. Lett.
100, 044102 (2008)

• Replace the time-dependent Laplacian matrix L(t) 
with its time average <L>, whose matrix element 
is the probability that two agents are connected
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Fast switching (mean field) 
approximation

• Approximation when the time scale of the 
agents’ motion is much shorter than that of the 
oscillator dynamics
M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, Phys. Rev. Lett.
100, 044102 (2008)

• Replace the time-dependent Laplacian matrix L(t) 
with its time average <L>, whose matrix element 
is the probability that two agents are connected

When synchronization is much faster than the motion of 
agents,  we get local synchronization of spatial clusters 
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• Network topology: N, L, d
Instantaneous topology: 
continuum percolation
 (random geometric graph)

• Agent dynamics: v, τM

• Oscillator dynamics: σ, τP

Model
N. Fujiwara, J. Kurths, A.D-G, PRE (2011) 
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• Network topology: N, L, d
Instantaneous topology: 
continuum percolation
 (random geometric graph)

• Agent dynamics: v, τM

• Oscillator dynamics: σ, τP

Model
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vτM
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• Network topology: N, L, d
Instantaneous topology: 
continuum percolation
 (random geometric graph)

• Agent dynamics: v, τM

• Oscillator dynamics: σ, τP

Model
N. Fujiwara, J. Kurths, A.D-G, PRE (2011) 
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Applet

• Java applet simulation

http://complex.ffn.ub.es/~albert/mobile/
Kuramoto.html
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Movies

global multiple 
cluster

local multiple 
cluster

single cluster
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Movies

global multiple 
cluster

local multiple 
cluster

single cluster
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Movies

global multiple 
cluster

local multiple 
cluster

single cluster
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• I: fast switching 

• II: multi cluster 

• local synchronization

• slow topology change

• III: single cluster

• local synchronization

• IV: complete graph

d (interaction range) dependence
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Dynamic transition: local 
to global synchronization

• Number of steps for a cluster to internally 
synchronize

3

ferent, as we will discuss in detail below.
In order to quantify the achievement of an overall syn-

chronized state we measure the average phase di⇥erence

⌃�⌥⌥ ⇥
⌃

2
N(N � 1)

⇧

j<k

(⌥j � ⌥k)2. (3)

We choose this parameter because it is naturally re-
lated to the decay of the normal modes in previous stud-
ies of synchronization in complex networks of identical
oscillators[3, 21, 22].

Before going into the results, we introduce two quan-
tities which play a key role in the present paper. Indeed,
in all our simulations we find that the average phase dif-
ference decays exponentially after the initial transient
(Supp. Fig. 1(a)). This enables us to define a char-
acteristic time, T , as a function of the control parame-
ters, such that ⌃�⌥⌥ ⌅ e�t/T . We have verified that the
synchronization time, including initial transient, is also
well described by T (Supp. Fig. 1(c)). Next, we intro-
duce the number of updates that are necessary for the
characteristic time, T/⌃P , and define the e⌅ciency of the
system with its inverse. For small T/⌃P , the number of
signals required for characteristic time is small and the
e⌅ciency is high. Large T/⌃P means that the synchro-
nization dynamics is ine⌅cient. This shows a di⇥erent
behavior from T and is a very important factor concern-
ing battery usage of wireless devices. These quantities
will be the subject of our subsequent analysis.

When the phase di⇥erence is small, the sine function
in (2) can be well approximated by its argument and
this approximation provides interesting hints about the
dynamical behavior. In such a case we can write

⌥i(t + ⌃P ) = ⌥i(t)� ⇧
N⇧

j=1

Lij(t)⌥j(t), (4)

which is the discrete version of the di⇥usion equation.
Here, Lij = [ki(t)�ij � cij(t)] is the Laplacian matrix,
where we have defined the time dependent connectivity
matrix cij(t) = 1 if dij < d and otherwise cij(t) = 0, and
ki(t) is the degree of the ith node, i.e. the number of
oscillators that are around i within a range d. In Supp.
Fig. 1(b) we show a comparison between Eqs. (2) and
(4), showing that in both cases the slopes of the expo-
nential decay are very similar.

In the existing literature of interacting units through
a time dependent network we often find an approxima-
tion that makes sense when the time scale of network
variations is much shorter than the time scale for the
interaction dynamics [13, 23]. This is the so-called fast-
switching approximation (FSA). In this approximation
the instantaneous connectivity matrix is replaced by a
time averaged matrix whose elements are just the prob-
ability for a given link to exist, instead of 1’s and 0’s
corresponding to real connections. In our case, this cor-
responds physically to very long jump of the agents and
then positions at two consecutive phase updates are not

correlated. In such a situation, at each time step the
probability of a link to exist is just

⌅ =

�
⌅⇤

⌅⇥

⇤d2/L2 d < L
2

L
�

4d2 � L2 + d2[⇤ � 4 cos�1( L
2d )] L

2 < d < L⇥
2

1 d > L⇥
2

(5)

From this expression one can construct an average Lapla-
cian matrix L̂ij = (N�ij � 1)⌅. All non-zero eigen-
values of this average Laplacian are degenerated ⇥i =
(N � 1)⌅ (⇧i ⇤ 2). Hence we can write, after n discrete
updates, for the FSA [22] e�n�P /TF S = (1 � ⇧⇥2)n, and
from this

TFS/⌃P = �1/ log[1� ⇧(N � 1)⌅]. (6)

Validity and deviation from this approximation will be
one of the main subjects of the present study.

Results

Here, we report the results of the numerical experi-
ments. In Fig. 2(a) we plot the number of signals for
synchronization T/⌃P as a function of d for various val-
ues of ⌃P . We can observe, as intuitively expected, a
monotonously decreasing dependence on d. We have
drawn TFS/⌃P , which depends only on d (⇧ is fixed in the
figure), as a reference line. Clearly, for large ⌃P the FSA
is indeed a very good approximation for all ranges of d
due to the independence of consecutive updates. How-
ever, we can observe a region in this figure for small ⌃P

where the FSA does not hold, corresponding to interme-
diate values of d, around the percolation transition. It
is important to note that the deviation from FSA takes
place close to the continuum percolation transition point.
We also note that this is not a sharp transition but T
gradually deviates from the FSA. As a further check we
show T/TFS , in Fig. 2(b). Again, on the top of this
figure we can identify the large ⌃P region where the ap-
proximation is very good. This region does not depend
on d.

