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Outline

Tower of States (from yesterday’s ED lecture)

Wilson’s RG

White’s DMRG

What can you do with DMRG ?
Ground states, correlation functions

Dynamical correlation functions

Real-time evolution

Classical systems in higher dimension

Finite Temperature properties

DMRG++, MPS, PEPS, MERA, iTEBD, iPEPS



Continuous symmetry breaking and “Tower of States”



“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ?

 Low-energy dynamics of the order parameter
 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -

S(S+1)

Continuum

Magnons

Tower of
States

1/N 1/L

E
ne

rg
y

 Dynamics of the free order 
 parameter is visible in the finite size
 spectrum. Depends on the continuous
 symmetry group.

 U(1):  (Sz)2   SU(2):  S(S+1)

 Symmetry properties of levels in the
 Tower states are crucial and constrain
 the nature of the broken symmetries.



Tower of States
S=1 on triangular lattice

 Bilinear-biquadratic S=1 model on the triangular lattice (model for NiGaS4).

FM

(b)

!!"

"#!!""!!"

#$%

#!!"

(a)

FQ

?

FM
AFM

"!!&

!!"

"#!!"

!!&

!

SO

"!!&

!!&

! #$%

"!!"

#!!"

FQ

AFM

AFQ

SU(3)SU(3)

SU(3)

SU(3)

SU(3)

SU(3)

AML, F. Mila, K. Penc, PRL ‘06



Tower of States
S=1 on triangular lattice

 Bilinear-biquadratic S=1 model on the triangular lattice (model for NiGaS4).
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Tower of States
S=1 on triangular lattice: Antiferromagnetic phase

 ϑ=0 : coplanar magnetic 
order, 
          120 degree structure

 Breaks translation symmetry. Tree site unit cell
 ⇒ nontrivial momenta must appear in TOS

 non-collinear magnetic structure
 ⇒ SU(2) is completely broken, 

 number of levels in TOS increases with S

 Quantum number are identical to the S=1/2 case
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Tower of States
S=1 on triangular lattice: Ferroquadrupolar phase

 ϑ=-π/2 : ferroquadrupolar phase, finite 
quadrupolar moment,  no spin order

 No translation symmetry breaking.
 ⇒ only trivial momentum appears in TOS

 Ferroquadrupolar order parameter, only even S 

 all directors are collinear
 ⇒ SU(2) is broken down to U(1), 

 number of states in TOS is independent of S.
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Tower of States
S=1 on triangular lattice: Antiferroquadrupolar phase

 ϑ=3π/8 : antiferroquadrupolar phase, finite 
quadrupolar moment,  no spin order,
three sublattice structure.

 Breaks translation symmetry. Tree site unit cell
 ⇒ nontrivial momenta must appear in TOS

 Antiferroquadrupolar order parameter, complicated
 S dependence. Can be calculated using group
 theoretical methods.
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Density Matrix Renomalization Group et al.



Density Matrix Renormalization Group

 K. Wilson introduced the numerical renormalization group as a powerful
 numerical tool to solve the Kondo problem (Wilson RMP 75).

 Many people tried to apply this idea in a straightforward way to quantum
 many body problems and failed. The reason for this failure was understood in
 a study of the tight-binding problem on a chain (White & Noack PRL 92):

ψ1 ψ2 ψ2 ψ3
NRG for the particle-in-the-box problem

[S.R. White and R.M. Noack, PRL 68, 3487 (1992)]

H = −
L−1∑

i=1

(|i〉〈i + 1| + |i + 1〉〈i|) + 2
L∑

i=1

|i〉〈i| ≈ −
d2

dx2
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φ(
x)

Lowest eigenstates (L=10)

|L̃ = 2L〉 %= |L〉 ⊗ |L〉

System ground state ≡/ ⊗ subsystem low-energy states

ψ[2L] != ψ[L] ⊗ ψ[L]

The groundstate of the large system is not at all 
well approximated by the tensor product of the 
groundstates of the smaller systems

m m m md d



Density Matrix Renormalization Group

 The next crucial step was to realize how one has to choose the states
 to be kept in a partition of the universe:

 System description with m states:

 How to choose the m states in order to approximate       best ?

SystemEnvironment

|ψ̃〉 =

m∑

n

∑

α

ψ̃n,α|φn〉S ⊗ |α〉E

H = HS + HE + HSE

|ψ〉

groundstate |ψ〉
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|ψ̃〉 − |ψ〉
∣

∣

∣

2

≈ 1 −
m

∑

n

wn = Pm

Density Matrix Renormalization Group

 The answer is given by the subsystem density matrix  

 With the help of the Schmidt decomposition one can show that the
 m eigenfunctions of    associated with the largest eigenvalues wn give
 the best approximation of       . (and not the lowest eigenstates of HS)
 

 The error can be estimated to be

ρi,j = TrE |ψ〉〈ψ|

ρ

|ψ〉



Density Matrix Renormalization Group



Density Matrix Renormalization Group

 Based on these condsiderations, S.R. White came up with the DMRG
 S.R. White, PRL 69, 2863 (1992); PRB 48,10345 (1993).
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Density Matrix Renormalization Group

 Based on these condsiderations, S.R. White came up with the DMRG
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Applicability of ground state DMRG

 Very efficient groundstate simulations for many 1D systems.
 Frustration or fermions pose no particular problem.

 Typical system sizes and number of states:
    simple spin systems: 100-1000 sites, lower hundred states
    complicated spin systems:  hundred sites, larger hundred to thousand states
    fermionic systems, wide systems, many low energy states, they all increase m

 Variational, quasi-exact method.

 Wavefunction method, therefore many observables are easily available.

 Drawbacks: it is not yet possible to simulate very large 2D systems,
 open boundaries might not always be what we desire, especially
 because of the lack of spatial quantum numbers.



Infinite System Algorithm in Detail

1. Form a superblock containing L sites which is small enough to be exactly
 diagonalized

2. Diagonalize the superblock Hamiltonian             numerically,  obtaining only
 the ground state eigenvalue and eigenvector       using Lanczos or Davidson.

3. Form the reduced density matrix         for the new system block from       using
                        .

4. Diagonalize         with a dense matrix diagonalization routine to obtain the m
 eigenvectors with the largest eigenvalues

5. Construct          and other operators in the new system block and transform 
 them to the reduced density matrix eigenbasis using 
 where the columns of OL contain the the m highest eigenvectors of        .

