Clustering of random scale-free networks
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We derive the asymptotic behaviour of the clustering coefficient of scale-free random graphs generated by the configuration
model with the degree distribution exponent 2 <y < 3. Degree Heterogeneity increases the presence of triangles in many real
networks even for extremely large networks. We also find that for values ¥ = 2, clustering is virtually size independent and, at the
same time, becomes a de facto non self-averaging topological property.

Configuration model in the microcanonical ensemble Configuration model in the Canonical ensemble

1. The degree of each node 1s fixed In this ensemble, each node 1s given not its actual degree but its expected degree.
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2. The connections among nodes are realized in the most random way avoiding
multiple-edges and self-edges.

1. Each node 1s assigned a hidden variable k drawn from a density functions:

,O(Ii) X k=7 with 1 < Kk < ke and ke ~ N/ (—1)

2. We connect each pair of nodes with probability [4]:

r (’I:Iiz/) _ /<c/<c2’ (1 + K,K,Q/)—l where K (v—1)N

In the absence of high degree nodes the Clustering coefficient of the resulting network 1s given by [3]: Then the average degree of a node is:

O (k(E=1)? ] ) N
N (k)? k(k)=N [ ds'p()r (’Z’Z ) = k(k) x K

min s

That vanishes very fast for large system sizes N — o= C — 0

, , , , The Clustering coefficient of nodes of a certain hidden variable « 1s calculated as [5]:
However 1n the case of a scale-free networks 1t predicts a behaviour ¢ ~ N(7=37)/(v=1) that

diverges fory <7/3. This 1s because this derivation does not account for the structural correlations Clr)y — (N 2 ke LN (R v e ! ! !

- (%) = (i) S dot) I anoler () (5) 7 ()
among degrees of connected nodes that appear in order to be able to close the network for degree s

distributions with y <3 [2].

Kmin mimn

If we average over all k we get the Clustering coefficient C:

Here we explain how to derive the correct scaling behaviour of clustering for scale-free random
graphs with 2 <y < 3. We also show that when v ~ 2 clustering is very high and becomes nearly C=[" pk)C(k)dk
size independent. -

We solved analytically and we found [1]:

O(v) +®(—1,2,7y—2) Ke=krs>1

For y close to 2 clustering remains nearly constant. c(k) ~ (g(ﬁ)j)
Clustering is surprisingly high & 20(7)In (% ) e > iy > 1

where (7)) = ®(-1,1,3—~)+®(-1,1,7—2) and 6O(y) = —7%cot mycscmy

and ®(z,a,b) 1s the transcendent Lerch function
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L iyt 5| | The. second line pre.dlcts C N YIn N .When ke~ N / (’7. ) |
Sy Simuationsy2.5 = ; : Which corrects the incorrect scaling behavior predicted in the microcanonical ensemble.
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Conclusions: g5 ,[ -
Using the canonical ensemble of the configuration model we have been able to find both i |
analytically and numerically the correct scaling behaviour of the clustering coefficient of the 21 N
ensemble of scale-free random graphs with 2 <y < 3. Interestingly. for (realistic) values of the - ]
exponent v & 2, clustering remains nearly constant up to extremely large network sizes. S — '05 i 0'1 - '15 | 0'2 - '25 i
- - - S - - - - Clustering, C
Observing the variance of the Clustering coeffcient in the numerical simulations, we found that 1n 10 e | |
this case this topological property is not self-averaging. | e e L
pological property ging o— e @ e ®-

These results are particulary important as the exponent value v &~ 2 seems to be -for yet unknown
reasons- the rule rather than the exception 1n real systems.
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