In order to explain the deviation from the FSA qual-
itatively, we introduce two characteristic time scales,
namely the time scale for phase interaction and that for
the motion of the agents. The relative importance of the
two dynamical processes can be understood in terms of
the time needed for clusters to synchronize and the time
for clusters to break apart. Qualitatively we can say that
the number of time steps (measured in units of ⌃P ) for a
cluster to synchronize is

ns =
1

⇧⇥c
2(d)

, (7)

where ⇥c
2 stands for the smallest nonzero eigenvalue of the

Laplacian of the cluster, which depends in a complicated
way on d. On the other hand, the number of steps for

4

an oscillator to leave a cluster of size ⌅(d) (clearly an
increasing function of d below the percolation threshold)
due to the di�usive motion with a di�usion coe⇤cient
D ⇤ v2⌃M is

nm =
⌅2(d)

v2⌃M⌃P
. (8)

In order to make a quantitative prediction we need the
precise dependence on d of these two functions, but for a
qualitative analysis we only need to realize that f(d) ⇥
⌅2(d)⇤c

2 depends only on the topological parameter d. We
can then introduce the ratio

� =
nm

ns
=

⇧f(d)
v2⌃M⌃P

. (9)

Hence the value of � represents which of these two time
scales dominates the synchronization time scale. Note
that the topological parameter d (N and L too, if they
were changed) appears only in f , and those related to the
agent dynamics appear separately in the denominator.

It is clear from Eq. (9) that � decreases if we increase
⌃P . Therefore, we can expect that our qualitative rela-
tions predict a transition of the dominant time scale if we
change ⌃P . Moreover, we can expect the same transition
from f(d) by changing d. Our numerical result in Fig. 2
suggests that f(d) is an increasing function of d. In the
following, let us analyze the di�erent regions in detail.

For �⌅1, which takes place for small d and large ⌃P

(see Eq. (9)) in Fig. 2, the displacement during updates
of the oscillator’s phases ⌃P is large. Thus the network
connectivity changes very fast without allowing the oscil-
lators to synchronize with their instantaneous neighbors.
In Fig. 1(bottom) we show the evolution of a set of nodes
for this case. We can see that the system approaches to
complete synchronization uniformly, and in the second
and third panel non-synchronized nodes are spatially iso-
lated, since local interactions are too short for nodes to
become synchronized. We can see that the FSA proce-
dure to replace the Laplacian matrix with the averaged
one is a good approximation (dark region of small values
of ⌃P and d in Fig. 2(b)).

When d is increased or ⌃P is decreased from the former
case, � increases. For � > 1 and d is well below the per-
colation threshold dc, the number of time steps required
for rewiring of the disconnected clusters due to the agent
motion is more than that for synchronization inside the
isolated cluster. This implies that clusters become syn-
chronized very easily, and hence a local synchronization
is achieved before the topology changes (Fig. 1(top)).
Therefore, final synchronization dynamics is limited by
the motion of the agents. Clusters can eventually split
and merge to others, and global synchronization can de-
velop. In this case, positions in consecutive time steps
become correlated, and the evolution depends on the de-
tails of the connectivity pattern. Since the FSA neglects
such correlation, it does not describe the synchronization
dynamics in this case. As shown in Fig. 2(b) the FSA

fails in orders of magnitude. It is clear from Eq. (9) that
this region is broader if ⌃P is smaller.

When d is well above dc and � > 1 (implying small ⌃P ),
the whole network is connected. In such a case motion
of agents is not even necessary for the final synchroniza-
tion. In Fig. 2(a) we have drawn the average of the
second smallest eigenvalue of the instantaneous Lapla-
cian matrix (Eq. (15)) as a black solid line. This average
represents the upper bound for T/⌃P being a better ap-
proximation for smaller ⌃P and 40 � d � 100 (Fig. 2(a)).
In this region, the FSA is not good but the average sec-
ond smallest eigenvalue of the Laplacian matrix, shown
as dotted line in Fig. 2(a), approximates T/⌃P very well.
This point will be discussed in the next section. When
d is large enough for representing a complete graph, the
FSA fits the numerical result, as expected, because all
non-zero eigenvalues are identical.

For applications to mobile devices, the signal inter-
val ⌃P is one of the easiest parameters to control. Thus
it is important to study the optimal value of ⌃P while
other parameters are kept fixed. Figure 3 shows the de-
pendence of T and the number of signals required for
synchronization T/⌃P on ⌃P for di�erent ⇧ values. If we
decrease ⌃P , T is smaller, but there exists a bound and
thus T/⌃P is larger. On the other hand, for large ⌃P ,
T/⌃P is smaller, but T is large. Therefore, there exists
an optimal value of ⌃P in the intermediate region, in the
sense that we can achieve fast synchronization and high
e⇤ciency simultaneously.

