
 The problem: given a species tree and gene trees that developed on it. 
 Biologists identified the nodes of the gene trees that are  multiplication events, and.also 
 identified intervals in which those events were likely to occur. 
 Place the minimum number of multiplication episodes on the species tree that explain these 
 events (an episode can explain several events, but ancestral relations between events must be 
 respected) and put them in the right interval. 
 Several versions of the problem exists with corresponding algorithms (Guigo et. al.[5], 
 Page-Cotton[6], Burleigh-Bansal-Eulenstein-Vision[7]., etc) 

Éva	
   Czabarka,	
   L.A.	
   Székely,	
   T.J.	
   Vision	
   developed	
  a mathematical model for the problesm that allow for a generalization to more 
natural models (e.g. ones that give different ways to episodes of different types), a combinatorial notion of equivalent solutions 
hat potentially allows for counting the number of different solutions, and showed that the minimum number of episodes that 
explain all events is the maximum number of pairwise disjoint intervals in which we have to place the events (in the biologically 
relevant case, when intervals are open upwards). Similar minimax theorems exists for the case when the intervals are closed 
upwards.  

Gene trees: enumeration and min-max theorems 
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Phylogenetic and gene trees represent evolutionary relationships between copies of a gene, species or taxonomic units. The 
root of such a tree is the common ancestor, internal nodes represent speciation events or (in case of gene trees) duplication 
events. Thus, the number of children for each internal node is at least two, and the tree ideally (but not necessarily) is rooted and 
binary, The leaves are labeled with the name of the corresponding species/taxonomical unit. For phylogenetic trees, labels are 
unique, for gene trees, labels may repeat 

É. Czabarka, P.L. Erdős, V. Johnson, V. Moulton obtained generating function identities and recursions to count rooted and 
unrooted gene trees with a given number of leaves using a given label set (where labels may be omitted). The tools for these 
formulas are the fact that removal of a root and rooting the resulting forest at the neighbors of the old root establishes a bijection 
between rooted phylogenetic trees and certain forests of such rooted phyloegentic trees, and a generalization of Otter’s formula
[4] to multi-leaf-labeled trees. Otter’s formula states that in an unrooted tree the number of different trees minus the number of 
different non-symmetry edges is 1; this can be used to connect counts of rooted trees to counts of unrooted trees. The resulting 
recursions can be easily coded, the tables below were obtained by a program available at   

   http://www.math.sc.edu/~czabarka/programfiles/treecode.html  

Rooted	
  binary	
  gene	
  trees	
  with	
  n	
  leaves	
  and	
  k	
  labels	
  
where	
  all	
  labels	
  are	
  used	
  at	
  least	
  once.	
  
n\k 	
  	
  	
  	
  	
  	
  	
  1	
   2 3 4 5 
1 1	
   0	
   0	
   0	
   0	
  
2 1 1 0 0 0 
3 1 4 3 0 0 
4 2 14 27 15 0 
5 3 48 180 240 105 
6 6 171 1,089 2,604 2,625 
7 11 614 6,333 24,180 42,075 
8 23 2,270 36,309 207,732 554,820 
9 46 8,518 207,255 1,710,108 6,578,550 
10 98 32,576 1,184,829 13,739,550 73,169,250 

Unrooted	
  binary	
  gene	
  trees	
  with	
  n	
  leaves	
  and	
  k	
  labels	
  
where	
  all	
  labels	
  are	
  used	
  at	
  least	
  once.	
  	
  	
  
n\k 	
  	
  	
  	
  	
  	
  	
  1	
   2 3 4 5 
1 1	
   0	
   0	
   0	
   0 
2 1	
   1	
   0	
   0	
   0 
3 1	
   2	
   1	
   0	
   0 
4 1	
   4	
   6	
   3	
   0 
5 1	
   10	
   30	
   36	
   15 
6 2	
   27	
   140	
   310	
   300 
7 2	
   74	
   663	
   2376	
   3990 
8 4	
   226	
   3,186	
   17,304	
   44,850 
9 6	
   710	
   15,642	
   123,508	
   462,735 
10 11	
   2,354	
   78,441	
   874,998	
   4,550,955 

A combinatorial array A(n,k) (k=1,2,…dn) is an infinite sequence of finite sequences. Let En=A(n,1)+…+A(n,dn), and define the 
random variable Zn by P(Zn=k)=A(n,k)/En. The array A(n,k) is asymptotically normal, it the cumulative density function of the 
standardized variable (Zn–E(Zn))/σ(Zn) converges uniformly to the cumulative density function of the standard normal random 
variable (central limit condition). A stronger, local limit condition essentially states uniform convergence of the appropriate 
quantity to the probability density function of the standard normal random variable. Earlier results of P.L. Erdős and L.A. Székely
[2] imply that F*(n,k)=S*(n, n – k +1), where is the number of partitions of an n-element set into k classes, each of which has size 
two, and   is the number of rooted phylogenetic trees with k leaves and n non-root vertices. Using this result, Harper’s method for 
asymptotic normality[3], and Canfield’s asymptotic results[1] on the Bell numbers, É. Czabarka, P.L. Erdős, V. Johnson, A. 
Kupczok, L.A. Székely showed that the array F*(n,k) is asymptotically normal and also satisfies the stronger local limit 
conditions. Also, they showed the same for the biologically more relevant distribution of Tn,k, the number of phylogenetic trees 
with n leaves and k internal vertices The graphs below illustrate the local limit conditions. 
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Tn,k  expectation and variance
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Rooted	
  non-­‐binary	
  gene	
  trees	
  with	
  n	
  leaves	
  and	
  
at	
  most	
  	
  k	
  labels.	
  

n\k 	
  	
  	
  	
  	
  	
  	
  1	
   2 3 4 5 
1 1	
   2	
   3	
   4	
   5	
  
2 1 3 6 10 15 
3 2 10 28 60 110 
4 5 40 156 430 965 
5 12 170 948 3,396 9,376 
6 33 785 6,206	
   28,818 97,775 
7 90 3,770 42,504 256,172 1,068,450 
8 261 18,805 301,548 2,357,138 12,081,605 
9 766 96,180 2,195,100 22,253,672 140,160,650 
10 2,312 502,381 16,307,598 214,370,398 1,658,936,806	
  


