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Abstract

Recently, the dynamics of excitations in, e.g., ultra-cold Rydberg gases
or in light-harvesting complexes, both of which can be modelled by net-
works, have been of particular interest. Here, the initial excitation (a
Frenkel exciton) is created by absorbing a laser excitation or by captur-
ing solar photons. The exciton is transported over the network until it
encounters sites where it can get absorbed (the reaction center in the light-
harvesting complexes). This process can be modelled by non-hermitian
Hamiltonians having complex eigenvalues [1]. In the following, we study
(ensemble-averaged) random networks in which the excitation can van-
ish only at certain (trap) nodes and investigate the survival probability
that the exciton does not get trapped during the (quantum) walk [2] over
the network. We further show how this is related to the distribution of
the imaginary parts of the eigenvalues of the Hamiltonian [3].

Modelling transport

Continuous-time quantum walks

e We model our quantum dynamical system as a network of localized
states [j), forj =1,...N.

e We identify an unperturbed Hamiltonian Hy with the connectivity ma-
trix A [2]:

fj if k = ]
Ay; = ¢ —1 if kandjconnected
0 otherwise.

Here f; is the number of bonds emanating from j.

Placing a trap into a system
e We take M out of N total nodes to be trap nodes and denote them as m,

so that m € M.
e We consider the trapping process with a strength T, by taking a trap-

ping matrix I': I' = Z M () G1).

e The total Hamiltonian His H = Hy —iI".
e H is non-Hermitian and has complex eigenvalues E; = €; — iy;. For
small I, the eigenvalues of the perturbed system are given by:

B =E" —ilml(mhp ")

Survival probabilities
e The transition probability to go from the node j at time t = 0 to the node
k at time t is [4]:

() = | Y e e Y U (khbn) (bnlj)| |

l

where ) and (1| are left and right eigenstates, respectively. The ima-
gionary parts y; of E; determine the temporal decay.

¢ The mean survival probability TT(t) to be at node k ¢ M for a total
number of M trap nodes is a global property of the network and can be

defined as: .
() = = % %Wk,j (t).

e For long times and a small number of trap nodes, TT(t) is a sum of imag-
inary parts of the eigenvalues Ej;:

1 N
L —2vt
() = 121 e 2Vt

e The lower bound of the ensemble-averaged survival probabilities
(TT(t))r can be defined with the Jensen’s inequality [4]:

<e—2v1t>R > e 2(vu)rt
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Main results

e For an excitation travelling in a random network, there is still a high
probability not to be trapped even at very long times.

e The ensemble-averaged survival probability for an excitation is very
near to its lower bound defined with the Jensen’s inequality.

Random networks with traps

e We consider random networks G(N, p)
which consist of N = 50 nodes with

probabilities p = 0.25,0.5,0.75 to be
connected.

e For each of G(50,0.25), G(50,0.5), and
G(50,0.75), we put a trap into one node,
ie.m=1 Weset =1.

e We perform R = 1000 random re-
alizations of the networks to obtain
ensemble-averaged results:
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