Solution of the linearized equations

In order to get insight into the collective behavior of the
set of mobile oscillators, we can proceed with the approx-
imate linearized dynamics (4), since it describes very well
the exponential decay of the average phase di�erence. We
can introduce normal modes of the linear dynamics, but
in our current case they are time dependent because the
network topology (and hence Lij) changes with time. If
⇥l(t) are the normal modes at time t and Ujl(t) is the or-
thogonal matrix of the transformation from the original
coordinates to the normal coordinates, being its columns
the normalized eigenvectors of the Laplacian matrix, we
can write

⌥j(t) =
N�

l=1

Ujl(t)⇥l(t) (10)

at any time step. Multiplying the two sides of Eq. (4)
by the transpose UT

li (t + ⌃P ) from the left, we get

⇥l(t + ⌃P ) =
�

i,m

UT
li (t + ⌃P )Uim(t) [1� ⇧⇤m(t)] ⇥m(t)

⇥
�

k

Olm(t)[1� ⇧⇤m(t)]⇥m(t). (11)

Note that Olm is an orthogonal matrix with the unit
determinant. Then after an arbitrary number of time

• Number of steps for an agent to leave a cluster

martes 15 de mayo de 12



Transition

4

an oscillator to leave a cluster of size ⌅(d) (clearly an
increasing function of d below the percolation threshold)
due to the di�usive motion with a di�usion coe⇤cient
D ⇤ v2⌃M is

nm =
⌅2(d)

v2⌃M⌃P
. (8)

In order to make a quantitative prediction we need the
precise dependence on d of these two functions, but for a
qualitative analysis we only need to realize that f(d) ⇥
⌅2(d)⇤c

2 depends only on the topological parameter d. We
can then introduce the ratio

� =
nm

ns
=

⇧f(d)
v2⌃M⌃P

. (9)

Hence the value of � represents which of these two time
scales dominates the synchronization time scale. Note
that the topological parameter d (N and L too, if they
were changed) appears only in f , and those related to the
agent dynamics appear separately in the denominator.

It is clear from Eq. (9) that � decreases if we increase
⌃P . Therefore, we can expect that our qualitative rela-
tions predict a transition of the dominant time scale if we
change ⌃P . Moreover, we can expect the same transition
from f(d) by changing d. Our numerical result in Fig. 2
suggests that f(d) is an increasing function of d. In the
following, let us analyze the di�erent regions in detail.

For �⌅1, which takes place for small d and large ⌃P

(see Eq. (9)) in Fig. 2, the displacement during updates
of the oscillator’s phases ⌃P is large. Thus the network
connectivity changes very fast without allowing the oscil-
lators to synchronize with their instantaneous neighbors.
In Fig. 1(bottom) we show the evolution of a set of nodes
for this case. We can see that the system approaches to
complete synchronization uniformly, and in the second
and third panel non-synchronized nodes are spatially iso-
lated, since local interactions are too short for nodes to
become synchronized. We can see that the FSA proce-
dure to replace the Laplacian matrix with the averaged
one is a good approximation (dark region of small values
of ⌃P and d in Fig. 2(b)).

When d is increased or ⌃P is decreased from the former
case, � increases. For � > 1 and d is well below the per-
colation threshold dc, the number of time steps required
for rewiring of the disconnected clusters due to the agent
motion is more than that for synchronization inside the
isolated cluster. This implies that clusters become syn-
chronized very easily, and hence a local synchronization
is achieved before the topology changes (Fig. 1(top)).
Therefore, final synchronization dynamics is limited by
the motion of the agents. Clusters can eventually split
and merge to others, and global synchronization can de-
velop. In this case, positions in consecutive time steps
become correlated, and the evolution depends on the de-
tails of the connectivity pattern. Since the FSA neglects
such correlation, it does not describe the synchronization
dynamics in this case. As shown in Fig. 2(b) the FSA

fails in orders of magnitude. It is clear from Eq. (9) that
this region is broader if ⌃P is smaller.

When d is well above dc and � > 1 (implying small ⌃P ),
the whole network is connected. In such a case motion
of agents is not even necessary for the final synchroniza-
tion. In Fig. 2(a) we have drawn the average of the
second smallest eigenvalue of the instantaneous Lapla-
cian matrix (Eq. (15)) as a black solid line. This average
represents the upper bound for T/⌃P being a better ap-
proximation for smaller ⌃P and 40 � d � 100 (Fig. 2(a)).
In this region, the FSA is not good but the average sec-
ond smallest eigenvalue of the Laplacian matrix, shown
as dotted line in Fig. 2(a), approximates T/⌃P very well.
This point will be discussed in the next section. When
d is large enough for representing a complete graph, the
FSA fits the numerical result, as expected, because all
non-zero eigenvalues are identical.

For applications to mobile devices, the signal inter-
val ⌃P is one of the easiest parameters to control. Thus
it is important to study the optimal value of ⌃P while
other parameters are kept fixed. Figure 3 shows the de-
pendence of T and the number of signals required for
synchronization T/⌃P on ⌃P for di�erent ⇧ values. If we
decrease ⌃P , T is smaller, but there exists a bound and
thus T/⌃P is larger. On the other hand, for large ⌃P ,
T/⌃P is smaller, but T is large. Therefore, there exists
an optimal value of ⌃P in the intermediate region, in the
sense that we can achieve fast synchronization and high
e⇤ciency simultaneously.

Solution of the linearized equations

In order to get insight into the collective behavior of the
set of mobile oscillators, we can proceed with the approx-
imate linearized dynamics (4), since it describes very well
the exponential decay of the average phase di�erence. We
can introduce normal modes of the linear dynamics, but
in our current case they are time dependent because the
network topology (and hence Lij) changes with time. If
⇥l(t) are the normal modes at time t and Ujl(t) is the or-
thogonal matrix of the transformation from the original
coordinates to the normal coordinates, being its columns
the normalized eigenvectors of the Laplacian matrix, we
can write

⌥j(t) =
N�

l=1

Ujl(t)⇥l(t) (10)

at any time step. Multiplying the two sides of Eq. (4)
by the transpose UT

li (t + ⌃P ) from the left, we get

⇥l(t + ⌃P ) =
�

i,m

UT
li (t + ⌃P )Uim(t) [1� ⇧⇤m(t)] ⇥m(t)

⇥
�

k

Olm(t)[1� ⇧⇤m(t)]⇥m(t). (11)

Note that Olm is an orthogonal matrix with the unit
determinant. Then after an arbitrary number of time
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• When the phase difference is small, the linearized equation describes the 
synchronization dynamics 

In our case Laplacian matrix depends on time

• consider the transformation of the normal modes (eigenmode of L)

• we get the time evolution of the normal modes as

Matrix product for linearized equation

agent mobility oscillator dynamics
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• Finally, we get