6. Form a superblock of size L+2 using          , two single sites and         .

7. Repeat starting with step 2, substituting               for             .

Hsuper
L

|ψ〉

ρii′ |ψ〉
ρii′ =

∑

j

ψ∗
ijψi′j

ρii′

Hl+1

H̄l+1 = O†
LHl+1OL

ρii′

H̄l+1 H̄R
l+1

Hsuper
L+2 Hsuper

L

mm

m m



 Efficient multiplication of                with a vector is important. Wave function
 transformation yields significant speedup. 

 Computational cost: L m3 

  Memory cost: (L) m2

  Abelian quantum numbers Np and Sz can be implemented. They render the
 matrices block sparse, but require book keeping effort.

 Nonabelian quantum numbers [e.g. S(S+1)] can be implemented, but gives
 more complex code.

 Writing to disk. Information not needed at the current step can be stored on
 disk.

Hsuper
L

Efficiency



Extension to ladder systems

 1D algorithm folded into 2D

 finite size algorithm needed

 Convergence depends strongly
 on width of system

 Exponential effort in width for 
 spinless fermions

IV (iv) Extensions – 2D and Fermion Systems

(Noack, White, Scalapino, 1994)

system block environment block

• 1D algorithm “folded” into 2D
• finite system algorithm necessary

• convergence depends strongly on width of system
⇒ exponential in width for spinless fermions (Liang & Pang 1994)

Applications:

• Heisenberg, Hubbard and t–J–ladders; 2D t–J–model
SrCu2O3, Sr2Cu3O5, Sr14−xCaxCu24O41−δ

NaV2O5, CaV2O5, high–Tc superconductors
• Kondo lattice model, periodic Anderson model

heavy fermion systems (CeAl3, UPt3)
• Quantum Hall systems (Shibata & Yoshioka, 2001)



DMRG Applications
The S=1/2 Kagome Strips

AML, unpublished

M. Indergand, AML, S. Capponi, M.Sigrist, PRB (2006)

doped <n>=2/3 → 3 site singlets

undoped, Heisenberg model

2nd Kagome Strip (Waldtmann, Everts et al, 2000)

1st Kagome Strip (Azaria et al, 1998)

VOLUME 85, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 9 OCTOBER 2000

Comment on “Kagomé Lattice Antiferromagnet
Stripped to Its Basics”

In a recent Letter, Azaria et al. [1] studied a 3-spin wide
strip of the Kagomé-lattice spin- 1

2 Heisenberg model, with
the goal of understanding the large number of low-lying
singlet states observed in 2D Kagomé clusters [2]. Using
a number of approximate field-theoretical mappings, they
concluded that this system had a nondegenerate, undimer-
ized ground state, with a gap to spin excitations, but with
gapless singlet excitations. The Lieb-Schultz-Mattis theo-
rem [3], which requires there to be at least one additional
zero-energy state in the thermodynamic limit, allows this
never-before-seen possibility.

A subsequent study [4], using the numerical density
matrix renormalization group (DMRG) [5], verified the
existence of a spin gap, but was inconclusive about the
key issues of degenerate ground states and gapless singlet
excitations. Here, also using DMRG, we study much larger
systems to examine these issues. We find that, contrary to
the results of Azaria et al., the ground state of this system
is spontaneously dimerized, with degenerate ground states.
There is a very small spin gap in the system but also a
gap to singlet excitations. Above the ground states, the
gap to the singlet excitations is larger than for the triplets.
These results imply that this system is more analogous
to the Majumdar-Ghosh model [6], rather than to a novel
spin liquid. Thus, the underlying field theory needs to be
reexamined.

We studied systems up to length 1024 3 3, keeping up
to 400 states per block, using open boundary conditions.
We found that the unmodified open ends of the strip have
low-lying triplet end excitations, making it difficult to ob-
serve the bulk gaps. Therefore, we terminated the ends
using a 2 3 2 cluster of spins, as shown on the left side of
Fig. 1, which served to push all end excitations above the
bulk gaps. Here, all exchange couplings on the ends and
in the bulk have identical values J . In Fig. 2 we show the
gap to the lowest-lying state, with the modified ends, as
a function of the system length. We are able to resolve a
very small triplet gap of D!J ! 0.0104"5#. Details of the
fit will be given elsewhere.

We find that the bulk is dimerized. In Fig. 1, we show
the local bond strengths, with a clearly visible dimerization

FIG. 1. The local bond strengths $ "Si ? "Sj% for the left end of a
32 3 3 strip are shown using the widths of the lines.

FIG. 2. Singlet-triplet gap D for L 3 3 strips as a function of
the inverse length of the system.

pattern, on one end of a small 32 3 3 system. Results for
systems as large as 1024 3 3 demonstrate that this dimer-
ization pattern persists in the bulk. For example, in the
bulk we find that the value of $ "Si ? "Sj% with i and j tak-
ing sequential values along the first leg follows the pattern
20.071, 20.529, 20.071, 20.635, 20.071, 20.529, etc.
These values are well converged both in the length of the
system and in the number of states kept. The singlet state
representing the shifted dimerization pattern ground state
is visible using periodic boundary conditions, where we
found a single very low-lying singlet excited state below
the triplet gap on systems as large as 48 3 3. In open
systems, the boundaries push this state above the triplet
gap. The entire pattern of states is very similar to that of
the Majumdar-Ghosh model. These Kagomé strips do not
provide insight into the large number of singlet states ob-
served in 2D Kagomé clusters.

We thank Ian Affleck for discussions. This work is
supported in part by the NSF under Grants No. DMR98-
70930, No. PHY94-07194, and No. DMR96-16574.
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DMRG Applications
Triangular lattice Heisenberg model

 Very accurate determination of order parameter using special aspect ratio
 to suppress leading finite size corrections. 

0.4

Traditional DMRG for triangular lattice Heisenberg model

See White & Chernyshev, PRL 99, 

127004 (2007)

!E ~ 0.3%,   !<Sz> ~ 0.01

Extrap order param to thermodynamic limit:  M = 0.205(15) 



Extensions:
Dynamical DMRG (D-DMRG)

Dynamical correlation function

additional density matrix eigenstates must be “targeted” 

Lanczos vector method: target Krylov vectors (Hallberg 1995)

Correction vector method: target vectors:  (White & Kuehner 1999)

more accurate than Lanczos vector method, but requires new run for each 

Minimization method (DDMRG) (Jeckelmann 2002)
correction vector minimizes certain functional and value of functional at minimum 
is the requested spectral weight. more accurate than correction vector

G(k, ω = 〈ψ0|A†
k(ω + iη − H)−1Ak|ψ0〉

|ψ0〉, A†
k|ψ0〉, HA†

k|ψ0〉, H2A†
k|ψ0〉, . . .

|ψ0〉, A†
k|ψ0〉, (ω + iη −H)−1A†

k|ψ0〉
ω



D-DMRG:
Example for photoemission spectrum

Comparison with ARPES on TTF-TCNQ

ARPES (Sing et al., 2003)

DDMRG (Benthien et al 2004)



Time dependent DMRG (t-DMRG) 

Time evolution 

 typically                                         ,                                                      .

