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Complex networks have been studied extensively owing to their
relevance to many real systems such as the world-wide web, the
Internet, energy landscapes and biological and social networks1–5.
A large number of real networks are referred to as ‘scale-free’
because they show a power-law distribution of the number of
links per node1,6,7. However, it is widely believed that complex
networks are not invariant or self-similar under a length-scale
transformation. This conclusion originates from the ‘small-
world’ property of these networks, which implies that the
number of nodes increases exponentially with the ‘diameter’ of
the network8–11, rather than the power-law relation expected for a
self-similar structure. Here we analyse a variety of real complex
networks and find that, on the contrary, they consist of self-
repeating patterns on all length scales. This result is achieved by
the application of a renormalization procedure that coarse-
grains the system into boxes containing nodes within a given
‘size’. We identify a power-law relation between the number of
boxes needed to cover the network and the size of the box,
defining a finite self-similar exponent. These fundamental prop-
erties help to explain the scale-free nature of complex networks
and suggest a common self-organization dynamics.
Two fundamental properties of real complex networks have

attracted much attention recently: the small-world and the scale-
free properties.Many naturally occurring networks are ‘small world’
because we can reach a given node from another one, following the
path with the smallest number of links between the nodes, in a very
small number of steps. This corresponds to the so-called ‘six degrees
of separation’ in social networks10. It is mathematically expressed by
the slow (logarithmic) increase of the average diameter of the
network, !l; with the total number of nodes N, !l< lnN; where l
is the shortest distance between two nodes and defines the distance
metric in complex networks6,8,9,11. Equivalently, we obtain:

N < e
!l=l0 ð1Þ

where l0 is a characteristic length.
A second fundamental property in the study of complex networks

arises with the discovery that the probability distribution of
the number of links per node, P(k) (also known as the degree
distribution), can be represented by a power-law (‘scale-free’) with a
degree exponent g that is usually in the range 2 ,g , 3 (ref. 6):

PðkÞ< k2g ð2Þ
These discoveries have been confirmed in many empirical studies of
diverse networks1–4,6,7.
With the aim of providing a deeper understanding of the

underlying mechanism that leads to these common features, we
need to probe the patterns within the network structure in more
detail. The question of connectivity between groups of intercon-
nected nodes on different length scales has received less attention.
But many examples exhibit the importance of collective behaviour,
such as interactions between communities within social networks,
links between clusters of websites of similar subjects, and the highly
modular manner in which molecules interact to keep a cell alive.
Here we show that real complex networks, such as the world-wide
web (WWW), social, protein–protein interaction networks (PIN)
and cellular networks are invariant or self-similar under a length-
scale transformation.

This result comes as a surprise, because the exponential increase
in equation (1) has led to the general understanding that complex
networks are not self-similar, since self-similarity requires a power-
law relation between N and l.

How can we reconcile the exponential increase in equation (1)
with self-similarity, or (in other words) an underlying length-scale-
invariant topology? At the root of the self-similar properties that we
unravel in this study is a scale-invariant renormalization procedure
that we show to be valid for dissimilar complex networks.

To demonstrate this concept we first consider a self-similar

Figure 1 The renormalization procedure applied to complex networks. a, Demonstration
of the method for different lB. The first column depicts the original network. We tile the
system with boxes of size lB (different colours correspond to different boxes). All nodes in
a box are connected by a minimum distance smaller than the given lB. For instance, in the
case of lB ¼ 2, we identify four boxes that contain the nodes depicted with colours red,

orange, white and blue, each containing 3, 2, 1 and 2 nodes, respectively. Then we

replace each box by a single node; two renormalized nodes are connected if there is at

least one link between the unrenormalized boxes. Thus we obtain the network shown in

the second column. The resulting number of boxes needed to tile the network, N B(lB), is
plotted in Fig. 2 versus lB to obtain d B as in equation (3). The renormalization procedure is

applied again and repeated until the network is reduced to a single node (third and fourth

columns for different lB). b, The stages in the renormalization scheme applied to the
entire WWW. We fix the box size to lB ¼ 3 and apply the renormalization for four stages.

This corresponds, for instance, to the sequence for the network demonstration depicted in

the second row in panel a. We colour the nodes in the web according to the boxes to which
they belong. The network is invariant under this renormalization, as explained in the

legend of Fig. 2d and the Supplementary Information.
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network embedded in euclidean space, of which a classical example
would be a fractal percolation cluster at criticality12. To unfold the
self-similar properties of such clusters we calculate the fractal
dimension using a ‘box-counting’ method and a ‘cluster-growing’
method13.

In the firstmethodwe cover the percolation cluster withNB boxes
of linear size lB. The fractal dimension or box dimension dB is then
given by14:

NB < l2dB
B ð3Þ

In the second method, the network is not covered with boxes.
Instead one seed node is chosen at random and a cluster of nodes
centred at the seed and separated by a minimum distance l is
calculated. The procedure is then repeated by choosing many seed
nodes at random and the average ‘mass’ of the resulting clusters
(kMcl, defined as the number of nodes in the cluster) is calculated as
a function of l to obtain the following scaling:

kMcl < ldf ð4Þ
defining the fractal cluster dimension d f

14. Comparing equations
(4) and (1) implies that d f ¼ 1 for complex small-world
networks.

For a homogeneous network characterized by a narrow degree
distribution (such as a fractal percolation cluster) the box-counting
method of equation (3) and the cluster-growing method of
equation (4) are equivalent, because every node typically has the

same number of links or neighbours. Equation (4) can then be
derived from equation (3) and dB ¼ d f, and this relation has been
regularly used.
The crux of the matter is to understand how we can calculate a

self-similar exponent (analogous to the fractal dimension in eucli-
dean space) in complex inhomogeneous networks with a broad
degree distribution such as equation (2). Under these conditions
equation (3) and (4) are not equivalent, as will be shown below. The
application of the proper covering procedure in the box-counting
method (equation (3)) for complex networks unveils a set of self-
similar properties such as a finite self-similar exponent and a new set
of critical exponents for the scale-invariant topology.
Figure 1a illustrates the box-covering method using a schematic

network composed of eight nodes. For each value of the box size lB,
we search for the number of boxes needed to tile the entire network
such that each box contains nodes separated by a distance l , lB.
This procedure is applied to several different real networks: (1) a

part of the WWW composed of 325,729 web pages that are
connected if there is a URL link from one page to another6

(http://www.nd.edu/,networks); (2) a social network where the
nodes are 392,340 actors linked if they were cast together in at least
one film15; (3) the biological networks of protein–protein inter-
actions found in Escherichia coli (429 proteins) and Homo sapiens
(946 proteins) linked if there is a physical binding between them
(database available via the Database of Interacting Proteins16,17,
other PINs are discussed in the Supplementary Information), and

Figure 2 Self-similar scaling in complex networks. a, The upper panel shows a log-log
plot of N B versus lB, revealing the self-similarity of the WWW and actor network

according to equation (3). The lower panel shows the scaling of s(lB) versus lB according
to equation (9). The error bars are of the order of the symbol size. b, Same as a but for two
PINs: H. sapiens and E. coli. Results are analogous to b but with different scaling

exponents. c, Same as a for the cellular networks of A. fulgidus, E. coli and C. elegans.
d, Invariance of the degree distribution of the WWWunder the renormalization for different

box sizes, lB. We show the data collapse of the degree distributions, demonstrating the

self-similarity at different scales. The inset shows the scaling of k 0 ¼ s(lB)k for different
lB, whence we obtain the scaling factor s(lB). Moreover, we also apply the
renormalization for a fixed box size, for instance lB ¼ 3 as shown in Fig. 1b for the WWW,

until the network is reduced to a few nodes, and find that P(k) is invariant under these

multiple renormalizations as well, for several iterations (see Supplementary Information).
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not require the assumption that networks are treelike. Our results rely only on the observation that self-
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the hierarchy. We conjecture that this property is pivotal for percolation in networks.
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Percolation is a fundamental phenomenon in nature.
Recent developments in percolation theory [1] open new
perspectives in many areas of statistical mechanics and
quantum field theory [2]. In statistical mechanics of com-
plex networks, the percolation properties of a network
determine its robustness with respect to structural damage,
and dictate how emergent phenomena depend on the net-
work structure [3]. Large clusters of connected nodes
emerge above a critical value of some network parameter,
e.g., the average degree; below the threshold, networks
decompose into a myriad of small components. This
percolation threshold can be zero, meaning that networks
are always in the percolated phase. A classic example
is random scale-free networks with the power-law degree
distribution exponent ! lying between 2 and 3 [4,5].
The value of the percolation threshold, the size of the
giant component and the specifics of the percolation tran-
sition strongly depend on fine details of the network
topology [3]. This dependency hinders attempts to
define percolation universality classes, even though
some networks show some degree of percolation universal-
ity [6].