• Compare empirical T with second smallest eigenvalue of the 
product of matrices (independent way), and they coincide for any 
value of the parameters even when fast switching approximation 
does not work

Matrix product for linearized equation

local synch
global synch

Fast switching
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FIG. 2: Dependence of the characteristic time T on
d and τP . (a) Number of signals required for characteris-
tic time T/τP for different τP . Parameter values are fixed as
N = 100, L = 200, σ = 0.005, v = 10, and τM = 1. Black
solid and dotted lines indicate the result of the fast switching
approximation TF S (Eq. (7)) and the average of the second
smallest eigenvalue of instantaneous Laplacian matrices, re-
spectively. The point dc represents the continuum percolation
threshold for the infinite system reported in Refs. [18, 19]. (b)
Ratio T/TFS in the τP -d plane. Other parameter values are
the same as those in (a). T is obtained by averaging 124 en-
sembles of different initial conditions and time evolution of
the agents.

coordinates to the normal coordinates, and its column
vectors are the normalized eigenvectors of the Laplacian
matrix. Then we can write

ϕj(t) =
N

∑

l=1

Ujl(t)θl(t) (11)
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FIG. 3: Characteristic time T and efficiency T/τP as
functions of τP for different σ. Filled and open symbols
correspond to T estimated from Eq. (2) and the product of
matrices (13) for σ of the same color. Black line in the upper
panel show TML estimated from Eq. (16) and colored lines
represent TF S for each case. Black line in the lower panel
represents τ−1

P
. Values of other parameters are N = 100,

L = 200, d = 5, v = 10, τM = 1.

at any time step. Multiplying the two sides of Eq. (5)
by the transpose UT

li (t + τP ) from the left, we get

θl(t + τP ) =
∑

i,m

UT
li (t + τP )Uim(t) [1 − σλm(t)] θm(t)

≡
∑

k

Olm(t)[1 − σλm(t)]θm(t). (12)

Note that Olm is an orthogonal matrix with the unit
determinant. Then after an arbitrary number of time
steps we can write

θln(t + nτP ) =
n−1
∏

q=0





N
∑

lq=1

Olq+1lq [1 − σλlq ]



 θl0(t), (13)

where lq denotes the suffix corresponding to an eigen-
mode at time t+qτP . The product of these matrices sepa-
rately describes the transformation of the normal modes
of instantaneous networks by Olq+1lq and the decay of
each eigenmode by (1 − σλlq ).

The number of zero eigenvalues of an instanta-
neous Laplacian matrix is equal to the number of
(dis)connected components. In our case it is easy to
understand that even Lij(t)’s have multiple zero eigen-
values, the product of the matrices has only one unity
eigenvalue. This implies that the system which is instan-
taneously disconnected are eventually in contact, and can
reach a final state of complete synchronization [23].
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• If the time scale of the oscillator is much longer than that of 
agent, eigenvalues for each time step are independent. 
Therefore we can replace product of oscillator dynamics part 
as

• Up to the lowest order, characteristic time is approximated as 

• Since average eigenvalue of the Laplacian matrix is average 
degree, we get

nY

q=1

(1� ��lq ) ⇡ enhlog(1���)i T = �⌧P /hlog(1 � ��)i

Derivation of fast switching approximation
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FIG. 1: The model. N agents (circles) move with velocity
v and randomly assigned angles ξi in a box of size L, with
periodic boundary conditions. At each time step one of the
agents is chosen as a speaker (black circle) and emits a word
randomly extracted from her inventory (A, in figure). Al the
agents within a distance d (gray circles) receive the word, and
update their inventories as shown in the schematic represen-
tation below the box. If an agent already knows that word,
she deletes all the competing synonyms in her inventory, oth-
erwise she simply adds the new word to it. No feedback is
provided to the speaker, whose inventory is not altered.

updates her state depending on whether her inventory
contains or does not contain the transmitted word. In
the first case, the agent deletes all the competing syn-
onyms and keep only that word into her inventory. In
the latter case, on the other hand, she adds the new re-
ceived word to her inventory. The speaker receives no
feedback about her emission, and consequently does not
modify her inventory Figure 1 summarizes the rules of
the model.

For simplicity, in this paper we choose ∆t = τM =
τS = 1. This means that in a time step (i) all agents move
in straight line, (ii) all agents are reassigned a random
angle, and (iii) one agent broadcasts to her neighbors.

III. PATHS TO CONSENSUS

The NG is an ordering process. An initially disordered
configuration ends up in a consensus, ordered, state in

100 101 102

d

10-1

100

101

102

size of the gcc
<k>

dmaxdN/2dcd1

FIG. 2: (Color online) Properties of the static network. At
d > d1 every emission is heard on average by at least an in-
dividual of the population, while at d = dN/2 a majority of
agents listens to each communication act. At d = dc the giant
component component (“gcc”) is formed by N nodes (in real-
ity, due to finite size effects, this happens for a slightly larger
emission range). At dmax the network is fully connected.

which everybody has the same unique word [24, 26]. The
consensus (or “convergence”) time, tconv, is therefore a
crucial quantity. Also important is the maximum num-
ber of words agents have to store, M , which describes
the global amount of memory needed by the system to
reach a consensus. Previous studies on quenched graphs
have shown that both quantities depend dramatically on
the topology of the social network describing the possible
interactions between the individuals [27]. Consequently,
to investigate the properties of a mobile population it is
convenient to focus on the properties of the static net-
work describing the instantaneous communications of the
agents. This is the graph that is obtained, at any time,
by drawing an undirected link between any two agents
that are closer than the emission range d. Recalling that
the average degree (i.e., the average number of neighbors
of a randomly selected node) of the network is simply
〈k〉 = πNd2/L2, these values of d identify different sce-
narios

• d1 ≡ d〈k〉=1 is the range above which the average
degree is larger than 1, so that every emission is
received on average by some agent.

• dc ≡ d〈k〉#4.51 is the critical value for a percolation
transition, yielding a giant component of size N
[28].