DMRG Approaches to time evolution

 Runge Kutta integration of                         (Cazallila & Marston 2002)
 only good at small times due to static Hilbert space

 Division of exp[-iHt] into two site parts which are exactly applied 
 (Vidal; White et al; Daley et al 2003/4) Suzuki-Trotter decomposition, quantum gates.

 Expansion of exp[-iHt] in Krylov Basis (Schmitteckert; Manmana et al, 2004)
 multi-target method

 Applications:    Tunnel current between Luttinger liquids
                         Transport current in a quantum dot
                         Quench dynamics
                         Dynamical correlation functions (Fourier transform)

|ψ(t)〉 = exp[−iHt]|ψ(0)〉

H = H0 + H1Θ(t) |ψ(0)〉 = |ψ0〉 or A†|ψ0〉

|ψ0〉DMRG



Application of t-DMRG 
Quench in the Bose Hubbard model

Start with 1D superfluid initial state, then quench to large U/J value !
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Finite Temperature DMRG

Many ideas

Use Boltzmann weights to weight target states in mixed density matrix
Works only at low T, but that’s also the region where finite size effects
are important (Moukouri & Caron 1996)

Transfer Matrix DMRG (Bursill et al ‘1996; Wang & Xiang 1997)
Uses Suzuki-Trotter decomposition to map onto 1+1 classical system
Perform DMRG on the Suzuki-Trotter lattice for the transfer matrix
Imaginary time discrete, but directly for infinite system.

Purification approach: (e.g. Feiguin & White, 2005)
Infinite temperature density matrix of a system can be represented as a pure 
state of enlarged system. Perform imaginary time evolution to lower 
temperature T and measure desired quantities (also real-time simulations).



More extensions

 Classical transfer matrices (2D stat mech problem)

 Non-equilibrium classical systems (reaction-diffusion)

 Momentum space DMRG (accurate at small U/t)

 Quantum chemistry

 ...



Beyond DMRG



A nice graphical way to represent tensors and their contractions

α

α

α

β

β

γ

Tensor Networks 

Vector Matrix rank 3 tensor



A nice graphical way to represent tensors and their contractions

α

α

α

β

β

γ

Tensor Networks 

Vector Matrix rank 3 tensor

Qα,γ = (RS)α,γ =
∑

β

Rα,βQβ,γ

α=α γ γ



Matrix Product State (MPS)

Tensor Product States (TPS), Projected Entangled Pair States (PEPS) (Verstraete & Cirac)

Multiscale Entanglement Renormalization Ansatz (MERA) (Vidal)

Tensor Networks as wave functions

A[σ]α,β

• !"#$%&'(")*%&+$

• ,%-./)0)1%#'%2'"3."4)"5'607/"$

• 8.)1-190)1%#'%2'0')"#$%&'#")*%&+'
:"#"&;<'-1#1-190)1%#=')1-"'"6%7/)1%#>

Can satisfy
2D Area laws

Can satisfy
1D Area laws

Can satisfy
2D Area laws



Tensor Networks as wave functions

Instead of exponential number of coefficients in the wave functions
only O(N d χp) coefficients are needed (p=2 for MPS, p=4 for PEPS)

These tensor networks can be seen as variational wave functions

The proposed algorithms (PEPS, MERA, ...) contain recipes on how to
optimize the network to give the lowest energy for a chosen Hamiltonian

Not all networks are equally easy to handle.



i-TEBD / i-PEPS

Assume a translationally invariant ansatz with two matrices in the case
of MPS (i-TEBD) or two different tensors in the case of PEPS (i-PEPS)

Perform imaginary time evolution in order to anneal to the ground state

i-TEBD is already quite popular as an alternative to DMRG in 1D, and is 
simple to implement (I saw a Matlab code with 71 lines for the 1D Q-Ising model)

3

FIG. 1: (color online) Diagrammatic representation of a
TPS/PEPS on a 2D square lattice. Tensors are represented
by circles, and their indices are represented by legs. A leg con-
necting two circles corresponds to a bond index shared by two
tensors and takes D different values. Since correlations be-
tween different sites of the lattice are carried by bond indices,
the bond dimension D is a measure of how many correlations
the TPS/PEPS can represent. An open leg (diagonal line)
corresponds to a physical index that labels the local Hilbert
space at a given lattice site. It takes d different values, where
d is the local Hilbert space dimension (with d = 2 for the
HCBH model). Two different tensors, denoted A and B, are
repeated all over the infinite lattice, exploiting the fact that a
translation invariant state is being represented. In principle,
repeating a single tensor, say A, would be enough to repre-
sent a translation invariant state, but the iPEPS algorithm12

breaks translation invariance down to a checkerboard pattern.

checkerboard pattern, see Fig. 1. Each of these two
tensors depend on O(dD4) coefficients, where d is the
Hilbert space dimension of one lattice site (with d = 2
for the HCBH model) and D is a bond dimension that
controls the amount of correlations or entanglement that
the ansatz can carry.

The coefficients of tensors A and B are determined
with the iPEPS algorithm12. Specifically, the ground
state |ΨGS〉 of the HCBH model is obtained by simu-
lating an evolution in imaginary time according to HHC,
exploiting that

|ΨGS〉 = lim
τ→∞

e−τHHC |Ψ0〉
||e−τHHC |Ψ0〉||

. (5)

We have also used the iPEPS algorithm to simulate (real)
time evolution starting from the ground state |ΨGS〉 and
according to a modified Hamiltonian H (see Eq. 12),

|Ψ(t)〉 = e−itH |ΨGS〉. (6)

These simulations, as well as the computation of ex-
pected values of local observables from the resulting
state, involve contracting an infinite 2D tensor network.
This is achieved with techniques developed for infinite
1D lattice systems7, namely by evolving a matrix prod-
uct state (MPS). An important parameter in these ma-
nipulations is the bond dimension χ of the MPS, which

parameterizes how many correlations the latter can ac-
count for. We refer to12 for a detailed explanation of the
iPEPS algorithm. In what follows we briefly comment on
the main sources of errors and on the simulation costs.