This problem is aggravated by difficulties in the analytic
treatment of percolation properties for networks with
strong clustering. A majority of the obtained analytic
results use the generating function formalism based on
the assumption that networks are locally treelike [7].
This assumption allows one to employ convenient tools
from the theory of random branching processes. The
assumed absence of loops implies, in particular, that clus-
tering is zero in the thermodynamic limit. This zero-
clustering approximation is valid for weakly clustered
networks where triangles do not overlap, but it is invalid
for networks with strong clustering and overlapping
triangles observed in many real systems [8]. Noticeably,
the exact results derived for some network models with

clustering can be mapped to treelike zero-clustering graphs
after appropriate transformations [9].
In this Letter, we provide a remarkably simple rigorous

proof for the absence of a percolation threshold in a general
class of self-similar networks. The proof does not rely on
the treelike assumption or on generating functions. It does
not depend on whether a network is weakly or strongly
clustered, and it applies equally well to equilibrium or
nonequilibrium networks. The proof relies only on network
self-similarity, defined as statistical invariance of a hier-
archy of nested subgraphs with respect to a network renor-
malization procedure. The percolation threshold is zero as
soon as the average degree in subgraphs is a growing
function of their depth in the hierarchy—a property char-
acterizing many real networks. We also calculate analyti-
cally the size of the giant component, supporting all the
results by large-scale numerical simulations.
Let Gðf"gÞ be an ensemble of sparse graphs in the

thermodynamic limit, where f"g is the set of model pa-
rameters. In the case of classical random graphs, for ex-
ample, set f"g is just the average degree hki. Consider a
transformation rule T that for each graph G 2 Gðf"gÞ
selects one ofG’s subgraphs. Denote the ensemble of these
subgraphs by GTðf"gÞ. The ensemble Gðf"gÞ is called self-
similar with respect to the transformation rule T if the
transformed ensemble is the same as the original one
except for some transformation of the model parameters,

G Tðf"gÞ ¼ Gðf"TgÞ: (1)

In what follows we describe three general types of graphs
to which this definition applies. The first two types are
equilibrium random scale-free graph ensembles belonging
to a general class of network models with hidden variables
[10]. The third one is a nonequilibrium ensemble of grow-
ing networks.

PRL 106, 048701 (2011) P HY S I CA L R EV I EW LE T T E R S
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Á
ng

el
es

S
er
ra
no

,1
D
m
it
ri
K
ri
ou

ko
v,
2
an
d
M
ar
iá
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We provide a simple proof that graphs in a general class of self-similar networks have zero percolation

threshold. The considered self-similar networks include random scale-free graphs with given expected

node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing

scale-free networks, and many real networks. The proof and the derivation of the giant component size do

not require the assumption that networks are treelike. Our results rely only on the observation that self-

similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in

the hierarchy. We conjecture that this property is pivotal for percolation in networks.
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Percolation is a fundamental phenomenon in nature.
Recent developments in percolation theory [1] open new
perspectives in many areas of statistical mechanics and
quantum field theory [2]. In statistical mechanics of com-
plex networks, the percolation properties of a network
determine its robustness with respect to structural damage,
and dictate how emergent phenomena depend on the net-
work structure [3]. Large clusters of connected nodes
emerge above a critical value of some network parameter,
e.g., the average degree; below the threshold, networks
decompose into a myriad of small components. This
percolation threshold can be zero, meaning that networks
are always in the percolated phase. A classic example
is random scale-free networks with the power-law degree
distribution exponent ! lying between 2 and 3 [4,5].
The value of the percolation threshold, the size of the
giant component and the specifics of the percolation tran-
sition strongly depend on fine details of the network
topology [3]. This dependency hinders attempts to
define percolation universality classes, even though
some networks show some degree of percolation universal-
ity [6].

This problem is aggravated by difficulties in the analytic
treatment of percolation properties for networks with
strong clustering. A majority of the obtained analytic
results use the generating function formalism based on
the assumption that networks are locally treelike [7].
This assumption allows one to employ convenient tools
from the theory of random branching processes. The
assumed absence of loops implies, in particular, that clus-
tering is zero in the thermodynamic limit. This zero-
clustering approximation is valid for weakly clustered
networks where triangles do not overlap, but it is invalid
for networks with strong clustering and overlapping
triangles observed in many real systems [8]. Noticeably,
the exact results derived for some network models with

clustering can be mapped to treelike zero-clustering graphs
after appropriate transformations [9].
In this Letter, we provide a remarkably simple rigorous

proof for the absence of a percolation threshold in a general
class of self-similar networks. The proof does not rely on
the treelike assumption or on generating functions. It does
not depend on whether a network is weakly or strongly
clustered, and it applies equally well to equilibrium or
nonequilibrium networks. The proof relies only on network
self-similarity, defined as statistical invariance of a hier-
archy of nested subgraphs with respect to a network renor-
malization procedure. The percolation threshold is zero as
soon as the average degree in subgraphs is a growing
function of their depth in the hierarchy—a property char-
acterizing many real networks. We also calculate analyti-
cally the size of the giant component, supporting all the
results by large-scale numerical simulations.
Let Gðf"gÞ be an ensemble of sparse graphs in the

thermodynamic limit, where f"g is the set of model pa-
rameters. In the case of classical random graphs, for ex-
ample, set f"g is just the average degree hki. Consider a
transformation rule T that for each graph G 2 Gðf"gÞ
selects one ofG’s subgraphs. Denote the ensemble of these
subgraphs by GTðf"gÞ. The ensemble Gðf"gÞ is called self-
similar with respect to the transformation rule T if the
transformed ensemble is the same as the original one
except for some transformation of the model parameters,

G Tðf"gÞ ¼ Gðf"TgÞ: (1)

In what follows we describe three general types of graphs
to which this definition applies. The first two types are
equilibrium random scale-free graph ensembles belonging
to a general class of network models with hidden variables
[10]. The third one is a nonequilibrium ensemble of grow-
ing networks.
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We provide a simple proof that graphs in a general class of self-similar networks have zero percolation

threshold. The considered self-similar networks include random scale-free graphs with given expected

node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing

scale-free networks, and many real networks. The proof and the derivation of the giant component size do

not require the assumption that networks are treelike. Our results rely only on the observation that self-

similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in

the hierarchy. We conjecture that this property is pivotal for percolation in networks.
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Percolation is a fundamental phenomenon in nature.
Recent developments in percolation theory [1] open new
perspectives in many areas of statistical mechanics and
quantum field theory [2]. In statistical mechanics of com-
plex networks, the percolation properties of a network
determine its robustness with respect to structural damage,
and dictate how emergent phenomena depend on the net-
work structure [3]. Large clusters of connected nodes
emerge above a critical value of some network parameter,
e.g., the average degree; below the threshold, networks
decompose into a myriad of small components. This
percolation threshold can be zero, meaning that networks
are always in the percolated phase. A classic example
is random scale-free networks with the power-law degree
distribution exponent ! lying between 2 and 3 [4,5].
The value of the percolation threshold, the size of the
giant component and the specifics of the percolation tran-
sition strongly depend on fine details of the network
topology [3]. This dependency hinders attempts to
define percolation universality classes, even though
some networks show some degree of percolation universal-
ity [6].

This problem is aggravated by difficulties in the analytic
treatment of percolation properties for networks with
strong clustering. A majority of the obtained analytic
results use the generating function formalism based on
the assumption that networks are locally treelike [7].
This assumption allows one to employ convenient tools
from the theory of random branching processes. The
assumed absence of loops implies, in particular, that clus-
tering is zero in the thermodynamic limit. This zero-
clustering approximation is valid for weakly clustered
networks where triangles do not overlap, but it is invalid
for networks with strong clustering and overlapping
triangles observed in many real systems [8]. Noticeably,
the exact results derived for some network models with

clustering can be mapped to treelike zero-clustering graphs
after appropriate transformations [9].
In this Letter, we provide a remarkably simple rigorous

proof for the absence of a percolation threshold in a general
class of self-similar networks. The proof does not rely on
the treelike assumption or on generating functions. It does
not depend on whether a network is weakly or strongly
clustered, and it applies equally well to equilibrium or
nonequilibrium networks. The proof relies only on network
self-similarity, defined as statistical invariance of a hier-
archy of nested subgraphs with respect to a network renor-
malization procedure. The percolation threshold is zero as
soon as the average degree in subgraphs is a growing
function of their depth in the hierarchy—a property char-
acterizing many real networks. We also calculate analyti-
cally the size of the giant component, supporting all the
results by large-scale numerical simulations.
Let Gðf"gÞ be an ensemble of sparse graphs in the

thermodynamic limit, where f"g is the set of model pa-
rameters. In the case of classical random graphs, for ex-
ample, set f"g is just the average degree hki. Consider a
transformation rule T that for each graph G 2 Gðf"gÞ
selects one ofG’s subgraphs. Denote the ensemble of these
subgraphs by GTðf"gÞ. The ensemble Gðf"gÞ is called self-
similar with respect to the transformation rule T if the
transformed ensemble is the same as the original one
except for some transformation of the model parameters,