• dN/2 ≡ d〈k〉=N/2 is the point where every communi-
cation involves on average the majority of the pop-
ulation.

• dmax ≡ d〈k〉=N is the value that yields a fully con-

nected network. It holds dmax =
√

L2/2.

3

Of course, it holds d1 < dc < dN/2 < dmax. In this paper
we fix L = 200 and N = 100, unless where explicitly
stated, so that d1 ! 11.3, dc ! 24.1, dN/2 ! 79.8 and
dmax ! 141.4. Figure 2 shows the dependence of the
average degree and the size of the giant component on
the parameter d for this choice of L and N .

For a qualitative partitioning of the observed phe-
nomenology in terms of distinct regimes, it is convenient
to consider two timescales. One describes the stability of
a cluster of agents, and the other accounts for the time
over which a consensus is reached within the same cluster
[31]. Their ratio η assesses therefore the impact of local,
intra-cluster, activity on global, inter-cluster, dynamics.
For the robustness of a cluster, we consider the average
number of timesteps needed by an individual to leave a
group of size n(d) (an increasing function of d for d < dc),
that scales as t1 ∼ n(d)/v2 [20]. For the within-cluster
average consensus time, on the other hand, we note that
it can be treated as independent from the cluster size
n(d), tconv ∼ const., both when the considered groups
are densely connected and when they are very small. The
reason is that in the first case the broadcasting rule brings
about a very fast consensus time, which becomes instan-
taneous in fully connected graphs [12], while in the latter
case consensus is quick simply because just a few agents
have to agree [12, 24]. This approximation is appropri-
ate for our purposes since we aim at defining a qualita-
tive index able to discriminate between extreme regimes.
Moreover, as we shall see, it is further validated by the re-
sults discussed in the following of the paper (Sec. III C).
Therefore, for the ratio η between the two timescales it
holds:

η =
t1

tconv
∼

n(d)

v2
, (3)

which is obviously an increasing function of d as d < dc.

A. Consensus time

Figure 3 shows the behavior of the consensus time tconv

as a function of the emission range d, and for different
values of the agents’ velocity v. The consensus is fast for
large values of d (and becomes instantaneous as soon as
d = dmax, when everybody receives the word transmitted
by the first speaker), but it increases for shorter ranges,
in a way that crucially depends upon the v parameter.
We can identify three regimes.

(1) η # 1 holds for small d and large v, and implies
a rapidly evolving network. Agents continuously change
their neighbors, and hence the partners of their commu-
nication acts, pretty much as in the case of an annealed
network. Thus, consensus emerges through global agree-
ment at the system size level, after the agents have cor-
related their inventories so as to allow for successful com-
munication to take place [29]. As d < d1 the behavior

100 101 102
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102

104

106

t co
nv

v=0.1
v=0.5
v=1
v=3
v=5
v=10
v=50

d1 dc dN/2

FIG. 3: (Color online) Top: Consensus time as a function of d
and v (all axes report the log10 of the respective quantities).
Bottom: tconv as a function of d for different for different
values of the agents velocity v. Dotted vertical lines represent
d1, dc and dN/2.

tconv ∼ 1/〈k〉 = 1/d2 is observed (Figure 4, a), describ-
ing the existence of empty communication acts (unheard
emissions) when on average each node has less than one
neighbor.

(2) η > 1 and d < dc, on the other hand, implies
smaller velocities. In this case, small and isolated clus-
ters of agents locally reach an agreement on different
conventions. Global consensus emerges at a later time
through the competition between these words, in a sit-
uation reminiscent of what happens in low-dimensional
lattices [30]. The intra-cluster movements determine
the leading timescale, implying a scaling of the form
tconv ∼ 1/v2 (Figure 4, b and c).

(3) η > 1 and d & dc, finally, identify a scenario
in which the whole population forms a single connected
cluster, describing a random geometric graph. In [11]
Lu and coworkers showed that tconv ∼ 1/〈k〉2.6 (“when
〈k〉 # N”) for static random geometric graphs [32]. Ac-
cordingly, in Figure 5 we observe the behavior tconv ∼
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this evolution of the network topology is an effect of the agents mobility is a particularly interesting case
[Buscarino et al., 2006; Tanner et al., 2003; Buhl et al., 2006]. The effect of this changing patterns of
interaction on synchronization features has been analyzed in different settings, for instance in chemotaxis
[Tanaka, 2007], mobile ad hoc networks [Römer, 2001], wireless sensor networks [Sivrikaya & Yener, 2004],
and the expression of segmentation clock genes [Uriu et al., 2010].

In the recent literature, studies on synchronization in dynamically evolving complex networks have been
mainly concentrated in the case when the topology changes very fast. This is the so-called fast-switching
approximation (FSA) [Belykh et al., 2004; Frasca et al., 2008; Porfiri et al., 2006; Stilwell et al., 2006],
which replaces the real interaction between agents by the ”mean field assumption” that all agents interact
with an effective strength that corresponds to the probability that any pair of agents are connected.

Recently, it has been proposed a general framework of mobile oscillator networks where agents perform
random walks in a two-dimensional (2D) plane [Fujiwara et al., 2011b]. It has been shown that FSA fails
when the time scale of local synchronization is shorter than the time scale of the topology change due to
the agent motion. New behaviors arise due to the interplay between instantaneous network topology, agent
motion, and interaction rules. This framework, that reduces to FSA when velocity is high enough, is valid
for models whose evolution can be well approximated by linear dynamics. This actually holds for models
such as populations of Kuramoto oscillators [Kuramoto, 1984; Acebrón et al., 2005], whose evolution, after
a short transient time, is very well described by a set of linear equations that can be solved in terms of
spectral properties of the Laplacian matrix [Fujiwara et al., 2011a].

