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Outline

® Tower of States (from yesterday’s ED lecture)
Ison’s RG
nite’s DMRG

® \What can you do with DMRG 7

® Ground states, correlation functions

® Dynamical correlation functions
® Real-time evolution
® Classical systems in higher dimension

® Finite Temperature properties

® DMRG++, MPS, PEPS, MERA, ITEBD, IPEPS




Continuous symmetry breaking and “Tower of States”




“Tower of States” spectroscopy

® What are the finite size manifestations of a continuous symmetry breaking ?

® Low-energy dynamics of the order parameter
Theory: PW. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -

® Dynamics of the free order
Continuum parameter is visible in the finite size
spectrum. Depends on the continuous
symmetry group.
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® U(1): (59?2 SU(2): S(S+1)

Tower of

States : .
® Symmetry properties of levels in the

Tower states are crucial and constrain

the nature of the broken symmetries.
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Tower of States
S=1 on triangular lattice

® Bilinear-biguadratic S=1 model on the triangular lattice (model for NiGaSa).

AML, F. Mila, K. Penc, PRL ‘06



Tower of States
S=1 on triangular lattice

® Bilinear-biguadratic S=1 model on the triangular lattice (model for NiGaSa).

H =) cos(d) S;-S;+sin() (S;-S,;)’

AML, F. Mila, K. Penc, PRL ‘06



Tower of States
S=1 on triangular lattice: Antiferromagnetic phase

SU(3)

i ® 93=0: coplanar magnetic

& order,

120 degree structure

® Breaks translation symmetry. Tree site unit cell
= nontrivial momenta must appear in TOS

® non-collinear magnetic structure
= SU(2) is completely broken,

number of levels in TOS increases with S

® Quantum number are identical to the S=1/2 case




Tower of States
S=1 on triangular lattice: Ferroquadrupolar phase

SU(3)

v ® S5=-1/2 : ferroquadrupolar phase, finite
guadrupolar moment, no spin order

® No translation symmetry breaking.
= only trivial momentum appears in TOS

)

® Ferroquadrupolar order parameter, only even S

® all directors are collinear
= SU(2) is broken down to U(1),

number of states in TOS is independent of S.
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Tower of States
S=1 on triangular lattice: Antiferroquadrupolar phase

® Breaks translation symmetry. Tree site unit cell
= nontrivial momenta must appear in TOS

® Antiferroquadrupolar order parameter, complicated
S dependence. Can be calculated using group
theoretical methods.

AFQ, 6=37/8 -
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Density Matrix Renormalization Group

® K. Wilson introduced the numerical renormalization group as a powerful
numerical tool to solve the Kondo problem (Wilson RMP 75).
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® Many people tried to apply this idea in a straightforward way to quantum
many body problems and failed. The reason for this failure was understood In
a study of the tight-binding problem on a chain (White & Noack PRL 92):
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The groundstate of the large system is not at all
well approximated by the tensor product of the
groundstates of the smaller systems
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Density Matrix Renormalization Group

® The next crucial step was to realize how one has to choose the states
to be kept in a partition of the universe:

H=Hs+ Hg + Hsg
groundstate |¥)

—Nvironment

® System description with m states:
™m
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® How to choose the m states in order to approximate |¥) best ?




Density Matrix Renormalization Group

® The answer is given by the subsystem density matrix
pi; = Tre|Y) ()

® With the help of the Schmidt decomposition one can show that the
m eigenfunctions of P associated with the largest eigenvalues wn give
the best approximation of |v) . (and not the lowest eigenstates of Hs)

® The error can be estimated to be

)~ 0)] ~ 1Y w. =P,
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Density Matrix Renormalization Group

® Based on these condsiderations, S.R. White came up with the DMRG
S.R. White, PRL 69, 2863 (1992); PRB 48,10345 (1993).




Density Matrix Renormalization Group

® Based on these condsiderations, S.R. White came up with the DMRG
S.R. White, PRL 69, 2863 (1992); PRB 48,10345 (1993).