G Tðf"gÞ ¼ Gðf"TgÞ: (1)

In what follows we describe three general types of graphs
to which this definition applies. The first two types are
equilibrium random scale-free graph ensembles belonging
to a general class of network models with hidden variables
[10]. The third one is a nonequilibrium ensemble of grow-
ing networks.
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Self-similar transformations: Russian dolls

The ensemble is self-similar with 
respect to T when any subgraph 
belongs to the original ensemble 
but with transformed parameters
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We provide a simple proof that graphs in a general class of self-similar networks have zero percolation

threshold. The considered self-similar networks include random scale-free graphs with given expected

node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing

scale-free networks, and many real networks. The proof and the derivation of the giant component size do

not require the assumption that networks are treelike. Our results rely only on the observation that self-

similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in

the hierarchy. We conjecture that this property is pivotal for percolation in networks.
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Percolation is a fundamental phenomenon in nature.
Recent developments in percolation theory [1] open new
perspectives in many areas of statistical mechanics and
quantum field theory [2]. In statistical mechanics of com-
plex networks, the percolation properties of a network
determine its robustness with respect to structural damage,
and dictate how emergent phenomena depend on the net-
work structure [3]. Large clusters of connected nodes
emerge above a critical value of some network parameter,
e.g., the average degree; below the threshold, networks
decompose into a myriad of small components. This
percolation threshold can be zero, meaning that networks
are always in the percolated phase. A classic example
is random scale-free networks with the power-law degree
distribution exponent ! lying between 2 and 3 [4,5].
The value of the percolation threshold, the size of the
giant component and the specifics of the percolation tran-
sition strongly depend on fine details of the network
topology [3]. This dependency hinders attempts to
define percolation universality classes, even though
some networks show some degree of percolation universal-
ity [6].

This problem is aggravated by difficulties in the analytic
treatment of percolation properties for networks with
strong clustering. A majority of the obtained analytic
results use the generating function formalism based on
the assumption that networks are locally treelike [7].
This assumption allows one to employ convenient tools
from the theory of random branching processes. The
assumed absence of loops implies, in particular, that clus-
tering is zero in the thermodynamic limit. This zero-
clustering approximation is valid for weakly clustered
networks where triangles do not overlap, but it is invalid
for networks with strong clustering and overlapping
triangles observed in many real systems [8]. Noticeably,
the exact results derived for some network models with

clustering can be mapped to treelike zero-clustering graphs
after appropriate transformations [9].
In this Letter, we provide a remarkably simple rigorous

proof for the absence of a percolation threshold in a general
class of self-similar networks. The proof does not rely on
the treelike assumption or on generating functions. It does
not depend on whether a network is weakly or strongly
clustered, and it applies equally well to equilibrium or
nonequilibrium networks. The proof relies only on network
self-similarity, defined as statistical invariance of a hier-
archy of nested subgraphs with respect to a network renor-
malization procedure. The percolation threshold is zero as
soon as the average degree in subgraphs is a growing
function of their depth in the hierarchy—a property char-
acterizing many real networks. We also calculate analyti-
cally the size of the giant component, supporting all the
results by large-scale numerical simulations.
Let Gðf"gÞ be an ensemble of sparse graphs in the

thermodynamic limit, where f"g is the set of model pa-
rameters. In the case of classical random graphs, for ex-
ample, set f"g is just the average degree hki. Consider a
transformation rule T that for each graph G 2 Gðf"gÞ
selects one ofG’s subgraphs. Denote the ensemble of these
subgraphs by GTðf"gÞ. The ensemble Gðf"gÞ is called self-
similar with respect to the transformation rule T if the
transformed ensemble is the same as the original one
except for some transformation of the model parameters,

G Tðf"gÞ ¼ Gðf"TgÞ: (1)

In what follows we describe three general types of graphs
to which this definition applies. The first two types are
equilibrium random scale-free graph ensembles belonging
to a general class of network models with hidden variables
[10]. The third one is a nonequilibrium ensemble of grow-
ing networks.
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similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in

the hierarchy. We conjecture that this property is pivotal for percolation in networks.
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Percolation is a fundamental phenomenon in nature.
Recent developments in percolation theory [1] open new
perspectives in many areas of statistical mechanics and
quantum field theory [2]. In statistical mechanics of com-
plex networks, the percolation properties of a network
determine its robustness with respect to structural damage,
and dictate how emergent phenomena depend on the net-
work structure [3]. Large clusters of connected nodes
emerge above a critical value of some network parameter,
e.g., the average degree; below the threshold, networks
decompose into a myriad of small components. This
percolation threshold can be zero, meaning that networks
are always in the percolated phase. A classic example
is random scale-free networks with the power-law degree
distribution exponent ! lying between 2 and 3 [4,5].
The value of the percolation threshold, the size of the
giant component and the specifics of the percolation tran-
sition strongly depend on fine details of the network
topology [3]. This dependency hinders attempts to
define percolation universality classes, even though
some networks show some degree of percolation universal-
ity [6].

This problem is aggravated by difficulties in the analytic
treatment of percolation properties for networks with
strong clustering. A majority of the obtained analytic
results use the generating function formalism based on
the assumption that networks are locally treelike [7].
This assumption allows one to employ convenient tools
from the theory of random branching processes. The
assumed absence of loops implies, in particular, that clus-
tering is zero in the thermodynamic limit. This zero-
clustering approximation is valid for weakly clustered
networks where triangles do not overlap, but it is invalid
for networks with strong clustering and overlapping
triangles observed in many real systems [8]. Noticeably,
the exact results derived for some network models with

clustering can be mapped to treelike zero-clustering graphs
after appropriate transformations [9].
In this Letter, we provide a remarkably simple rigorous

proof for the absence of a percolation threshold in a general
class of self-similar networks. The proof does not rely on
the treelike assumption or on generating functions. It does
not depend on whether a network is weakly or strongly
clustered, and it applies equally well to equilibrium or
nonequilibrium networks. The proof relies only on network
self-similarity, defined as statistical invariance of a hier-
archy of nested subgraphs with respect to a network renor-
malization procedure. The percolation threshold is zero as
soon as the average degree in subgraphs is a growing
function of their depth in the hierarchy—a property char-
acterizing many real networks. We also calculate analyti-
cally the size of the giant component, supporting all the
results by large-scale numerical simulations.
Let Gðf"gÞ be an ensemble of sparse graphs in the

thermodynamic limit, where f"g is the set of model pa-
rameters. In the case of classical random graphs, for ex-
ample, set f"g is just the average degree hki. Consider a
transformation rule T that for each graph G 2 Gðf"gÞ
selects one ofG’s subgraphs. Denote the ensemble of these
subgraphs by GTðf"gÞ. The ensemble Gðf"gÞ is called self-
similar with respect to the transformation rule T if the
transformed ensemble is the same as the original one
except for some transformation of the model parameters,

G Tðf"gÞ ¼ Gðf"TgÞ: (1)

In what follows we describe three general types of graphs
to which this definition applies. The first two types are
equilibrium random scale-free graph ensembles belonging
to a general class of network models with hidden variables
[10]. The third one is a nonequilibrium ensemble of grow-
ing networks.
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networks where triangles do not overlap, but it is invalid
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the exact results derived for some network models with
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proof for the absence of a percolation threshold in a general
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the treelike assumption or on generating functions. It does
not depend on whether a network is weakly or strongly
clustered, and it applies equally well to equilibrium or
nonequilibrium networks. The proof relies only on network
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malization procedure. The percolation threshold is zero as
soon as the average degree in subgraphs is a growing
function of their depth in the hierarchy—a property char-
acterizing many real networks. We also calculate analyti-
cally the size of the giant component, supporting all the
results by large-scale numerical simulations.
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selects one ofG’s subgraphs. Denote the ensemble of these
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transformed ensemble is the same as the original one
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G Tðf"gÞ ¼ Gðf"TgÞ: (1)
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M. Ángeles Serrano,1 Dmitri Krioukov,2 and Marián Boguñá3
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We provide a simple proof that graphs in a general class of self-similar networks have zero percolation

threshold. The considered self-similar networks include random scale-free graphs with given expected

node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing

scale-free networks, and many real networks. The proof and the derivation of the giant component size do

not require the assumption that networks are treelike. Our results rely only on the observation that self-

similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in

the hierarchy. We conjecture that this property is pivotal for percolation in networks.
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Percolation is a fundamental phenomenon in nature.
Recent developments in percolation theory [1] open new
perspectives in many areas of statistical mechanics and
quantum field theory [2]. In statistical mechanics of com-
plex networks, the percolation properties of a network
determine its robustness with respect to structural damage,
and dictate how emergent phenomena depend on the net-
work structure [3]. Large clusters of connected nodes
emerge above a critical value of some network parameter,
e.g., the average degree; below the threshold, networks
decompose into a myriad of small components. This
percolation threshold can be zero, meaning that networks
are always in the percolated phase. A classic example
is random scale-free networks with the power-law degree
distribution exponent ! lying between 2 and 3 [4,5].
The value of the percolation threshold, the size of the
giant component and the specifics of the percolation tran-
sition strongly depend on fine details of the network
topology [3]. This dependency hinders attempts to
define percolation universality classes, even though
some networks show some degree of percolation universal-
ity [6].

