Controlling Networks

Albert-László Barabási

Center for Complex Networks Research Northeastern University Department of Medicine and CCSB Harvard Medical School Central European University, Budapest

www.BarabasiLab.com

Understand predict

control

Barabasi Lab

CONTROL YOUR EMOTIONS

SPECTO?

Control Theory

A system is controllable if it can be driven from any initial state to any desired final state.

A system is controllable if it can be driven from any initial state to any desired final state in finite time.

doi:10.1038/nature10011

natur ARTICLE

The mathematics of network control cell biology to cellphones PAGES 158 &

WHO NEEDS WAITIN CHANGE VESU

COMPLEXI Controllability of complex networks

Yang-Yu Liu^{1,2}, Jean-Jacques Slotine^{3,4} & Albert-László Barabási^{1,2,5}

The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. Although control theory offers mathematical tools for steering engineered and natural systems towards a desired state, a framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics. We apply these tools to several real networks, finding that the number of driver nodes is determined mainly by the network's degree distribution. We show that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the high-degree nodes.

Linear System

Linear Time-Invariant Dynamics

Kalman's Rank Condition: A system is controllable if its controllability matrix has full rank.

Example 1: Controllable

Example 2: Uncontrollable

Example 2: Uncontrollable

The system is stuck in a plane in the state space.

EXAMPLES: Controllable or not controllable?

Yes

What's the minimum number of driver nodes (ND)?

How to efficiently identify them?

Which network characteristics determine *ND*?

Difficulties

1. Parameters (link weights): usually unknown. e.g. gene regulatory network, Internet, etc.

2. If brute-force search: (2*N*-1) combinations.

3. Kalman's rank condition is hard to check for large system.

Matching

Lovász, L. & Plummer, M.D., *Matching Theory*

Matching in Directed Network

Matching : a set of edges without common heads or tails.

Y.-Y. Liu, J.-J. Slotine, A.-L. Barabasi, Nature (2011)

Example

ND of real networks

- 1. Overall we see no obvious trend in *n*D (or *N*D) across these networks.
- ^{2.} As a group, regulatory networks display very high $nD \approx 0.8$.
- ^{3.} A few social networks display the smallest observed *n*D values.

Hubs matter!

Cohen/Havlin, PRL (2001); Pastor Satorras & Vespignani, PRL (2001)

Network Robustness

Role of hubs

- 1. The fraction of driver nodes is significantly higher among low degree nodes than among the hubs.
- ² Mean degree of driver nodes $\langle kD \rangle$ is either significantly smaller or comparable to $\langle k \rangle$.

Driver nodes tend to avoid the hubs.

NDreal vs. NDrand

ND is mainly determined by degree distribution.

Key Result

ND is primarily determined by degree distribution.

1. The number of driver nodes does not depend on the precise wiring diagram, but only on the degree distribution.

^{2.}The wiring diagram is needed only if we want to know which are the driver nodes.

3. Allows us to analytically calculate the average *N*D over all network realizations compatible with *P*(*k*in, *k*out), using the *cavity method*.

Degree Dependence

Degree Heterogeneity

Degree heterogeneity $H = 2 \times \text{Gini coefficient}$

Results

Mean degree <*k*> and **degree heterogeneity** *H* are the two main factors that determine *N*D.

Sparse and **heterogeneous** networks are harder to control than **dense** and **homogeneous** networks.

Summary/Outline

Y.-Y. Liu, J.-J. Slotine, A.-L. Barabasi, *Nature* (2011)

Nepusz and Vicsek, arXiv:1112.5945

Clustering Coefficient Communities

Degree correlations

DEGREE CORRELATIONS IN NETWORKS

Assortative:

hubs show a tendency to link to each other.

Neutral:

nodes connect to each other with the expected random probabilities.

Disassortative:

Hubs tend to avoid linking to each other.

Quantifying degree correlations:

- full statistical description (Maslov and Sneppen, Science 2001)
- degree correlation function (Pastor Satorras and Vespignani, PRL 2001)
- correlation coefficient (Newman, PRL 2002)
- C

In-Out Degree Correlations: No Dependence

nD does not depend on in-out correlations

Scale-free model with structural cut-off (γ =2.5, N=1000).