® Infinite System Algorithm




Density Matrix Renormalization Group

® Based on these condsiderations, S.R. White came up with the DMRG
S.R. White, PRL 69, 2863 (1992); PRB 48,10345 (1993).

® Infinite System Algorithm 1 O O O O




Density Matrix Renormalization Group

® Based on these condsiderations, S.R. White came up with the DMRG
S.R. White, PRL 69, 2863 (1992); PRB 48,10345 (1993).

® Infinite System Algorithm 1 O O O O
2 ] OO [=




Density Matrix Renormalization Group

® Based on these condsiderations, S.R. White came up with the DMRG
S.R. White, PRL 69, 2863 (1992); PRB 48,10345 (1993).

® Infinite System Algorithm 1 O O O O
2 ] OO [=

: OO




Density Matrix Renormalization Group

® Based on these condsiderations, S.R. White came up with the DMRG
S.R. White, PRL 69, 2863 (1992); PRB 48,10345 (1993).

® Infinite System Algorithm O OO0
2 "] O O [«
3 OO
4 OO




Density Matrix Renormalization Group
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Density Matrix Renormalization Group

® Based on these condsiderations, S.R. White came up with the DMRG
S.R. White, PRL 69, 2863 (1992); PRB 48,10345 (1993).
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Applicability of ground state DMRG

® Very efficient groundstate simulations for many 1D systems.
Frustration or fermions pose no particular problem.

® Typical system sizes and number of states:
simple spin systems: 100-1000 sites, lower hundred states
complicated spin systems: hundred sites, larger hundred to thousand states
fermionic systems, wide systems, many low energy states, they all increase m

® Variational, quasi-exact method.
® Wavefunction method, therefore many observables are easily available.

® Drawbacks: it is not yet possible to simulate very large 2D systems,
open boundaries might not always be what we desire, especially
because of the lack of spatial guantum numbers.




Infinite System Algorithm in Detall

. Form a superblock containing L sites which is small enough to be exactly
diagonalized

. Diagonalize the superblock Hamiltonian H; ©° numerically, obtaining only
the ground state eigenvalue and eigenvector |¢) using Lanczos or Davidson.

. Form the reduced density matrix 0;;/ for the new system block from ) using
Pii’ = Ziﬁj%"]‘.

J
. Diagonalize P74’ with a dense matrix diagonalization routine to obtain the m
elgenvectors with the largest eigenvalues

. Construct H; 1 and other operators in the new system block and transform
them to the reduced density matrix eigenbasis using Hj,; = O H;10¢
where the columns of O contain the the m highest eigenvectors of Pii’ .

. Form a superblock of size L+2 using H 1+1, two single sites and H ﬁl.

. Repeat starting with step 2, substituting H; """ for H ™"




—fficiency

® Efficient multiplication of H; ©°" with a vector is important. Wave function
transformation yields significant speedup.

® Computational cost: L m?
Memory cost: (L) m?

® Abelian guantum numbers Np and Sz can be implemented. They render the
matrices block sparse, but require book keeping effort.

® Nonabelian quantum numbers [e.g. S(S+1)] can be implemented, but gives
more complex code.

® Writing to disk. Information not needed at the current step can be stored on
disk.




—xtension to ladder systems

® 1D algorithm folded into 2D

® finite size algorithm needed

® Convergence depends strongly
on width of system

® Exponential effort in width for

spinless fermions
system block environment block




DMRG Applications
The S=1/2 Kagome Strips

1st Kagome Strip (Azaria et al, 1998)

.—/ \-

— 0.0
0.7 S.R. White & R.R.P. Singh PRL (2000)

2nd Kagome Strip (Waldtmann, Everts et al, 2000)
undoped, Heisenberg model

AML, unpublished
doped <n>=2/3 — 3 site singlets

AV YOO KKY

M. Indergand, AML, S. Capponi, M.Sigrist, PRB (2006)




DMRG Applications
Triangular lattice Heisenlberg model

® \Very accurate determination of order parameter using special aspect ratio
to suppress leading finite size corrections.