This problem is aggravated by difficulties in the analytic
treatment of percolation properties for networks with
strong clustering. A majority of the obtained analytic
results use the generating function formalism based on
the assumption that networks are locally treelike [7].
This assumption allows one to employ convenient tools
from the theory of random branching processes. The
assumed absence of loops implies, in particular, that clus-
tering is zero in the thermodynamic limit. This zero-
clustering approximation is valid for weakly clustered
networks where triangles do not overlap, but it is invalid
for networks with strong clustering and overlapping
triangles observed in many real systems [8]. Noticeably,
the exact results derived for some network models with

clustering can be mapped to treelike zero-clustering graphs
after appropriate transformations [9].
In this Letter, we provide a remarkably simple rigorous

proof for the absence of a percolation threshold in a general
class of self-similar networks. The proof does not rely on
the treelike assumption or on generating functions. It does
not depend on whether a network is weakly or strongly
clustered, and it applies equally well to equilibrium or
nonequilibrium networks. The proof relies only on network
self-similarity, defined as statistical invariance of a hier-
archy of nested subgraphs with respect to a network renor-
malization procedure. The percolation threshold is zero as
soon as the average degree in subgraphs is a growing
function of their depth in the hierarchy—a property char-
acterizing many real networks. We also calculate analyti-
cally the size of the giant component, supporting all the
results by large-scale numerical simulations.
Let Gðf"gÞ be an ensemble of sparse graphs in the

thermodynamic limit, where f"g is the set of model pa-
rameters. In the case of classical random graphs, for ex-
ample, set f"g is just the average degree hki. Consider a
transformation rule T that for each graph G 2 Gðf"gÞ
selects one ofG’s subgraphs. Denote the ensemble of these
subgraphs by GTðf"gÞ. The ensemble Gðf"gÞ is called self-
similar with respect to the transformation rule T if the
transformed ensemble is the same as the original one
except for some transformation of the model parameters,

G Tðf"gÞ ¼ Gðf"TgÞ: (1)

In what follows we describe three general types of graphs
to which this definition applies. The first two types are
equilibrium random scale-free graph ensembles belonging
to a general class of network models with hidden variables
[10]. The third one is a nonequilibrium ensemble of grow-
ing networks.
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MAPCON 2012
Models: type I (The Configuration Model)

1) Assign each node a hidden variable     distributed as κ

1

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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1) Assign each node a hidden variable     distributed as κ

1

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Models: type I (The Configuration Model)

1) Assign each node a hidden variable     distributed as κ

1

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1
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2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
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where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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MAPCON 2012
Models: type I (The Configuration Model)

1) Assign each node a hidden variable     distributed as κ

1

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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canonical version of the 
configuration model.     
is the expected degree 
of the node

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0
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;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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)−α
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connection probability 
between a pair of nodes

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2
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"
2
; $II ¼
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2%I!2

0
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;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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We provide a simple proof that graphs in a general class of self-similar networks have zero percolation

threshold. The considered self-similar networks include random scale-free graphs with given expected

node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing

scale-free networks, and many real networks. The proof and the derivation of the giant component size do

not require the assumption that networks are treelike. Our results rely only on the observation that self-

similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in

the hierarchy. We conjecture that this property is pivotal for percolation in networks.
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Percolation is a fundamental phenomenon in nature.
Recent developments in percolation theory [1] open new
perspectives in many areas of statistical mechanics and
quantum field theory [2]. In statistical mechanics of com-
plex networks, the percolation properties of a network
determine its robustness with respect to structural damage,
and dictate how emergent phenomena depend on the net-
work structure [3]. Large clusters of connected nodes
emerge above a critical value of some network parameter,
e.g., the average degree; below the threshold, networks
decompose into a myriad of small components. This
percolation threshold can be zero, meaning that networks
are always in the percolated phase. A classic example
is random scale-free networks with the power-law degree
distribution exponent ! lying between 2 and 3 [4,5].
The value of the percolation threshold, the size of the
giant component and the specifics of the percolation tran-
sition strongly depend on fine details of the network
topology [3]. This dependency hinders attempts to
define percolation universality classes, even though
some networks show some degree of percolation universal-
ity [6].

This problem is aggravated by difficulties in the analytic
treatment of percolation properties for networks with
strong clustering. A majority of the obtained analytic
results use the generating function formalism based on
the assumption that networks are locally treelike [7].
This assumption allows one to employ convenient tools
from the theory of random branching processes. The
assumed absence of loops implies, in particular, that clus-
tering is zero in the thermodynamic limit. This zero-
clustering approximation is valid for weakly clustered
networks where triangles do not overlap, but it is invalid
for networks with strong clustering and overlapping
triangles observed in many real systems [8]. Noticeably,
the exact results derived for some network models with

clustering can be mapped to treelike zero-clustering graphs
after appropriate transformations [9].
In this Letter, we provide a remarkably simple rigorous

proof for the absence of a percolation threshold in a general
class of self-similar networks. The proof does not rely on
the treelike assumption or on generating functions. It does
not depend on whether a network is weakly or strongly
clustered, and it applies equally well to equilibrium or
nonequilibrium networks. The proof relies only on network
self-similarity, defined as statistical invariance of a hier-
archy of nested subgraphs with respect to a network renor-
malization procedure. The percolation threshold is zero as
soon as the average degree in subgraphs is a growing
function of their depth in the hierarchy—a property char-
acterizing many real networks. We also calculate analyti-
cally the size of the giant component, supporting all the
results by large-scale numerical simulations.
Let Gðf"gÞ be an ensemble of sparse graphs in the

thermodynamic limit, where f"g is the set of model pa-
rameters. In the case of classical random graphs, for ex-
ample, set f"g is just the average degree hki. Consider a
transformation rule T that for each graph G 2 Gðf"gÞ
selects one ofG’s subgraphs. Denote the ensemble of these
subgraphs by GTðf"gÞ. The ensemble Gðf"gÞ is called self-
similar with respect to the transformation rule T if the
transformed ensemble is the same as the original one
except for some transformation of the model parameters,

G Tðf"gÞ ¼ Gðf"TgÞ: (1)

In what follows we describe three general types of graphs
to which this definition applies. The first two types are
equilibrium random scale-free graph ensembles belonging
to a general class of network models with hidden variables
[10]. The third one is a nonequilibrium ensemble of grow-
ing networks.
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and dictate how emergent phenomena depend on the net-
work structure [3]. Large clusters of connected nodes
emerge above a critical value of some network parameter,
e.g., the average degree; below the threshold, networks
decompose into a myriad of small components. This
percolation threshold can be zero, meaning that networks
are always in the percolated phase. A classic example
is random scale-free networks with the power-law degree
distribution exponent ! lying between 2 and 3 [4,5].
The value of the percolation threshold, the size of the
giant component and the specifics of the percolation tran-
sition strongly depend on fine details of the network
topology [3]. This dependency hinders attempts to
define percolation universality classes, even though
some networks show some degree of percolation universal-
ity [6].

