Non-additive processing of synchronous inputs yields enhanced memory storage

David Breuer ^[1], Raoul-Martin Memmesheimer ^[4] and Marc Timme ^[1-3]

^[1] Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
 ^[2] Bernstein Center for Computational Neuroscience (BCCN), 37077 Göttingen, Germany
 ^[3] Department of Physics, Georg August University Göttingen, 37077 Göttingen, Germany
 ^[4] Donders Institute, Department of Neuroinformatics, Radboud University, 6525 AJ Nijmegen, Netherlands

dbreuer|timme@nld.ds.mpg.de, r.memmesheimer@science.ru.nl

Motivation

How is the memory capacity of the brain ...

Every day we experience that we are (i.e. our brain is) **good at remembering** a large number of facts, faces and other things. Furthermore, we are able, e.g., **to associate** different facts and recognize faces of friends even under complicating conditions. **Simple neural network models** can grasp these capabilities and explain the storage capacity and robustness of memory retrieval ^[1,2]. The following pictures demonstrate both aspects of our memory:

Conclusion & Outlook

take home messages

- Hopfield networks provide a simple model for associative memories.
- ▶ The complexity of the brain covers, i.a., **non-additive input processing** and dendritic arbors.
- Dendritic non-additivities increase the robustness of the model against fluctuations.

work in progress

How can the couplings w_{nbm} be adjusted to optimize storage capacity?

... influenced by the complexity of the brain?

The collective dynamics of neural circuits centrally relies on how individual neurons process their inputs ^[4]. Despite a vast literature on neural network dynamics, almost all theoretical studies so far have **assumed linear summation of inputs**. Experimental works, however, have shown that temporally synchronous and spatially close inputs yield a soliton-like excitation and thereby a **supralinear enhancement of the inputs** ^[5,6]. Moreover, commonly studied point-neuron models ignore the richness and **complexity of dendritic arbors** as present in many regions of the brain ^[7,8].

How do complex biological features of the brain, such as non-additive input processing in multiple dendritic branches, influence its performance as an associative memory?

Dendrites provide effective neuronal input

Do similar gains in memory performance persist in networks of biologically plausible neurons?

Dendrites improve robustness of memory

dendritic non-additivities stabilize memorized patterns

• quality of retrieval is measured by the overlap m of the network state with pattern p = 1, w.l.o.g.

$$n = N^{-1} \sum_{n=1}^{N} x_n^1 \left\langle v_n \right\rangle$$

 overlap in the limit PN⁻¹ → 0 for the standard Hopfield model (black) and increasingly strong non-additivites (gray, orange, red)

effective input *u* to neuron in presence of non-additive dendrites
the neuronal input is split into two contributions of linear and saturated dendrites, respectively

▶ Non-additive **dendrites alter input** *u* to neuron in a non-trivial but **predictable** manner with small deviations $Std[u] \ll E[u]^{[9]}$.

Neuron Model

Non-additive dendrites allow successful memory retrieval at higher noise levels ^[9].

Extended Hopfield Model

network architecture

- due to the dendritic branches, **neurons are coupled to branches** of neurons w_{nbm}
- the Hebbian connectivity stores patterns x_n^p as attractors into the network ^[1]
- this provides the network with the capability to recall and associate memories

 $w_{nm} = N^{-1} \sum_{p=1}^{P} x_n^p x_m^p$ $= N^{-1} \sum_{b=1}^{B} w_{nbm}$

neuronal dynamics

- ▶ the **binary neurons** are updated stochastically, modeling **noise**^[2]
- ▶ the non-additive dendrites provide the neuron with an **effective input** *u* (see Effective Input)

extended point neurons to two-layer structures

each independent dendritic branch is modeled as a seperate compartment

non-additive dendritic input processing

▶ input summation in dendrites is **non-additive** (see Motivation) but remains linear in neuron

 $v_n (t+1) = \begin{cases} +1, & \text{with probability} \quad p_n \\ -1, & \text{otherwise} \end{cases}$ $p_n (T, u_n) = \left(1 + \exp\left(-2T^{-1}u_n\right)\right)^{-1}$

 v_n state of neuron n t time T temperature u_n effective input to neuron n

References & Acknowledgments

JJ Hopfield (1982) Neural networks and physical systems with emergent collective computational abilities. PNAS, 79(8).
 D Amit (1992) Modeling brain function: The world of attractor neural networks. Cambridge Univ Pr.
 Wikimedia Commons (2012) wiki/Albert_Einstein, public domain.
 C Koch and I Segev (2000) The role of single neurons in information processing. Nature Neurosci, 3.
 S Gasparini and JC Magee (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci, 26(7).
 G Ariav (2003) Submillisecond precision of the input-output transformation function [...]. J Neurosci, 23(21).
 B Mel (1994) Information processing in dendritic trees. Neural Comp, 6(6).
 P Poirazi et al (2003) Pyramidal neuron as two-layer neural network. Neuron, 37(6).
 D Breuer et al (unpublished) Non-additive dendritic processing [...]: Impact on single neurons and associative memory networks.

► Financially supported by the BMBF (grant no. 01GQ1005B) and the DFG (grant no. TI 629/3-1).