We distinguish three main sources of errors in the sim-
ulations, one due to structural limitations in the under-
lying TPS/PEPS ansatz and two that originate in the
particular way the iPEPS algorithm operates:

(i) Bond dimension D.— A finite bond dimension D
limits the amount of correlations the TPS/PEPS can
carry. A typical state of interest |Ψ〉, e.g. the ground
state of a local Hamiltonian, requires in general a very
large bond dimension D if it is to be represented ex-
actly. However, a smaller value of D, say D ≥ DΨ for
some value DΨ that depends on |Ψ〉, often already leads
to a good approximate representation, in that the ex-
pected values of local observables are reproduced accu-
rately. However, if D < D0, then the numerical estimates
may differ significantly from the exact values, indicating
that the TPS/PEPS is not capable of accounting for all
the correlations/entanglement in the target state |Ψ〉.

(ii) MPS bond dimension χ.— Similarly, using a fi-
nite MPS bond dimension χ implies that the contraction
of the infinite 2D tensor network (required both in the
simulation of real/imaginary time evolution and to com-
pute expected values of local observables) is only approx-
imate. This may introduce errors in the evolved state,
or in the expected value of local observables even when
the TPS/PEPS was an accurate representation of the in-
tended state.

(iii) Time step.— A time evolution (both in real or
imaginary time) is simulated by using a Suzuki-Trotter
expansion of the evolution operator (e−itH or e−τH),
which involves a time step (δt or δτ). This time step
introduces an error in the evolution that scales as some
power of the time step. Therefore this error can be re-
duced by simply diminishing the time step.

The cost of the simulations scales as O(χ3D6+χ2D8d)
(here we indicate only the leading orders in χ and D; the
cost of the simulation is also roughly proportional to the
inverse of the time step). This scaling implies that only
small values of the bond dimensions D and χ can be
used in practice. In our simulations, given a value of D
(D = 2, 3 or 4), we choose a sufficiently large χ (in the
range 10− 40) and sufficiently small time step (δt or δτ)
such that the results no longer depend significantly on
these two parameters. In this way the bond dimension
D is the only parameter on which the accuracy of our
results depends.

On a 2.4 GHz dual core desktop with 4 Gb of RAM,
computing a superfluid ground state (e.g. µ = 0) with
D = 2, χ = 20 and with δτ decreasing from 10−1 to 10−4

requires about 12 hours. Computing the same ground
state with D = 3 and χ = 40 takes of the order of two
weeks.
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FIG. 3: Structure factor S(q) for J3/J1 = 0, 0.2, 0.5 and 0.9.
The results were obtained for a 14 × 14–lattice and virtual
dimension D = 3.
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0.2, 0.5 and 0.9. The results have been obtained using a
D = 3–PEPS Ansatz.

are shown in figure 4. Here, correlations with the cen-
tral spin are plotted as functions of the distance. As
can be seen, the spins are antiferromagnetically ordered
for J3/J1 < 0.5. For J3/J1 > 0.5, every second spin
possesses antiferromagnetic order. However, the long–
range order of the spins disappears in the vicinity of
J3/J1 ∼ 0.5.

The separation in long–range and short–range or-
der regimes gets more and more evident with growing
particle–number. This can be gathered from figure 5.
Here, S(π, π) and S(π/2, π/2) are plotted as functions of
J3/J1, evaluated for various particle–numbers N . An ex-
trapolation to the thermodynamic limit (N → ∞) shows
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FIG. 5: Structure factors S(π, π) (upper plot) and
S(π/2, π/2) (lower plot) as functions of J3/J1 for various
particle–numbers N . The solid lines represent extrapolations
to the thermodynamic limit (see text).
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nomials of degree 3 in 1/N .

that S(π, π) remains finite within the region J3/J1 ! 0.3
and is zero otherwise. On the other hand, S(π/2, π/2)
is zero up to J3/J1 ∼ 0.7 and finite for larger values of
J1/J3. The region of short–range order is thus narrowed
down to 0.3 ! J3/J1 ! 0.6.

The extrapolation was obtained by fitting a polynomial
of degree 3 in 1/N to values of S(q) for various values
of N . The error bars in the plot indicate the error es-
timates for the predictions. The data points are usually
fitted very well with such a polynomial - as can be seen
in figure 6. In this figure, for selected points J3/J1, the
scaling of S(q) with N is plotted and the best fit by a
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FIG. 10: Nearest–neighbor spin–spin correlations at J3/J1 =
0.5, calculated with D = 3–PEPS.

to −1/2 on a plaquette and 0 between two plaquettes. In
our case, the values of the spin–spin correlations deviate
slightly from these values, nontheless a clear plaquette
structure remains visible.

The state we observe has obviously a broken trans-
lational symmetry. The plaquettes are formed between
sites (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1) with i and j
always being odd. The reason for this symmetry break-
ing are the chosen open boundary conditions and the
even number of sites in x- and y-direction. The system
chooses the configuration with a maximal number of pla-
quettes. In case of open boundary conditions and an even
number of sites in each direction, this corresponds to the
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FIG. 11: upper plot: Ground state energy of the J1 − J2

model on a 6 × 6 lattice as a function of J2/J1, obtained by
diagonalizing within the SRVB subspace (solid line) and by
PEPS calculations with D = 3 (green dots) and D = 4 (red
dots). lower plot: Overlap between the SRVB ground state
and the D = 3–PEPS ground state.
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FIG. 12: Nearest–neighbor spin–spin correlations at J2/J1 =
0.6, calculated with D = 3–PEPS.

configuration of plaquettes with i and j being odd.

J1 − J2 Model

The vicinity of the ground state to the class of SRVB
in the region J2/J1 ∼ 0.5 is analyzed in figure 11. The
lower plot shows the overlap of the PEPS ground state
with the ground state obtained by exact diagonalization
within the PEPS subspace. Lattice size 6×6 and virtual
dimensions D = 3 were considered. The overlap clearly

First (finite size) PEPS Applications
PEPS: Frustrated J1-J2-J3 Square lattice  (Murg et al., arXiv:0901.2019)

Square lattices with open boundary conditions



First i-PEPS Applications

iPEPS: Hardcore bosons on the square lattice  (Jordan et al., arXiv:0901.0420)
equivalent to S=1/2 XY model

3

FIG. 1: (color online) Diagrammatic representation of a
TPS/PEPS on a 2D square lattice. Tensors are represented
by circles, and their indices are represented by legs. A leg con-
necting two circles corresponds to a bond index shared by two
tensors and takes D different values. Since correlations be-
tween different sites of the lattice are carried by bond indices,
the bond dimension D is a measure of how many correlations
the TPS/PEPS can represent. An open leg (diagonal line)
corresponds to a physical index that labels the local Hilbert
space at a given lattice site. It takes d different values, where
d is the local Hilbert space dimension (with d = 2 for the
HCBH model). Two different tensors, denoted A and B, are
repeated all over the infinite lattice, exploiting the fact that a
translation invariant state is being represented. In principle,
repeating a single tensor, say A, would be enough to repre-
sent a translation invariant state, but the iPEPS algorithm12

breaks translation invariance down to a checkerboard pattern.

checkerboard pattern, see Fig. 1. Each of these two
tensors depend on O(dD4) coefficients, where d is the
Hilbert space dimension of one lattice site (with d = 2
for the HCBH model) and D is a bond dimension that
controls the amount of correlations or entanglement that
the ansatz can carry.