This problem is aggravated by difficulties in the analytic
treatment of percolation properties for networks with
strong clustering. A majority of the obtained analytic
results use the generating function formalism based on
the assumption that networks are locally treelike [7].
This assumption allows one to employ convenient tools
from the theory of random branching processes. The
assumed absence of loops implies, in particular, that clus-
tering is zero in the thermodynamic limit. This zero-
clustering approximation is valid for weakly clustered
networks where triangles do not overlap, but it is invalid
for networks with strong clustering and overlapping
triangles observed in many real systems [8]. Noticeably,
the exact results derived for some network models with

clustering can be mapped to treelike zero-clustering graphs
after appropriate transformations [9].
In this Letter, we provide a remarkably simple rigorous

proof for the absence of a percolation threshold in a general
class of self-similar networks. The proof does not rely on
the treelike assumption or on generating functions. It does
not depend on whether a network is weakly or strongly
clustered, and it applies equally well to equilibrium or
nonequilibrium networks. The proof relies only on network
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archy of nested subgraphs with respect to a network renor-
malization procedure. The percolation threshold is zero as
soon as the average degree in subgraphs is a growing
function of their depth in the hierarchy—a property char-
acterizing many real networks. We also calculate analyti-
cally the size of the giant component, supporting all the
results by large-scale numerical simulations.
Let Gðf"gÞ be an ensemble of sparse graphs in the

thermodynamic limit, where f"g is the set of model pa-
rameters. In the case of classical random graphs, for ex-
ample, set f"g is just the average degree hki. Consider a
transformation rule T that for each graph G 2 Gðf"gÞ
selects one ofG’s subgraphs. Denote the ensemble of these
subgraphs by GTðf"gÞ. The ensemble Gðf"gÞ is called self-
similar with respect to the transformation rule T if the
transformed ensemble is the same as the original one
except for some transformation of the model parameters,

G Tðf"gÞ ¼ Gðf"TgÞ: (1)

In what follows we describe three general types of graphs
to which this definition applies. The first two types are
equilibrium random scale-free graph ensembles belonging
to a general class of network models with hidden variables
[10]. The third one is a nonequilibrium ensemble of grow-
ing networks.
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M. Ángeles Serrano,1 Dmitri Krioukov,2 and Marián Boguñá3
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M. Ángeles Serrano,1 Dmitri Krioukov,2 and Marián Boguñá3
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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self-similarity of type II nets

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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model: type II

r(κ, θ;κ�, θ�) = h
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Distribution of hidden variables

model: type II after T

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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self-similarity of type II nets

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Distribution of hidden variables

model: type II after T

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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self-similarity of type II nets

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Distribution of hidden variables

model: type II after T

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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self-similarity of type II nets

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Distribution of hidden variables

model: type II after T

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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self-similarity of type II nets

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Distribution of hidden variables

model: type II after T

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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self-similarity of type II nets

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Distribution of hidden variables

model: type II after T

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
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where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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self-similarity of type II nets

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2
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"
2
; $II ¼

hki
2%I!2

0

!
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;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0
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(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
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where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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confirming the absence of the percolation threshold in the
considered ensembles. We first focus on the equilibrium
networks of types I and II, in which case bond percolation
is equivalent to replacing the connection probability rij
with prij. Given a node i and a set of other nodes !, the
probability that i is connected to at least one node in ! is
one minus the probability that i is not connected to any
node in !, i.e., 1! exp½Pj2! lnð1! prijÞ%. Node i be-
longs to the giant component if and only if it is connected
to the giant component of the graph without i. If ~gjðpÞ
denotes the probability that this i-deprived component
contains some other node j, then

giðpÞ ¼ 1! exp
!X

j!i

~gjðpÞ lnð1! prijÞ
"
: (6)

Since in small-world networks a single node cannot sig-
nificantly affect the percolation properties of the rest of the
graph, we identify ~gjðpÞ ¼ gjðpÞ, transforming Eq. (6)
into a self-consistent equation for giðpÞ. We note that
Eq. (6) does not use the treelike assumption. This equation
is thus valid for the type II graphs with strong clustering as
well as for zero-clustering type I graphs. It leads in the
thermodynamic limit to the following expression for the
probability gð!;pÞ that a node with expected degree !
belongs to the giant component:

gð!;pÞ ¼ 1! e!!c ðpÞ; where c ðpÞ satisfies (7)

½c ðpÞ%3!"

aðpÞ ¼ ½c ðpÞ%2!"

"! 2
! "½2! "; c ðpÞ%; with (8)

aIðpÞ ¼
ð"! 2Þ2
"! 1

hkip; (9)

aIIðpÞ ¼ ! ð"! 2Þ2
"! 1

hki
I

Z 1

0
ln½1! phðxÞ%dx (10)

for types I and II, respectively. The size of the giant
component is then gðpÞ¼R

#ð!Þgð!;pÞd!¼1!ð"!1Þ
E"½c ðpÞ%, where E" is the extended exponential integral.
In diluted networks with p ' 1, aIðpÞ ( aIIðpÞ, and the
giant component size for both classes becomes

gðpÞ )
!
! ð"! 2Þ"!1

ð"! 1Þ"!2"ð2! "Þ hkip
"
1=ð3!"Þ

: (11)

The value of the critical exponent $ in gðpÞ ) p$ is thus
$ ¼ 1=ð3! "Þ, agreeing with [15]. We emphasize that in
our case, this result is obtained without using the treelike
assumption. Therefore, quite surprisingly, this exponent
characterizes equilibrium scale-free networks with arbi-
trary clustering and degree correlations.
In nonequilibrium networks of type III, we can compute

an upper bound for $. Self-similarity of these networks,
coupled with the observation that any node belonging to
the giant component of a self-similar subgraph of a type III
graph belongs also to the giant component of the graph
itself, leads to inequality

gðpÞ * NT

N
g
#!

N

NT

"
%
p
$
: (12)

By choosing NT=N ¼ p1=%, we obtain gðpÞ * p1=%gð1Þ.
Therefore the exponent $ satisfies $ + 1=% ¼ "! 1. We
see that growth reduces significantly this exponent, com-
pared to the equilibrium case with the same ".
We next check our analytic results against large-scale

simulations. We generate type I and II networks using the
connection probabilities in Eq. (2) and hðxÞ ¼ e!x, respec-
tively. We do not allow !’s above the natural cutoff !c ¼
N1=ð"!1Þ. For all the three graph types, for each graph size
N ranging from 103 to 105, and for each value of the bond
occupation probability p, we generate 103 graphs, and for
each graph we perform bond percolation 104 times. For
each percolation we measure the size S1 of the largest
connected component in the graph using the fast algorithm
of Newman and Ziff [16], and calculate the average hS1i of
the largest component size and its fluctuations, i.e., sus-

ceptibility & ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðS1 ! hS1iÞ2i

p
, for each combination of

p, N, and graph type.
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FIG. 1 (color online). Ratio of the subgraph average degree
hkiT to the average degree hki in the whole graph as a function of
the inverse relative subgraph size N=NT for few real networks.
The subgraphs are obtained by removing nodes with degrees
below thresholds kT from the original network. To insulate
against finite-size effects; the data are shown only for subgraphs
of size NT=N > 0:1. Actors, actor collaborations from the
Internet Movie Database; Airports, USA airport network;
English, web of semantic associations between words in
English; Internet, topology of the Internet at the Autonomous
Systems level; Proteins, protein interaction network of
Saccharomyces cerevisiae; and Trust, mutual trust relationships
among individuals extracted from the Pretty Good Privacy data.
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2:5, hki ¼ 3ð"! 1Þ=ð"! 2Þ, hðxÞ ¼ e!x, and average clustering
coefficient #c ¼ 0:5 (measured over degrees k > 1).

PRL 106, 048701 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 JANUARY 2011

048701-3

�k� → �k�T = �k�(κT /κ0)3−γ

1

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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different values of threshold kT , all these characteristics
closely follow the same master curves describing the to-
pological structure of the whole subgraph hierarchy. We
next randomized the observed topologies preserving the
degree distribution as in [10], and found that their degree
distributions and degree-degree correlations are still self-
similar, but clustering is not.

We provide examples of these empirical observations in
Fig. 2, where we show the degree-dependent clustering
coefficient of the renormalized graphs G!kT" with different
kT’s for the real and randomized topologies of the Border
Gateway Protocol (BGP) map of the Internet at the
Autonomous System level [11] and of the Pretty Good
Privacy (PGP) social web of trust [12]. Both the BGP
and the PGP are scale-free networks with exponents
!BGP # 2:2$ 0:2 and !PGP # 2:5$ 0:2. For brevity, we
omit plots showing self-similarity of degree distributions
and degree-degree correlations. Figure 2 shows that even
though the internal average degree hki!kT"i grows signifi-
cantly for all networks, the average clustering coefficient
of G!kT" as a function of kT , !c!kT", is nearly constant for
the subgraphs of the real topologies, but it grows for their
randomized counterparts. We also experimented with air-
port networks [13] and found that they exhibit qualitatively
the same results as the Internet (BGP) and the social (PGP)
networks. The BGP and PGP networks are more interesting

and challenging for our purposes since, as opposed to
airport networks, they appear to be not explicitly em-
bedded in any observable physical space [14].