Posfai, Liu, Slotine, Barabasi

Out-In Degree Correlations: Linear

nD depends *linearly* on the out-on correlations coefficient

Scale-free model with structural cut-off (γ =2.5, N=1000).

Posfai, Liu, Slotine, Barabasi

Out-Our and In-In Degree Correlations: Quadratic

nD depends *quadratically* on *out-out* and *in-in* correlations

Scale-free model with structural cut-off (γ =2.5, N=1000).

Posfai, Liu, Slotine, Barabasi

Yang-Yu Liu CCNR/NEU

Jean-Jacques Slotine MIT Marton Posfai CCNR/Budapest

BarabasiLab.com

Southampton, Network Science: Introduction July 15, 2011

WHAT IS "NETWORK SCIENCE"?

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

NRC Panel on "Network Science"

An attempt to understand networks emerging in nature, technology and society using a unified set of tools and principles.

What is new here?

Despite the apparent differences, many networks emerge and evolve driven by a fundamental set of laws and mechanism.

BONUS: WHY KEVIN BACON?

Did he make the most movies, perhaps? List of actors with the most movie credits.

Kevin Bacon

No. of movies : 46 No. of actors : 1811 Average separation: 2.79

Is Kevin Bacon the most connected actor?

BONUS: WHY KEVIN BACON?

Measure the average distance between Kevin Bacon and all other actors.

. . .

Kevin Bacon
No. of movies : 46 No. of actors : 1811 Average separation: 2.79
Is Kevin Bacon the most connected

actor?

Rank	Name	Average	# of	# of
		distance	movies	links
1	Rod Steiger	2.537527	112	2562
2	Donald Pleasence	2.542376	180	2874
3	Martin Sheen	2.551210	136	3501
4	Christopher Lee	2.552497	201	2993
5	Robert Mitchum	2.557181	136	2905
6	Charlton Heston	2.566284	104	2552
7	Eddie Albert	2.567036	112	3333
8	Robert Vaughn	2.570193	126	2761
9	Donald Sutherland	2.577880	107	2865
10	John Gielgud	2.578980	122	2942
11	Anthony Quinn	2.579750	146	2978
12	James Earl Jones	2.584440	112	3787
•••				
876	Kevin Bacon	2.786981	46	1811

Southampton, Network Science: Introduction July 15, 2011

KEVIN BACON MAP

IMPROVING INFORMATION FLOW

Manufacturing company with about 800 employees

ISSUES: (1) Information gaps and gossip about organizational changes; (2) Strategic decisions miss-understood; (3) Lack of trust in management.

Aim: Reduce time for accepting changes; Gossip management; Build trust.

Findings: Robust communication between mid and senior management *BUT* Lack of information flow between mid-management and management of manufacturing sites.

Main source of information for Factory Management: EHS Manager – no connection to management, no career plan and frustrated about own possibilities.

STRUCTURE OF AN ORGANIZATION

: consultants

: external experts

BUSINESS TIES IN US BIOTECH-INDUSTRY

Links:

Collaborations

Financial

R&D

http://ecclectic.ss.uci.edu/~drwhite/Movie

OPINION LEADERS IN ORGANIZATIONS

Question visualized:

Who's opinion do you trust the most when there is a change process at the company?

Nodes = employees

Size = Numer of mentions (in-degree)

The white nodes are the opinion leaders who the company involved in future shaping forums after the survey. ZOOM

Southampton, Network Science: Introduction July 15, 2011

IMPROVING INFORMATION FLOW

Manufacturing company with about 800 employees

Issues:

- (1) Information gaps and gossip about organizational changes;
 - (2) Strategic decisions miss-understood;
 - (3) Lack of trust in management.

<u>Aim:</u> Reduce time for accepting changes;

Gossip management;

Build trust.

Southampton, Network Science: Introduction July 15, 2011

RANDOM NETWORK MODEL

Pál Erdös (1913-1996)

Erdös-Rényi model (1960)

Connect with probability p

p=<mark>1/6</mark> N=10 ِ َ k ~ 1.5