The coefficients of tensors A and B are determined
with the iPEPS algorithm12. Specifically, the ground
state |ΨGS〉 of the HCBH model is obtained by simu-
lating an evolution in imaginary time according to HHC,
exploiting that

|ΨGS〉 = lim
τ→∞

e−τHHC |Ψ0〉
||e−τHHC |Ψ0〉||

. (5)

We have also used the iPEPS algorithm to simulate (real)
time evolution starting from the ground state |ΨGS〉 and
according to a modified Hamiltonian H (see Eq. 12),

|Ψ(t)〉 = e−itH |ΨGS〉. (6)

These simulations, as well as the computation of ex-
pected values of local observables from the resulting
state, involve contracting an infinite 2D tensor network.
This is achieved with techniques developed for infinite
1D lattice systems7, namely by evolving a matrix prod-
uct state (MPS). An important parameter in these ma-
nipulations is the bond dimension χ of the MPS, which

parameterizes how many correlations the latter can ac-
count for. We refer to12 for a detailed explanation of the
iPEPS algorithm. In what follows we briefly comment on
the main sources of errors and on the simulation costs.

We distinguish three main sources of errors in the sim-
ulations, one due to structural limitations in the under-
lying TPS/PEPS ansatz and two that originate in the
particular way the iPEPS algorithm operates:

(i) Bond dimension D.— A finite bond dimension D
limits the amount of correlations the TPS/PEPS can
carry. A typical state of interest |Ψ〉, e.g. the ground
state of a local Hamiltonian, requires in general a very
large bond dimension D if it is to be represented ex-
actly. However, a smaller value of D, say D ≥ DΨ for
some value DΨ that depends on |Ψ〉, often already leads
to a good approximate representation, in that the ex-
pected values of local observables are reproduced accu-
rately. However, if D < D0, then the numerical estimates
may differ significantly from the exact values, indicating
that the TPS/PEPS is not capable of accounting for all
the correlations/entanglement in the target state |Ψ〉.

(ii) MPS bond dimension χ.— Similarly, using a fi-
nite MPS bond dimension χ implies that the contraction
of the infinite 2D tensor network (required both in the
simulation of real/imaginary time evolution and to com-
pute expected values of local observables) is only approx-
imate. This may introduce errors in the evolved state,
or in the expected value of local observables even when
the TPS/PEPS was an accurate representation of the in-
tended state.

(iii) Time step.— A time evolution (both in real or
imaginary time) is simulated by using a Suzuki-Trotter
expansion of the evolution operator (e−itH or e−τH),
which involves a time step (δt or δτ). This time step
introduces an error in the evolution that scales as some
power of the time step. Therefore this error can be re-
duced by simply diminishing the time step.

The cost of the simulations scales as O(χ3D6+χ2D8d)
(here we indicate only the leading orders in χ and D; the
cost of the simulation is also roughly proportional to the
inverse of the time step). This scaling implies that only
small values of the bond dimensions D and χ can be
used in practice. In our simulations, given a value of D
(D = 2, 3 or 4), we choose a sufficiently large χ (in the
range 10− 40) and sufficiently small time step (δt or δτ)
such that the results no longer depend significantly on
these two parameters. In this way the bond dimension
D is the only parameter on which the accuracy of our
results depends.

On a 2.4 GHz dual core desktop with 4 Gb of RAM,
computing a superfluid ground state (e.g. µ = 0) with
D = 2, χ = 20 and with δτ decreasing from 10−1 to 10−4

requires about 12 hours. Computing the same ground
state with D = 3 and χ = 40 takes of the order of two
weeks.

4

III. RESULTS

In this section we present the numerical results ob-
tained with the iPEPS algorithm.

Without loss of generality, we fix the hopping strength
J = 1 and compute an approximation to the ground state
|ΨGS〉 of HHC for different values of the chemical poten-
tial µ. Then we use the resulting TPS/PEPS to extract
the expected value of local observables, analyze ground
state entanglement, compute two-point correlators and
fidelities, or as the starting point for an evolution in real
time.

In most cases we only report results for µ ≤ 0 (equiva-
lently, density 0 ≤ ρ ≤ 0.5) since due to the duality of the
model, results for positive µ (equivalently, 0.5 ≤ ρ ≤ 1)
can be obtained from those for negative µ.

A. Local observables and phase diagram

Particle density ρ.— Fig. 2 shows the density ρ as a
function of the chemical potential µ in the interval −4 ≤
µ ≤ 0. Notice that ρ = 0 for µ ≤ −4, since each single site
is vacant. Our results are in remarkable agreement with
those obtained in Ref.6 with stochastic series expansions
(SSE) for a finite lattice made of 32 × 32 and with a
mean field calculations plus spin wave corrections (SW).
We note that the curves ρ(µ) for D = 2 and D = 3 are
very similar.

Energy per site ε.— Fig. 2 also shows the energy per
site ε as a function of the density ρ. This is obtained
by computing ε(µ) and then replacing the dependence
on µ with ρ by inverting the curve ρ(µ) discussed above.
Again, our results for ε(ρ) are in remarkable agreement
with those obtained in Ref.6 with stochastic series expan-
sions (SSE) for a finite lattice made of 32× 32. They are
also very similar to the results coming from mean field
calculations with spin wave corrections (SW) of Ref6, and
for small densities reproduce the scaling (valid only in the
regime of a very dilute gas) predicted in Ref.18 by using
field theory methods based on a summation of ladder di-
agrams. Once more, the curves ε(ρ) obtained with bond
dimension D = 2 and D = 3 are very similar, although
D = 3 produces slightly lower energies.