The high levels of clustering observed in real networks
and their self-similarity under the degree-thresholding re-
normalization find a plausible explanation in the assump-
tion that some metric structures underlay the observed
network topologies. Indeed, under this assumption, clus-
tering becomes a natural consequence of the triangle in-
equality in the metric space underneath. The fact that the
randomized networks are not self-similar [cf. Figs. 2(b)
and 2(d)] also supports this observation. The applied
degree-preserving randomization is a process that involves
pairs of nodes, whereas the triangle inequality concerns
node triplets. Therefore, this randomization process cannot
fully preserve the network properties defined by the tri-
angle inequality.

In the rest of the Letter, we provide further evidence that
this metric space explanation is indeed plausible. We do so
by introducing a class of network models designed with the
following three objectives: we want all nodes to exist in a
metric space underlying the network topology; we want to
control the degree distribution and clustering, so that we
can generate scale-free graphs with strong clustering; and
we want these graphs to be small-worlds. We then find that
the networks generated by our model reproduce all the self-
similar effects that we have empirically observed in real
networks. We emphasize that although there are models of
scale-free networks embedded in Euclidean lattices [15],
none can simultaneously reproduce all the effects dis-
cussed above.

To define our model, we use the hidden variables formal-
ism [7], taking as hidden variables nodes’ coordinates in a
metric space. Each two nodes are located at a certain
hidden metric distance d, and connected with a probability
r, which relates the network topology to the underlying
metric space. This probability depends on the metric dis-
tance d as r!d=dc", where dc is the characteristic distance
scale, i.e., a parameter that calibrates whether a given
distance is short or long. Function r must be a positive
integrable function of d 2 %0;1". Consequently, nodes
that are close to each other in the metric space are more
likely to be connected in the graph.

To engineer full control over the degree distribution, we
link the characteristic distance scale dc to the topology of
the network. We assume that dc is not a constant but
depends on some topological properties of the nodes.
Specifically, we assign an additional hidden random vari-
able " to each node, which corresponds to its expected
degree. For simplicity, let our hidden metric space be a
homogeneous and isotropic D-dimensional space. Then
the choice [16]

 dc!";"0" / !""0"1=D (1)

guarantees that the average degree of nodes with variable "
is !k!"" # ". Therefore, the distribution #!"" of this vari-
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FIG. 2 (color online). (a)–(d) Degree-dependent clustering
coefficient as a function of the rescaled internal degree for the
Internet BGP map, the PGP web of trust, and their randomized
versions. (e) Average clustering coefficient as a function of the
threshold degree kT for renormalized real networks and their
randomized counterparts. (f) Internal average degree as a func-
tion of kT for the same networks.
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different values of threshold kT , all these characteristics
closely follow the same master curves describing the to-
pological structure of the whole subgraph hierarchy. We
next randomized the observed topologies preserving the
degree distribution as in [10], and found that their degree
distributions and degree-degree correlations are still self-
similar, but clustering is not.

We provide examples of these empirical observations in
Fig. 2, where we show the degree-dependent clustering
coefficient of the renormalized graphs G!kT" with different
kT’s for the real and randomized topologies of the Border
Gateway Protocol (BGP) map of the Internet at the
Autonomous System level [11] and of the Pretty Good
Privacy (PGP) social web of trust [12]. Both the BGP
and the PGP are scale-free networks with exponents
!BGP # 2:2$ 0:2 and !PGP # 2:5$ 0:2. For brevity, we
omit plots showing self-similarity of degree distributions
and degree-degree correlations. Figure 2 shows that even
though the internal average degree hki!kT"i grows signifi-
cantly for all networks, the average clustering coefficient
of G!kT" as a function of kT , !c!kT", is nearly constant for
the subgraphs of the real topologies, but it grows for their
randomized counterparts. We also experimented with air-
port networks [13] and found that they exhibit qualitatively
the same results as the Internet (BGP) and the social (PGP)
networks. The BGP and PGP networks are more interesting

and challenging for our purposes since, as opposed to
airport networks, they appear to be not explicitly em-
bedded in any observable physical space [14].

The high levels of clustering observed in real networks
and their self-similarity under the degree-thresholding re-
normalization find a plausible explanation in the assump-
tion that some metric structures underlay the observed
network topologies. Indeed, under this assumption, clus-
tering becomes a natural consequence of the triangle in-
equality in the metric space underneath. The fact that the
randomized networks are not self-similar [cf. Figs. 2(b)
and 2(d)] also supports this observation. The applied
degree-preserving randomization is a process that involves
pairs of nodes, whereas the triangle inequality concerns
node triplets. Therefore, this randomization process cannot
fully preserve the network properties defined by the tri-
angle inequality.

In the rest of the Letter, we provide further evidence that
this metric space explanation is indeed plausible. We do so
by introducing a class of network models designed with the
following three objectives: we want all nodes to exist in a
metric space underlying the network topology; we want to
control the degree distribution and clustering, so that we
can generate scale-free graphs with strong clustering; and
we want these graphs to be small-worlds. We then find that
the networks generated by our model reproduce all the self-
similar effects that we have empirically observed in real
networks. We emphasize that although there are models of
scale-free networks embedded in Euclidean lattices [15],
none can simultaneously reproduce all the effects dis-
cussed above.

To define our model, we use the hidden variables formal-
ism [7], taking as hidden variables nodes’ coordinates in a
metric space. Each two nodes are located at a certain
hidden metric distance d, and connected with a probability
r, which relates the network topology to the underlying
metric space. This probability depends on the metric dis-
tance d as r!d=dc", where dc is the characteristic distance
scale, i.e., a parameter that calibrates whether a given
distance is short or long. Function r must be a positive
integrable function of d 2 %0;1". Consequently, nodes
that are close to each other in the metric space are more
likely to be connected in the graph.

To engineer full control over the degree distribution, we
link the characteristic distance scale dc to the topology of
the network. We assume that dc is not a constant but
depends on some topological properties of the nodes.
Specifically, we assign an additional hidden random vari-
able " to each node, which corresponds to its expected
degree. For simplicity, let our hidden metric space be a
homogeneous and isotropic D-dimensional space. Then
the choice [16]

 dc!";"0" / !""0"1=D (1)

guarantees that the average degree of nodes with variable "
is !k!"" # ". Therefore, the distribution #!"" of this vari-
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FIG. 2 (color online). (a)–(d) Degree-dependent clustering
coefficient as a function of the rescaled internal degree for the
Internet BGP map, the PGP web of trust, and their randomized
versions. (e) Average clustering coefficient as a function of the
threshold degree kT for renormalized real networks and their
randomized counterparts. (f) Internal average degree as a func-
tion of kT for the same networks.
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ality between the ! space and k space and the scaling
relations in Eq. (6), we conclude that

 

!c!kijkT" # f!ki=k3$"
T " % ~f&ki=hki!kT"i'; (7)

where we use the symbol ‘‘#’’ to account for fluctuations
of degrees of nodes with small values of !.

In Fig. 3, we show that our simulation results match
perfectly the scaling of clustering predicted by Eq. (7). The
same figure demonstrates that the clustering-related self-
similarity properties of our modeled networks and their
randomizations are qualitatively the same as of real net-
works in Fig. 2. We emphasize that the self-similarity of
clustering observed in our model does not depend either on
the dimension of the hidden space or on the final form of r.
The only requirements are that nodes are located in a
metric space and connected under the integrable connec-
tion probability r!d=dc" with dc given by Eq. (1), and that
the degree distribution is scale free.

In summary, hidden geometries underlying the ob-
served topologies of some complex networks appear to
provide a simple and natural explanation of their degree-
renormalization self-similarity. If we take the most generic
interpretation of hidden distances as measures of either
structural or functional similarity between nodes [18,19],
and admit that more similar nodes are more likely to be
connected, then the hidden and observable forms of tran-
sitivity become clearly related. At the hidden geometry
layer, this transitivity is the transitivity of ‘‘being close’’,
while at the observed topology layer, it is the transitivity of
‘‘being connected.’’ In future work, hidden metric spaces
may find far-reaching applications such as the design of
efficient routing and searching algorithms for communica-
tion and social networks. Also worth pursuing is studying

the relationship between fractality in [4] and self-similarity
under our renormalization procedure.
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FIG. 3 (color online). (a)–(b) Scaling of the degree-dependent
clustering coefficient in a modeled network using the connection
probability given by Eq. (3) (" % 2:5, # % 5:0, hki % 6, N %
105) and its randomization for different values of kT . Average
clustering coefficient, (c), and average internal degree, (d), for
the same networks cf. Fig. 2.
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different values of threshold kT , all these characteristics
closely follow the same master curves describing the to-
pological structure of the whole subgraph hierarchy. We
next randomized the observed topologies preserving the
degree distribution as in [10], and found that their degree
distributions and degree-degree correlations are still self-
similar, but clustering is not.