In the present paper, we focus on a dynamical system, a population of integrate and fire oscillators
(IFO), where linearization is not a good approximation, since the evolution takes place in two different time
scales. One for the slow evolution of the internal state variables (the phase and the orientation) and the
other for the fast interaction between the units (pulse coupling). During the last years it has been shown
that the interaction structure plays a fundamental role in the dynamics of IFO networks. Zillmer et al.
[2009] observed different dynamical regimes due to network connectivity in a system formed by inhibitory
integrate-and-fire neurons that were randomly connected. Also, the underlying network structure can affect
the speed with which the system reaches the synchronized state, as studied by Grabow et al. [2011]. Usually,
IFO have been used to model neural systems but we can also find some examples of applications in other
fields, as for example in economy [Erola et al., 2011]. Models where the oscillators do not remain fixed,
and the network of interactions changes with time can find a direct application in biological systems such
as flashing fireflies, that interchange light signals while searching for potential mates [Mirollo & Strogatz,
1990; Ramirez-Avila et al., 2011].

In the present case we will show that the interplay between agents motion and phase evolution towards
a synchronized state presents different asymptotic behaviors, reminiscent of the observation in Kuramoto
oscillators [Fujiwara et al., 2011b] and agents using communication protocols [Baronchelli & Diaz-Guilera,
2011]. We identify, furthermore, the possible mechanisms in the different regions of the parameter space.

The organization of the paper is as follows. In the next section we introduce the model. Then we show
the results for different regions of the parameter space, velocity of the agents and range of interaction,
and later we identify the different microscopic mechanisms that lead the system to a globally synchronized
state.

2. The model

We propose a setting in which a population of N integrate and fire oscillators (IFOS) [Mirollo & Strogatz,
1990] move at a constant velocity V in a bidimensional plane of size L with periodic boundary conditions.
Each agent has two degrees of freedom corresponding to an internal phase φ ∈ [0, 1] and orientation
θi ∈ [0, 2π], both randomly set in an uniform manner at the initial configuration.

The evolution of the system takes place on two different timescales. The slow timescale sets the pace
at which the phases of the agents increase uniformly with period τ ,

dφi

dt
=

1

τ
(1)

until they reach a maximum value of 1, when a firing event occurs. Then the phase is reset and the
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oscillator is randomly reoriented. Upon this event at time t, the firing oscillator influences its nearest
neighbors (oscillators at minimal distance) producing an update in their phases by a factor ε:

φi(t
−) = 1 ⇒







φi(t+) = 0
φnn(t+) = (1 + ε)φnn(t−)
θi(t+) ∈ [0, 2π]

. (2)

The phase and orientation resetting corresponds then to the fast time scale. If the neighbor’s phase update
overcomes the phase maximum, another firing event is triggered and this process goes on repeatedly until
all shots have ceased. At this point, the time t runs again until the next firing event occurs. The system
is synchronized when we encounter in the system a succession of consecutive firing events (avalanche)
equal to the system size N , since after this fact all oscillators will remain synchronized forever because
all of them will have the same period τ with or without interactions. For the sake of clarity we define the
(discrete) time T , as the number of times a given oscillator (that we will identify with oscillator 1 in our
computer simulations) has fired. This allows us to define Tsync as the minimum number of (integer) cycles
this reference oscillator takes to enter the synchronized state (i.e. the number of updates needed for an
avalanche of size N to occur).

Fig. 1. The model of interaction between oscillators, based on geometrical constraints. Only those within a distance R are
affected by the firing of the central one.

We propose a geometric condition for neighbor selection upon a firing event as shown in figure 1: Every
agent scans a circular area of radius R around it and shots the neighbors therein. We introduce a parameter
r ∈ [0, 1] that indicates the fraction of the system available for interaction and relates both R, L variables
and the average outgoing degree of the nodes of our evolving network

r =
πR2

L2
〈kout〉 = (N − 1)r. (3)

Throughout this paper, we have used fixed parameters L = 100, τ = 1, N = 50 and ε = 0.02 ∼ O(1/N),
while analyzing the explicit dependence on the mobility parameters, r and V .

Before proceeding to show the results of our simulations, we need to note that the type of proposed
interaction range in this system has been reported to show statistical properties similar to a continuous
percolation [Fujiwara et al., 2011b], that in the case of static oscillators occurs for approximately rc ≈
4.51/(N − 1) = 0.09 [Dall & Christensen, 2002; Balister et al., 2005]. In our range of study, we hope to
observe some traces of this percolation as well as saturation properties observed in other moving oscillator
systems at high speeds [Fujiwara et al., 2011b].
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We propose a geometric condition for neighbor selection upon a firing event as shown in figure 1: Every
agent scans a circular area of radius R around it and shots the neighbors therein. We introduce a parameter
r ∈ [0, 1] that indicates the fraction of the system available for interaction and relates both R, L variables
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Throughout this paper, we have used fixed parameters L = 100, τ = 1, N = 50 and ε = 0.02 ∼ O(1/N),
while analyzing the explicit dependence on the mobility parameters, r and V .

Before proceeding to show the results of our simulations, we need to note that the type of proposed
interaction range in this system has been reported to show statistical properties similar to a continuous
percolation [Fujiwara et al., 2011b], that in the case of static oscillators occurs for approximately rc ≈
4.51/(N − 1) = 0.09 [Dall & Christensen, 2002; Balister et al., 2005]. In our range of study, we hope to
observe some traces of this percolation as well as saturation properties observed in other moving oscillator
systems at high speeds [Fujiwara et al., 2011b].
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Fig. 3. (Colors online) Panel a): η against χ for several values of r and V . Panel b): the difference between the two control
parameters (η − χ) as a function of rT . Letters [D], [L] and [B] stand respectively for ”diffusive”, ”local” and ”bounded”
regimes. The values of η and χ at each time instant have been calculated averaging over 1000 realizations.

Finally, as we decrease r approaching the critical value rc, we observe a transition from a local to
a bounded regime, where the synchronizing time is so long that again allows for the interaction of the
majority of the agents among themselves upon synchronization time (due to the bounded nature of the
system). In this regime, the range of interaction is very reduced, and so is the size of the clusters, so an
agreement between the multiple clusters created (if any) comes after almost all the system has interacted.
Consequently, the increasing of η with χ is slower (many small steps, see fig. 3a) ) while the final value χ
becomes larger (fig. 3).