Condensate fraction ρ0.— In order to compute the
condensate fraction ρ0, we exploit that the iPEPS algo-
rithm induces a spontaneous symmetry breaking of par-
ticle number conservation. Indeed, one of the effects of
having a finite bond dimension D is that the TPS/PEPS
that minimizes the energy does not have a well-defined
particle number. As a result, instead of having 〈ai〉 = 0,
we obtain a non-vanishing value 〈ai〉 &= 0 such that

ρ0 = lim
|i−j|→∞

〈a†
jai〉 = |〈ai〉|2. (7)

In other words, the ODLRO associated with the presence
of superfluidity, or a finite condensate fraction, can be
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FIG. 2: (color online) Particle density ρ(µ), energy per lat-
tice site ε(ρ) and condensate fraction ρ0(ρ) for a TPS/PEPS
with D = 2, 3. We have also plotted results from Ref.6 cor-
responding to several other techniques. Our results follow
closely those obtained with stochastic series expansion (SSE)
and mean field with spin wave corrections (SW).

computed by analysing the expected value of al,

〈al〉 =
√

ρ0e
iϕ, (8)

where the phase ϕ is constant over the whole system but
is otherwise arbitrary. The condensate fraction ρ0 shows
that the model is in an insulating phase for |µ| ≥ 4
(ρ = 0, 1) and in a superfluid phase for −4 < µ < 4
(0 < ρ < 1), with a continuous quantum phase transi-
tion occurring at |µ| = −4, as expected. However, this
time the curves ρ0(ρ) obtained with D = 2 and D = 3 are
noticeably different, with D = 3 results again in remark-
able agreement with the SSE and SW results of Ref.6.

B. Entanglement

The iPEPS algorithm is based on assuming that a
TPS/PEPS offers a good description of the state |Ψ〉 of
the system. Results for small D will only be reliable if |Ψ〉
has at most a moderate amount of entanglement. Thus,

Energy
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III. RESULTS

In this section we present the numerical results ob-
tained with the iPEPS algorithm.

Without loss of generality, we fix the hopping strength
J = 1 and compute an approximation to the ground state
|ΨGS〉 of HHC for different values of the chemical poten-
tial µ. Then we use the resulting TPS/PEPS to extract
the expected value of local observables, analyze ground
state entanglement, compute two-point correlators and
fidelities, or as the starting point for an evolution in real
time.

In most cases we only report results for µ ≤ 0 (equiva-
lently, density 0 ≤ ρ ≤ 0.5) since due to the duality of the
model, results for positive µ (equivalently, 0.5 ≤ ρ ≤ 1)
can be obtained from those for negative µ.

A. Local observables and phase diagram

Particle density ρ.— Fig. 2 shows the density ρ as a
function of the chemical potential µ in the interval −4 ≤
µ ≤ 0. Notice that ρ = 0 for µ ≤ −4, since each single site
is vacant. Our results are in remarkable agreement with
those obtained in Ref.6 with stochastic series expansions
(SSE) for a finite lattice made of 32 × 32 and with a
mean field calculations plus spin wave corrections (SW).
We note that the curves ρ(µ) for D = 2 and D = 3 are
very similar.

Energy per site ε.— Fig. 2 also shows the energy per
site ε as a function of the density ρ. This is obtained
by computing ε(µ) and then replacing the dependence
on µ with ρ by inverting the curve ρ(µ) discussed above.
Again, our results for ε(ρ) are in remarkable agreement
with those obtained in Ref.6 with stochastic series expan-
sions (SSE) for a finite lattice made of 32× 32. They are
also very similar to the results coming from mean field
calculations with spin wave corrections (SW) of Ref6, and
for small densities reproduce the scaling (valid only in the
regime of a very dilute gas) predicted in Ref.18 by using
field theory methods based on a summation of ladder di-
agrams. Once more, the curves ε(ρ) obtained with bond
dimension D = 2 and D = 3 are very similar, although
D = 3 produces slightly lower energies.

Condensate fraction ρ0.— In order to compute the
condensate fraction ρ0, we exploit that the iPEPS algo-
rithm induces a spontaneous symmetry breaking of par-
ticle number conservation. Indeed, one of the effects of
having a finite bond dimension D is that the TPS/PEPS
that minimizes the energy does not have a well-defined
particle number. As a result, instead of having 〈ai〉 = 0,
we obtain a non-vanishing value 〈ai〉 &= 0 such that

ρ0 = lim
|i−j|→∞

〈a†
jai〉 = |〈ai〉|2. (7)

In other words, the ODLRO associated with the presence
of superfluidity, or a finite condensate fraction, can be
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FIG. 2: (color online) Particle density ρ(µ), energy per lat-
tice site ε(ρ) and condensate fraction ρ0(ρ) for a TPS/PEPS
with D = 2, 3. We have also plotted results from Ref.6 cor-
responding to several other techniques. Our results follow
closely those obtained with stochastic series expansion (SSE)
and mean field with spin wave corrections (SW).

computed by analysing the expected value of al,

〈al〉 =
√

ρ0e
iϕ, (8)

where the phase ϕ is constant over the whole system but
is otherwise arbitrary. The condensate fraction ρ0 shows
that the model is in an insulating phase for |µ| ≥ 4
(ρ = 0, 1) and in a superfluid phase for −4 < µ < 4
(0 < ρ < 1), with a continuous quantum phase transi-
tion occurring at |µ| = −4, as expected. However, this
time the curves ρ0(ρ) obtained with D = 2 and D = 3 are
noticeably different, with D = 3 results again in remark-
able agreement with the SSE and SW results of Ref.6.

B. Entanglement

The iPEPS algorithm is based on assuming that a
TPS/PEPS offers a good description of the state |Ψ〉 of
the system. Results for small D will only be reliable if |Ψ〉
has at most a moderate amount of entanglement. Thus,
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corresponding to the Mott insulating phase, and the pinch
point at µ1, µ2 = −4 (also at µ1, µ2 = 4) consistent with a
continuous quantum phase transition.

the overall fidelity |〈ΨGS(µ1)|ΨGS(µ2)〉| vanishes. In a
sense, f(µ1, µ2) captures how quickly the overall fidelity
vanishes.