We provide examples of these empirical observations in
Fig. 2, where we show the degree-dependent clustering
coefficient of the renormalized graphs G!kT" with different
kT’s for the real and randomized topologies of the Border
Gateway Protocol (BGP) map of the Internet at the
Autonomous System level [11] and of the Pretty Good
Privacy (PGP) social web of trust [12]. Both the BGP
and the PGP are scale-free networks with exponents
!BGP # 2:2$ 0:2 and !PGP # 2:5$ 0:2. For brevity, we
omit plots showing self-similarity of degree distributions
and degree-degree correlations. Figure 2 shows that even
though the internal average degree hki!kT"i grows signifi-
cantly for all networks, the average clustering coefficient
of G!kT" as a function of kT , !c!kT", is nearly constant for
the subgraphs of the real topologies, but it grows for their
randomized counterparts. We also experimented with air-
port networks [13] and found that they exhibit qualitatively
the same results as the Internet (BGP) and the social (PGP)
networks. The BGP and PGP networks are more interesting

and challenging for our purposes since, as opposed to
airport networks, they appear to be not explicitly em-
bedded in any observable physical space [14].

The high levels of clustering observed in real networks
and their self-similarity under the degree-thresholding re-
normalization find a plausible explanation in the assump-
tion that some metric structures underlay the observed
network topologies. Indeed, under this assumption, clus-
tering becomes a natural consequence of the triangle in-
equality in the metric space underneath. The fact that the
randomized networks are not self-similar [cf. Figs. 2(b)
and 2(d)] also supports this observation. The applied
degree-preserving randomization is a process that involves
pairs of nodes, whereas the triangle inequality concerns
node triplets. Therefore, this randomization process cannot
fully preserve the network properties defined by the tri-
angle inequality.

In the rest of the Letter, we provide further evidence that
this metric space explanation is indeed plausible. We do so
by introducing a class of network models designed with the
following three objectives: we want all nodes to exist in a
metric space underlying the network topology; we want to
control the degree distribution and clustering, so that we
can generate scale-free graphs with strong clustering; and
we want these graphs to be small-worlds. We then find that
the networks generated by our model reproduce all the self-
similar effects that we have empirically observed in real
networks. We emphasize that although there are models of
scale-free networks embedded in Euclidean lattices [15],
none can simultaneously reproduce all the effects dis-
cussed above.

To define our model, we use the hidden variables formal-
ism [7], taking as hidden variables nodes’ coordinates in a
metric space. Each two nodes are located at a certain
hidden metric distance d, and connected with a probability
r, which relates the network topology to the underlying
metric space. This probability depends on the metric dis-
tance d as r!d=dc", where dc is the characteristic distance
scale, i.e., a parameter that calibrates whether a given
distance is short or long. Function r must be a positive
integrable function of d 2 %0;1". Consequently, nodes
that are close to each other in the metric space are more
likely to be connected in the graph.

To engineer full control over the degree distribution, we
link the characteristic distance scale dc to the topology of
the network. We assume that dc is not a constant but
depends on some topological properties of the nodes.
Specifically, we assign an additional hidden random vari-
able " to each node, which corresponds to its expected
degree. For simplicity, let our hidden metric space be a
homogeneous and isotropic D-dimensional space. Then
the choice [16]

 dc!";"0" / !""0"1=D (1)

guarantees that the average degree of nodes with variable "
is !k!"" # ". Therefore, the distribution #!"" of this vari-
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FIG. 2 (color online). (a)–(d) Degree-dependent clustering
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threshold degree kT for renormalized real networks and their
randomized counterparts. (f) Internal average degree as a func-
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ality between the ! space and k space and the scaling
relations in Eq. (6), we conclude that

 

!c!kijkT" # f!ki=k3$"
T " % ~f&ki=hki!kT"i'; (7)

where we use the symbol ‘‘#’’ to account for fluctuations
of degrees of nodes with small values of !.

In Fig. 3, we show that our simulation results match
perfectly the scaling of clustering predicted by Eq. (7). The
same figure demonstrates that the clustering-related self-
similarity properties of our modeled networks and their
randomizations are qualitatively the same as of real net-
works in Fig. 2. We emphasize that the self-similarity of
clustering observed in our model does not depend either on
the dimension of the hidden space or on the final form of r.
The only requirements are that nodes are located in a
metric space and connected under the integrable connec-
tion probability r!d=dc" with dc given by Eq. (1), and that
the degree distribution is scale free.

In summary, hidden geometries underlying the ob-
served topologies of some complex networks appear to
provide a simple and natural explanation of their degree-
renormalization self-similarity. If we take the most generic
interpretation of hidden distances as measures of either
structural or functional similarity between nodes [18,19],
and admit that more similar nodes are more likely to be
connected, then the hidden and observable forms of tran-
sitivity become clearly related. At the hidden geometry
layer, this transitivity is the transitivity of ‘‘being close’’,
while at the observed topology layer, it is the transitivity of
‘‘being connected.’’ In future work, hidden metric spaces
may find far-reaching applications such as the design of
efficient routing and searching algorithms for communica-
tion and social networks. Also worth pursuing is studying

the relationship between fractality in [4] and self-similarity
under our renormalization procedure.
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FIG. 3 (color online). (a)–(b) Scaling of the degree-dependent
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105) and its randomization for different values of kT . Average
clustering coefficient, (c), and average internal degree, (d), for
the same networks cf. Fig. 2.
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Aplications: percolation threshold

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as
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hki
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0
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2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼
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2%I!2

0

!
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"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0
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; $II ¼
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(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2
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"
2
; $II ¼

hki
2%I!2

0

!
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;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0
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; $II ¼
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(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0
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(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Simulation results: bond percolation

Since the convergence to the thermodynamic limit in
scale-free networks is slow [17], it is difficult to accurately
measure exponent ! in simulations. Nevertheless we ob-
serve an agreement, albeit slowly converging, between the
analytical solution for gðpÞ and simulations in Fig. 2. In
Fig. 3 we also show susceptibility "ðp;NÞ for equilibrium
and growing networks. Susceptibility displays peaks
whose positions pmaxðNÞ and heights "maxðNÞ depend as
power laws on the system size, pmaxðNÞ # N$1=#%

and
"maxðNÞ # N$%=#% . Taken together, these two results con-
firm that the giant component emerges at p ¼ pmax, and
that the percolation threshold vanishes in the thermody-
namic limit N ! 1 where pmax ! 0 and "max ! 1.

In short, self-similar networks with subgraphs of grow-
ing average degree have no percolation threshold. The
proof can be generalized to any processes with phase
transitions whose critical points depend monotonously on
the average degree. Examples include, among others, the
absence of an epidemic threshold in epidemic spreading
processes, or the absence of a paramagnetic phase in the
Ising model on scale-free networks [3].

The identification of percolation universality classes for
general random networks is a notoriously difficult

problem—details tend to prevail. Nevertheless, the results
presented here lead us to conjecture that self-similar net-
works can be split into three general percolation universal-
ity classes, depending only on whether the average degree
in the nested subgraph hierarchy increases, remains
constant, or decreases with the subgraph depth, and
independent of any other network properties, such as clus-
tering, correlations, equilibrium vs nonequilibrium classi-
fication, etc.
This work was supported by DGES Grant No. FIS2010-
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[3] S. N. Dorogovtsev, A.V. Goltsev, and J. F. F. Mendes, Rev.

Mod. Phys. 80, 1275 (2008).
[4] M. Molloy and B. Reed, Random Struct. Algorithms 6,

161 (1995).
[5] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin, Phys.

Rev. Lett. 85, 4626 (2000).
[6] P. L. Krapivsky and B. Derrida, Physica (Amsterdam)

340A, 714 (2004).
[7] A. Vázquez and Y. Moreno, Phys. Rev. E 67, 015101(R)

(2003); A.V. Goltsev, S. N. Dorogovtsev, and J. F. F.
Mendes, Phys. Rev. E 78, 051105 (2008).