In fig. 3b) we provide an explicit time evolution of the difference η(T ) − χ(T ) in order to make the
three regimes and the influence of r better identified.

It is interesting to study the final mixing of our system upon synchronization as shown in figure 4.
This value χ(T = Tsync) ≡ χsync together with Tsync characterize the evolution of the system towards the
synchronized final state. These features depend on both r and V . At fixed velocity the final mixing of the
system decreases as the interaction range grows. This is caused by the fact that although an increased r
induces more mixing (as oscillators find new neighbors more easily) it also drastically reduces (below the
critical values rc) the synchronizing time Tsync thus reducing the chances of encounters between different
oscillators. Above rc we observe a saturation of the values as the dependence of Tsync in r and V is
practically lost.

Figure 4 b) shows a change between the relation pattern of χsync and efficiency rTsync ranging from the
diffusive regime (mixing independent of rTsync) to the curves where both the local and bounded regimes
are shown. It is important to note the similarity of the observed shapes (for a wide range of V values)
where we find the local phase concentrated around the minimum value of χsync that gradually grows in a
power law fashion as the performance of the system decreases (it consumes more energy to synchronize).

The introduction of the new parameter χsync allows us to present a phase diagram of our system
relating the overall performance (in terms of efficiency) with the synchronizing mechanism used (figure 5).
We identify the diffusive regime in the zone of high velocities V ∼ O(10) where both values of χ and rTsync

are almost independent of r. This zone falters into the bounded one as V and specially r decrease, where
both the efficiency and the mixing of the system is reduced. Finally for small enough velocities the local
zone is clearly visible with low values of system mixing. From the map one clearly observes that the most
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this evolution of the network topology is an effect of the agents mobility is a particularly interesting case
[Buscarino et al., 2006; Tanner et al., 2003; Buhl et al., 2006]. The effect of this changing patterns of
interaction on synchronization features has been analyzed in different settings, for instance in chemotaxis
[Tanaka, 2007], mobile ad hoc networks [Römer, 2001], wireless sensor networks [Sivrikaya & Yener, 2004],
and the expression of segmentation clock genes [Uriu et al., 2010].

In the recent literature, studies on synchronization in dynamically evolving complex networks have been
mainly concentrated in the case when the topology changes very fast. This is the so-called fast-switching
approximation (FSA) [Belykh et al., 2004; Frasca et al., 2008; Porfiri et al., 2006; Stilwell et al., 2006],
which replaces the real interaction between agents by the ”mean field assumption” that all agents interact
with an effective strength that corresponds to the probability that any pair of agents are connected.

Recently, it has been proposed a general framework of mobile oscillator networks where agents perform
random walks in a two-dimensional (2D) plane [Fujiwara et al., 2011b]. It has been shown that FSA fails
when the time scale of local synchronization is shorter than the time scale of the topology change due to
the agent motion. New behaviors arise due to the interplay between instantaneous network topology, agent
motion, and interaction rules. This framework, that reduces to FSA when velocity is high enough, is valid
for models whose evolution can be well approximated by linear dynamics. This actually holds for models
such as populations of Kuramoto oscillators [Kuramoto, 1984; Acebrón et al., 2005], whose evolution, after
a short transient time, is very well described by a set of linear equations that can be solved in terms of
spectral properties of the Laplacian matrix [Fujiwara et al., 2011a].

In the present paper, we focus on a dynamical system, a population of integrate and fire oscillators
(IFO), where linearization is not a good approximation, since the evolution takes place in two different time
scales. One for the slow evolution of the internal state variables (the phase and the orientation) and the
other for the fast interaction between the units (pulse coupling). During the last years it has been shown
that the interaction structure plays a fundamental role in the dynamics of IFO networks. Zillmer et al.
[2009] observed different dynamical regimes due to network connectivity in a system formed by inhibitory
integrate-and-fire neurons that were randomly connected. Also, the underlying network structure can affect
the speed with which the system reaches the synchronized state, as studied by Grabow et al. [2011]. Usually,
IFO have been used to model neural systems but we can also find some examples of applications in other
fields, as for example in economy [Erola et al., 2011]. Models where the oscillators do not remain fixed,
and the network of interactions changes with time can find a direct application in biological systems such
as flashing fireflies, that interchange light signals while searching for potential mates [Mirollo & Strogatz,
1990; Ramirez-Avila et al., 2011].

In the present case we will show that the interplay between agents motion and phase evolution towards
a synchronized state presents different asymptotic behaviors, reminiscent of the observation in Kuramoto
oscillators [Fujiwara et al., 2011b] and agents using communication protocols [Baronchelli & Diaz-Guilera,
2011]. We identify, furthermore, the possible mechanisms in the different regions of the parameter space.

The organization of the paper is as follows. In the next section we introduce the model. Then we show
the results for different regions of the parameter space, velocity of the agents and range of interaction,
and later we identify the different microscopic mechanisms that lead the system to a globally synchronized
state.

2. The model

We propose a setting in which a population of N integrate and fire oscillators (IFOS) [Mirollo & Strogatz,
1990] move at a constant velocity V in a bidimensional plane of size L with periodic boundary conditions.
Each agent has two degrees of freedom corresponding to an internal phase φ ∈ [0, 1] and orientation
θi ∈ [0, 2π], both randomly set in an uniform manner at the initial configuration.

The evolution of the system takes place on two different timescales. The slow timescale sets the pace
at which the phases of the agents increase uniformly with period τ ,

dφi

dt
=

1

τ
(1)

until they reach a maximum value of 1, when a firing event occurs. Then the phase is reset and the

martes 15 de mayo de 12



Minimal model

• Outdegree: 1 for all

• Indegree: 1 on average
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4.3 Time to synchronize
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Figure 4.7: The average synchronization time Tsync as a function of V , for L = 400,
N = 20, ε = 0.1. In the following, when not otherwise states, the values of the
parameters are those used in this figure. In the inset: Tsync against V/L, for L = 1200
(black), 800 (blue), 400 (red) and 200 (green). Averages are performed over 2000
realizations.