Fortunately, the fidelity per site f(µ1, µ2) can be
easily computed within the framework of the iPEPS
algorithm16. In the present case, before computing the
overlap each ground state is rotated according to eiϕσz/2,
where ϕ is the random condensate phase of Eq. 8.
In this way all the ground states have the same phase
ϕ = 0. The fidelity per site f(µ1, µ2) is presented in
Fig. 5. The plateau-like behavior of f(µ1, µ2) for points
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FIG. 6: (Color online) Evolution of the energies 〈H0〉 and 〈H〉,
the density ρ, and condensate fraction ρ0 after a translation
invariant perturbation V is suddenly added to the Hamilto-
nian.

within the separable Mott-Insulator phase (µ1, µ2 ≤ −4
or µ1, µ2 ≥ 4) is markedly different from that between
ground states in the superfluid region (−4 ≤ µ1, µ2 ≤ 4),
where the properties of the system vary continuously.
Moreover, similarly to what has been observed for the
2D quantum Ising model16 or in the 2D quantum XYX
model19, the presence of a continuous quantum phase
transition between insulating and superfluid phases in the
2D HCBH model is signaled by pinch points of f(µ1, µ2)
at µ1 = µ2 = ±4. That is, the qualitative change in
ground state properties across the critical point is evi-
denced by a rapid, continuous change in the fidelity per
lattice site as one considers two ground states on opposite
sides of the critical point and moves away from it.

E. Time evolution

An attractive feature of the algorithms based on ten-
sor networks is the possibility to simulate (real) time
evolution. A first example of such simulations with the
iPEPS algorithm was provided in Ref.13, where an adi-
abatic evolution across the quantum phase transition of
the 2D quantum compass orbital model was simulated in
order to show that the transition is of first order.

The main difficulty in simulating a (real) time evolu-
tion is that, even when the initial state |Ψ(0)〉 is not very
entangled and therefore can be properly represented with
a TPS/PEPS with small bond dimension D, entangle-
ment in the evolved state |Ψ(t)〉 will typically grow with
time t and a small D will quickly become insufficient.
Incrementing D results in a huge increment in computa-
tional costs, which means that only those rare evolutions
where no much entanglement is created can be simulated
in practice.

For demonstrative purposes, here we have simulated
the response of the ground state |ΨGS〉 of the HCBH
model at half filling (ρ = 0.5 or µ = 0) when the Hamil-
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or µ1, µ2 ≥ 4) is markedly different from that between
ground states in the superfluid region (−4 ≤ µ1, µ2 ≤ 4),
where the properties of the system vary continuously.
Moreover, similarly to what has been observed for the
2D quantum Ising model16 or in the 2D quantum XYX
model19, the presence of a continuous quantum phase
transition between insulating and superfluid phases in the
2D HCBH model is signaled by pinch points of f(µ1, µ2)
at µ1 = µ2 = ±4. That is, the qualitative change in
ground state properties across the critical point is evi-
denced by a rapid, continuous change in the fidelity per
lattice site as one considers two ground states on opposite
sides of the critical point and moves away from it.

E. Time evolution

An attractive feature of the algorithms based on ten-
sor networks is the possibility to simulate (real) time
evolution. A first example of such simulations with the
iPEPS algorithm was provided in Ref.13, where an adi-
abatic evolution across the quantum phase transition of
the 2D quantum compass orbital model was simulated in
order to show that the transition is of first order.

The main difficulty in simulating a (real) time evolu-
tion is that, even when the initial state |Ψ(0)〉 is not very
entangled and therefore can be properly represented with
a TPS/PEPS with small bond dimension D, entangle-
ment in the evolved state |Ψ(t)〉 will typically grow with
time t and a small D will quickly become insufficient.
Incrementing D results in a huge increment in computa-
tional costs, which means that only those rare evolutions
where no much entanglement is created can be simulated
in practice.

For demonstrative purposes, here we have simulated
the response of the ground state |ΨGS〉 of the HCBH
model at half filling (ρ = 0.5 or µ = 0) when the Hamil-
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First MERA Applications

MERA: Kagome lattice Heisenberg model (Evenbly and Vidal, arXiv:0904.3383)

Confirms the hypothesis of a 36 sites VBC on the kagome lattice
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FIG. 3: (top) Bond energies for the 36-site unit cell of infi-
nite MERA wave-functions, for two different values of χ̃, as
compared to those of an exact honeycomb VBC, |h-VBC〉,
and those of a spin liquid, which by definition has all equal
strength bonds. The MERA wave-functions clearly match
the proposed honeycomb VBC; we identify (i) the six strong
‘pinwheel’ bonds (red bonds), the six ‘parallel’ bonds (green
bonds) and (iii) the 12 ‘perfect hexagon’ bonds (blue bonds).
The (iv) remaining 48 bonds are the weak bonds of the
unit cell. (bottom) Bond energies for the 36-site lattice.
Here a randomly initialized MERA converges to a dimerized
state that does not match the honeycomb VBC pattern, but
gives lower overall energy than a honeycomb VBC initialized
MERA of the same χ̃.

pattern, even though the rest of bonds (weak bonds)
need not have zero energy. The ‘honeycomb’ VBC was
originally proposed by Marston and Zeng [2] (see also
[4, 6, 7]). Our simulations with N = 144 and N = ∞
produce a VBC of this type as the best MERA approxi-
mation to the ground state.

The energies obtained for an infinite lattice are shown
in Table I. For each value of χ̃, the MERA is an explicit
wave-function and therefore provides an upper bound to
the exact ground state energy. Energies computed for
the N = 144 lattice matched those of the infinite lattice
to within 0.02% and have been omitted. These N = ∞
energies also match closely those obtained by series ex-
pansion in Ref. [6], and are lower than those obtained
in Ref. [16] with DMRG (E = −0.43111 for N = 108)
and in Ref. [14] with fermonic mean-field theory and
Gutzwiller projection (E = −0.42863 for N = 432). We
further notice that, where finite size effects are still rele-
vant, such as in the N = 108 case, they tend to decrease
the ground state energy.

Fig. 3 shows the distribution of bond energies obtained

FIG. 4: Spin-Spin correlators along arrows ‘A’ and ‘B’ of Fig.
2 for infinite lattice MERA of χ̃ = 4 and χ̃ = 16. Although
along both lattice directions considered the correlators decay
exponentially, the decay along arrow ‘A’ (a line joining two
perfect hexagons) is seen to be slower than along arrow ‘B’
(a line joining perfect hexagon to pinwheel). The plateaus
marked (i), (ii) and (iii) show the correlation is the same with
both spins of a strong bond.

for the N = ∞ lattice. With χ̃ = 4, one observes an en-
ergy increase per site over |h-VBC〉 of ≈ 0.08 in the par-
allel (green) bonds and also in some of the hexagon (blue)
bonds, with the weak bonds having lower energy in re-
turn. As χ̃ is increased, the energy of the ‘strong’ bonds
becomes slightly larger and that of the ‘weak’ bonds con-
tinues to decrease. However, the dimerization clearly sur-
vives: the bond energies are not seen to converge to a
uniform distribution as required for a SL.