[8] M.A. Serrano and M. Boguñá, Phys. Rev. E 74, 056114
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FIG. 3 (color online). Bond percolation simulations for equi-
librium (types I and II) and growing (type III) networks.
(a) susceptibility " as a function of bond occupation probability
p and graph size N for the same network as in Fig. 2. (b) and
(c) position pmax and height "

max of the peak of " as functions of
network size N. The straight lines are power-law fits.
(d) exponents 1=#% and $%=#% in pmaxðNÞ # N$1=#% and
"maxðNÞ # N$%=#% for the type I and II graphs. (e) and
(f) Bond percolation simulations for nonequilibrium networks
(type III) with % ¼ 1=4 ($ ¼ 5) and m0 ¼ 2. The measur-
ed values of the scaling exponents are 1=#% ¼ 0:24ð3Þ and
$%=#% ¼ 0:3ð8Þ.
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confirming the absence of the percolation threshold in the
considered ensembles. We first focus on the equilibrium
networks of types I and II, in which case bond percolation
is equivalent to replacing the connection probability rij
with prij. Given a node i and a set of other nodes !, the
probability that i is connected to at least one node in ! is
one minus the probability that i is not connected to any
node in !, i.e., 1! exp½Pj2! lnð1! prijÞ%. Node i be-
longs to the giant component if and only if it is connected
to the giant component of the graph without i. If ~gjðpÞ
denotes the probability that this i-deprived component
contains some other node j, then

giðpÞ ¼ 1! exp
!X

j!i

~gjðpÞ lnð1! prijÞ
"
: (6)

Since in small-world networks a single node cannot sig-
nificantly affect the percolation properties of the rest of the
graph, we identify ~gjðpÞ ¼ gjðpÞ, transforming Eq. (6)
into a self-consistent equation for giðpÞ. We note that
Eq. (6) does not use the treelike assumption. This equation
is thus valid for the type II graphs with strong clustering as
well as for zero-clustering type I graphs. It leads in the
thermodynamic limit to the following expression for the
probability gð!;pÞ that a node with expected degree !
belongs to the giant component:

gð!;pÞ ¼ 1! e!!c ðpÞ; where c ðpÞ satisfies (7)

½c ðpÞ%3!"

aðpÞ ¼ ½c ðpÞ%2!"

"! 2
! "½2! "; c ðpÞ%; with (8)

aIðpÞ ¼
ð"! 2Þ2
"! 1

hkip; (9)

aIIðpÞ ¼ ! ð"! 2Þ2
"! 1

hki
I

Z 1

0
ln½1! phðxÞ%dx (10)

for types I and II, respectively. The size of the giant
component is then gðpÞ¼R

#ð!Þgð!;pÞd!¼1!ð"!1Þ
E"½c ðpÞ%, where E" is the extended exponential integral.
In diluted networks with p ' 1, aIðpÞ ( aIIðpÞ, and the
giant component size for both classes becomes

gðpÞ )
!
! ð"! 2Þ"!1

ð"! 1Þ"!2"ð2! "Þ hkip
"
1=ð3!"Þ

: (11)

The value of the critical exponent $ in gðpÞ ) p$ is thus
$ ¼ 1=ð3! "Þ, agreeing with [15]. We emphasize that in
our case, this result is obtained without using the treelike
assumption. Therefore, quite surprisingly, this exponent
characterizes equilibrium scale-free networks with arbi-
trary clustering and degree correlations.
In nonequilibrium networks of type III, we can compute

an upper bound for $. Self-similarity of these networks,
coupled with the observation that any node belonging to
the giant component of a self-similar subgraph of a type III
graph belongs also to the giant component of the graph
itself, leads to inequality

gðpÞ * NT

N
g
#!

N

NT

"
%
p
$
: (12)

By choosing NT=N ¼ p1=%, we obtain gðpÞ * p1=%gð1Þ.
Therefore the exponent $ satisfies $ + 1=% ¼ "! 1. We
see that growth reduces significantly this exponent, com-
pared to the equilibrium case with the same ".
We next check our analytic results against large-scale

simulations. We generate type I and II networks using the
connection probabilities in Eq. (2) and hðxÞ ¼ e!x, respec-
tively. We do not allow !’s above the natural cutoff !c ¼
N1=ð"!1Þ. For all the three graph types, for each graph size
N ranging from 103 to 105, and for each value of the bond
occupation probability p, we generate 103 graphs, and for
each graph we perform bond percolation 104 times. For
each percolation we measure the size S1 of the largest
connected component in the graph using the fast algorithm
of Newman and Ziff [16], and calculate the average hS1i of
the largest component size and its fluctuations, i.e., sus-

ceptibility & ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðS1 ! hS1iÞ2i

p
, for each combination of

p, N, and graph type.
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FIG. 1 (color online). Ratio of the subgraph average degree
hkiT to the average degree hki in the whole graph as a function of
the inverse relative subgraph size N=NT for few real networks.
The subgraphs are obtained by removing nodes with degrees
below thresholds kT from the original network. To insulate
against finite-size effects; the data are shown only for subgraphs
of size NT=N > 0:1. Actors, actor collaborations from the
Internet Movie Database; Airports, USA airport network;
English, web of semantic associations between words in
English; Internet, topology of the Internet at the Autonomous
Systems level; Proteins, protein interaction network of
Saccharomyces cerevisiae; and Trust, mutual trust relationships
among individuals extracted from the Pretty Good Privacy data.
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Typical growing network models are self-similar by 
construction under a transformation that selects 
nodes older than a certain age
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at time t
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but are designed to have a constant average 
degree within self-similar subgraphs
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if              the network has an exponential degree distribution

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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if              the degree distribution is power law with exponent

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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node i appearing at time i with                                    new 
connections (                )

the node connects to randomly chosen existing 
nodes

if              the network has an exponential degree distribution

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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if              the degree distribution is power law with exponent

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,

PRL 106, 048701 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 JANUARY 2011

048701-2

The ensemble is self-similar with a transformed average degree
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mi = m0

�
N

i

�η

1

0 < η < 1

1

node i appearing at time i with                                    new 
connections (                )

the node connects to randomly chosen existing 
nodes

if              the network has an exponential degree distribution

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,

PRL 106, 048701 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 JANUARY 2011

048701-2

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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if              the degree distribution is power law with exponent

Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable ! drawn from the
power-law probability density "ð!Þ ¼ ð#$ 1Þ!#$1

0 !$#.
Without loss of generality, !0 can be selected such that
! % !0 is the expected degree of nodes with hidden vari-
able !, so that the degree distribution scales as a power-law
with exponent #. Each pair of nodes with expected degrees
! and !0 is then connected with probability rð!;!0Þ ¼
fð$!!0Þ, where constant $ fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees !,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes % ¼ N=ð2&RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables ! and !0 separated by distance d ¼
ð&$ j&$ j'$ '0jjÞR on the circle ('’s are the node
angular coordinates) must be of the form rð!;';!0; '0Þ ¼
hð d

$!!0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant $ in the two cases as

$I ¼
hki

Nf0ð0Þ!2
0

!
#$ 2

#$ 1

"
2
; $II ¼

hki
2%I!2

0

!
#$ 2

#$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since !0 and % are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent # and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable !< !T from a given
graph G in any of the two ensembles, where !T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð!0=!TÞ#$1.
The hidden variables ! of nodes remaining in GT are
distributed according to "Tð!Þ ¼ ð#$ 1Þ!#$1

T !$# with
! % !T . That is, the power-law exponent in GT is the
same as in G, #T ¼ #. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f(g ! f(Tg in the self-similarity definition in Eq. (1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"ð3$#Þ=ð#$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent # ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

# ! #T ¼ #; hki ! hkiT ¼ hki
!
N

NT

"
1=ð#$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
#< 3 and for growing graphs with any#. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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The ensemble is self-similar with a transformed average degree
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Since the convergence to the thermodynamic limit in
scale-free networks is slow [17], it is difficult to accurately
measure exponent ! in simulations. Nevertheless we ob-
serve an agreement, albeit slowly converging, between the
analytical solution for gðpÞ and simulations in Fig. 2. In
Fig. 3 we also show susceptibility "ðp;NÞ for equilibrium
and growing networks. Susceptibility displays peaks
whose positions pmaxðNÞ and heights "maxðNÞ depend as
power laws on the system size, pmaxðNÞ # N$1=#%

and
"maxðNÞ # N$%=#% . Taken together, these two results con-
firm that the giant component emerges at p ¼ pmax, and
that the percolation threshold vanishes in the thermody-
namic limit N ! 1 where pmax ! 0 and "max ! 1.

In short, self-similar networks with subgraphs of grow-
ing average degree have no percolation threshold. The
proof can be generalized to any processes with phase
transitions whose critical points depend monotonously on
the average degree. Examples include, among others, the
absence of an epidemic threshold in epidemic spreading
processes, or the absence of a paramagnetic phase in the
Ising model on scale-free networks [3].

The identification of percolation universality classes for
general random networks is a notoriously difficult

problem—details tend to prevail. Nevertheless, the results
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[13] M. Á. Serrano, D. Krioukov, and M. Boguñá, Phys. Rev.
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Summary

Self-similarity is observed in many real networks and model 
ensembles

It provides a minimalistic proof of the absence of percolation 
threshold in a very large number of network models

The proof can be applied to any phase transition where the 
threshold is a monotonous function of the average degree
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