The chosen minimal interaction rule is such that the system lies far below the

static percolation transition. Therefore, without motion, global synchronization is not

achievable. Since it is the non-null velocity of the oscillators that enables the system

to reach the coherent state, we could expect Tsync (the average time the system needs

to synchronize) to be a decreasing function of V , such that Tsync → ∞ when V → 0

and Tsync → Tf > 0 (a constant value) when V is high enough5

Although both limits are correct, Tsync is not a monotonous function of V . On the

contrary, there is an intermediate region of values of the velocity where the synchro-

nization time diverges.

Fig. 4.7 shows that, for V < Vs, the synchronization time decreases as a power of V

when the latter increases. Then, the decreasing slows down and Tsync has a minimum

at V = Vm > Vs. Beyond this value, the synchronization time gets larger and larger,

until the system enters a region where it is unable to reach the coherent state in a finite

5When V is such that the agents, at each time step, cover a distance of the same order of magnitude
as of the linear dimensions of the box, then the interactions are completely randomized (fast switching
approximation). A further increasing of V does not produce any effect.
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Contact networks

• Instantaneously: single links

• Reciprocal?

• Very sparse

100Appendix B. Estimations and micro-characterization for the minimal IFOS model

Figure B.3: Connected cluster of size N = 2, 3, 4.

stantard deviation of the values of Tsync obtained for different initial conditions of the

same order of magnitude as the mean value.

Consequently, to identify the typical time scale of the local synchrony is not an

easy task. On the one hand, there are configurations that cannot synchronize, or that

can synchronize only if some of the units had already the same phase; on the other

hand, there is a relevant fraction of pairs that synchronize very quickly. Actually, we

should count out all the frustrated configuration since they do not play any role in the

increasing of local coherence. Even if the mean size of the connected components is

Scc ! 3.2 (see AppendixB.1), the mean size of a good cluster able to synchronize is

probably smaller than 3. Therefore, the typical time scale of local synchrony would

likely be smaller than T3, the synchronization time of the 3-chain, a assumed in Sec. 4.6.

However, the only effect of this possible correction is a multiplicative constant factor

in the definition of the scaling variable r introduced in Sec. 4.6, Eq. 4.11. Indeed, the

dependence on ε of the synchronization time for all the considered configuration is of

the type Tsync ∼ ε−1, at least when the coupling strength is small enough (see the top

inset). The scaling argument provided in Sec. 4.6 holds even if we cannot set a local

synchrony time scale with a good precision since what really matter is the dependence

of this time scale on ε that has been univocally identified.
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Cumulative individual 
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4.4. Characterizing the system behavior 63

Figure 4.8: Final (T = Tsync) network of the interactions mediated by a single oscillator
(labeled ”0”), respectively in the fast limit, at V = 2Vf (panel A) and at V = Vm (panel
B). Node color changes from purple to orange increasing the in-degree. Size increases
with increasing out-degree. The weights of the links are proportional to occurrence of
the interactions.

units. Hence, the mechanisms that allow the system to synchronize have to be different

in the two cases. Our hypothesis is that the system uses different strategies to reach

the coherent state in the left and in the right region, while neither of them work in the

intermediate region.

In order to clarify this point, in Fig. 4.10 we have plotted η(T ) against T (blue

line) for the same values of the velocity used in Fig. 4.8 and 4.9 and a single realization

for each one. Then, to have an insight of what happens at the local scale, we also

plotted the quantity λ(T ) = cos (2πφnn(T )) (red line), where φnn(T ) is the phase of

the oscillator to which the reference oscillator fired at time T . The black line represents

m(T ), the total number of oscillators that have been out-neighbors of the oscillator of

reference until that moment.

Again, two deeply different behaviors correspond to the different regimes. In the

fast case (panel A), since the velocity is high, interactions are completely rewired at

each time T . Therefore m(T ) increases very rapidly, and therefore φnn is just a random

variable extracted among N − 1 possible ones. This means that λ is exactly the same

as η, but with less statistics. Both quantities increase together (more or less noisily)

because, by means of the firing events, the whole phase distribution becomes narrower.
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Figure 4.9: Final (T = Tsync) total interaction networks, respectively in the fast limit
(panel A) and at V = Vm (panel B). Node color changes from purple to orange increas-
ing the in-degree. Size increases with increasing out-degree. The weights of the links
are proportional to occurrence of the interactions.

Then, η and λ reach a value that is very close to 1 and they do not fluctuate any

more. However, full synchronization has not been achieved yet. The system lies in an

almost-synchronized state, all the oscillator having almost the same phase, just with a

very little dispersion of their values. Remarkably, the system spends around one half of

the total synchronization time in this state before being able to produce an avalanche

of size N .

In the slow case (panel B), things go completely different way. The behaviors of

η and λ appear to be uncorrelated, being λ = 1 almost all the time. The considered

oscillator (as anyone else) spends a quite long time with each one of its neighbors,

usually being able to synchronize with it before leaving. At the beginning (T < 500),

whenever it starts firing toward an new oscillator (black vertical lines in Fig. 4.10), λ

experiences an abrupt decreasing while m(T ) increases, that means that it is the first

time the reference oscillator meets that neighbor. Later (T > 500), the chances to

change a neighbor for an other one it has already known, and that has almost the

same phase, increase. The phase distribution has become narrower and, especially at

local scale, among the units the oscillator of reference can meet, the dispersion is small.

Consequently, neighbor changes do not affect λ anymore. It suggests that, unlike in

the fast regime, global coherence can be achieved through local synchronization.
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Conclusions
• New features of complex networks:

• networks of networks

• networks are interconnected

• time dependent

• Emergent properties depend also on the dynamics of 
the network

• There are feedback effects between topology and 
dynamics

• Non-universality: depend on rules of interaction, 
dynamics of the units, ....
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