Fig. 4 shows spin-spin correlators evaluated along two
different lattice axis A and B (cf. Fig. 2) for N = ∞.
These correlators decay exponentially with well defined
‘plateaus’, where the correlation is the same with both
spins of a strong bond. Correlations along the line join-
ing a perfect hexagon and a pinwheel are seen to decay
faster than along the line joining two perfect hexagons,
consistent with the observation from Fig. 3 that the per-
fect hexagon bonds remain almost exact singlets even for
high values of χ̃. Table II shows bond-bond connected
and disconnected correlators, C1,α and D1,α,

C1,α ≡
〈(

"S · "S
)

1

(
"S · "S

)

α

〉
(4)

D1,α ≡ C1,α −
〈(

"S · "S
)

1

〉 〈(
"S · "S

)

α

〉
, (5)

between a reference bond ‘1’ and a surrounding bond
α = 1, · · · , 14 (cf. Fig.2). While disconnected correlators
decay exponentially with distance, some connected cor-
relators remain significant at arbitrary distances, demon-
strating the long-range order of the VBC state.

Let us discuss the results for a lattice with N = 36

2

a VBC ground state in the thermodynamic limit. Our
results are also the first demonstration of the utility of
entanglement renormalization to study 2D lattice mod-
els that are beyond the reach of quantum Monte Carlo
techniques.

The present approach is based on the coarse-graining
transformation of Fig. 1, which is applied to a kagome
lattice L0 made of N sites. It maps blocks of 36 sites
of L0 onto single sites of a coarser lattice L1 made of
N/36 sites. A Hamiltonian H0 defined on lattice L0 be-
comes an effective Hamiltonian H1 on lattice L1. Anal-
ogously, the ground state |Ψ0〉 of H0 is transformed into
the ground state |Ψ1〉 of H1. The transformation decom-
poses into three steps. Firstly disentanglers u, unitary
tensors that act on 9 sites, are applied across the cor-
ners of three neighboring blocks. Then disentanglers v
are applied across the sides of two neighboring blocks;
these tensors reduce ten sites (each described by a vector
space C2 of dimension 2) into two effective sites (each
described by a vector space Cχ̃ of dimension χ̃). Finally
isometries w map the remaining sites of each block into
a single effective site of L1. Thus the tensors u, v and w,

u† : C2
⊗9 → C2

⊗9, u†u = I29 ,

v† : C2
⊗10 → Cχ̃

⊗2, v†v = Iχ̃2 ,

w† : C2
⊗6 ⊗ Cχ̃

⊗6 → Cχ, w†w = Iχ, (1)

transform the ground state |Ψ0〉 of lattice L0 into the
ground state |Ψ1〉 of lattice L1 through the sequence

|Ψ0〉
u→ |Ψ′

0〉
v→ |Ψ′′

0〉
w→ |Ψ1〉. (2)

The disentanglers u and v aim at removing short-range
entanglement across the boundaries of the blocks; there-
fore states |Ψ′

0〉 and |Ψ′′
0〉 possess decreasing amounts of

short range entanglement. If state |Ψ0〉 only has short-
range entanglement to begin with, then it is conceivable
that the state |Ψ1〉 has no entanglement left at all. For a
finite lattice (N = 144) we consider a state |Ψ0〉 that after
the coarse graining transformation give rise to an entan-
gled state |Ψ1〉 on N/36 = 4 sites. For an infinite lattice
we will instead make an important assumption, namely
that |Ψ1〉 is a product (non-entangled) state. How short-
ranged must the entanglement in |Ψ0〉 be for this assump-
tion to be valid? By reversing the transformation on a
product state |Ψ1〉, it can be seen that each site in |Ψ0〉
is still entangled with at least 84 neighboring sites.

The disentanglers and isometries (u, v, w) were initial-
ized randomly and then optimized so as to minimize the
expected value of the KLHM Hamiltonian,

H0 = J
∑

〈i,j〉

Si · Sj , (3)

by following the algorithms of Ref. [25], with cost
O(212χ̃6χ2). Specifically, for lattices with N = 36 and

FIG. 2: (Color on-line) The 36-site unit cell for the honey-
comb VBC, strong bonds are drawn with thick lines. Three
different types of strong bonds can be identified; the six bonds
belonging to the pinwheels (red), six bonds belonging to each
‘perfect hexagon’ (blue) and the parallel bonds between per-
fect hexagons (green). Dotted arrows indicate the axis where
spin-spin correlators have been computed. Bond-bond cor-
relators have been computed between the reference bond (1)
and the other numbered bonds.

144 sites, the resulting (one-site and four-site) Hamilto-
nian H1 is diagonalized exactly. Instead, for N = ∞,
we use the finite correlation range algorithm (Sect. V.D
of ref. [25]). All computations led to highly dimerized
wave-functions of the VBC type. In order to explain the
results, consider the exact ‘honeycomb’ VBC state, de-
noted |h-VBC〉, whose 36-site unit cell is shown in Fig. 2.
Each unit cell contains two ‘perfect hexagons’ (resonat-
ing bonds around a hexagon) and a ‘pinwheel’. Three
different types of strong bonds can be identified: those
of the pinwheels (red), parallel bonds (green) and per-
fect hexagons (blue). The pinwheel and parallel bonds
are singlets (energy per bond = −0.75) while the perfect
hexagons are in the ground state of a periodic Heisenberg
chain of 6 sites (energy per bond = −0.4671). The rest
of links have zero energy. We call a ‘honeycomb’ VBC
a state that has strong bonds according to the above

TABLE I: Ground state energies as a function of χ̃

χ̃ N = ∞ N = 36 N = 36

(rand init) (|h-VBC〉 init)

2 -0.42145 -0.42164 -0.42143

4 -0.42952 -0.42816 -0.42715

8 -0.43081 -0.43199 -0.43148

12 -0.43114 -0.43371 -0.43298

16 -0.43135 -0.43490 -0.43420

20 -0.43162 -0.43611 -0.43541



Conclusion

DMRG is a highly successful method to treat 1D quantum mechanical 
many body systems at T=0, based on density matrix driven truncation.

Many extension have been put forward which allow to calculate spectral
functions, real time evolution, classical systems in 2D, finite temperature
properties, dissipation, .... 

Quantum information theory provided deep insights in the possibilities and
limitations of DMRG and proposes new setups to extend DMRG to 2D.
However the efficiency of 1D DMRG has not yet been achieved in 2D.
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