See White & Chernyshev, PRL 99,
127004 (2007)

Tos

AE ~0.3%, A<S,>~0.01




—xtensions:
Dynamical DMRG (D-DMRG)

® Dynamical correlation function
G(k,w = (ol Al (w +in — H) ™" Akt

additional density matrix eigenstates must be “targeted”

® [anczos vector method: target Krylov vectors (Hallberg 1995)

o), Al o), HAL|wo), H2A] [4o), ...

® Correction vector method: target vectors: (White & Kuehner 1999)
» —1
o), Aplto), (w+in— H)™ Al]eo)

more accurate than Lanczos vector method, but requires new run for each W

® Minimization method (DDMRG) (Jeckelmann 2002)
correction vector minimizes certain functional and value of functional at minimum
IS the requested spectral weight. more accurate than correction vector




D-DMRG:
—xample for photoemission spectrum

Comparison with ARPES on TTF-TCNQ
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(Sing et al., 2003)
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Time dependent DMRG (t-DMRG)

® Time evolution | (1)) = exp|—iHt||1(0))

typicaly H = Ho + H10(t).  [¥(0)) = |pg) or AT|ag) -

® DMRG Approaches to time evolution

Runge Kutta integration of 1%0) DMRG (Cazallila & Marston 2002)
only good at small times due to static Hilbert space

 Division of expl-iHt] into two site parts which are exactly applied
(Vidal; White et al; Daley et al 2003/4) SUzUKi- Trotter decomposition, quantum gates.

Expansion of exp|-iHt] in Krylov Basis (Schmitteckert; Manmana et al, 2004)
multi-target method

® Applications: Tunnel current between Luttinger liquids
Transport current in a quantum dot
Quench dynamics
Dynamical correlation functions (Fourier transform)




Application of t--DMRG
Quench in the Bose Hubbard model

® Start with 1D superfluid initial state, then quench to large U/J value !
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Finite Temperature

® Many ideas

® Use Boltzmann weights to weight target states in mixed density matrix
Works only at low T, but that’s also the region where finite size effects
are important (Moukouri & Caron 1996)

® Transfer Matrix DMRG (Bursill et al “1996; Wang & Xiang 1997)
Uses Suzuki-Trotter decomposition to map onto 1+1 classical system
Perform DMRG on the Suzuki- Trotter lattice for the transfer matrix
Imaginary time discrete, but directly for infinite system.

® Purification approach: (e.g. Feiguin & White, 2005)
Infinite temperature density matrix of a system can be represented as a pure
state of enlarged system. Perform imaginary time evolution to lower
temperature T and measure desired quantities (also real-time simulations).




More extensions

Classical transfer matrices (2D stat mech problem)
Non-equilibrium classical systems (reaction-diffusion)
Momentum space DMRG (accurate at small U/t)

Quantum chemistry
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Tensor Networks

® A nice graphical way to represent tensors and their contractions

Vector Matrix rank 3 tensor

. o =@

84




Tensor Networks

® A nice graphical way to represent tensors and their contractions

Vector Matrix rank 3 tensor




Tensor Networks as wave functions

® Matrix Product State (MPS) A[ O‘] 3
x,

Can satisfy

® Tensor Product States (TPS), Projected Entangled Pair States (PEPS) (Verstraete & Cirac)

Can satisfy
2D Area laws

® Multiscale Entanglement Renormalization Ansatz (MERA) (Vidal)

Can satisfy
2D Area laws




Tensor Networks as wave functions

® Instead of exponential number of coefficients in the wave functions
only O(N d xP) coefficients are needed (p=2 for MPS, p=4 for PEPS)

® These tensor networks can be seen as variational wave functions

® The proposed algorithms (PEPS, MERA, ...) contain recipes on how to
optimize the network to give the lowest energy for a chosen Hamiltonian

® Not all networks are equally easy to handle.
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PS

® Assume a translationally invariant ansatz with two matrices in the case
of MPS (i-TEBD) or two different tensors in the case of PEPS (i-PEPS)

® Perform imaginary time evolution in order to anneal to the ground state

® i-TEBD is already quite popular as an alternative to DMRG in 1D, and is
simple to implement (| saw a Matlab code with 71 lines for the 1D Q-Ising model)




First (finite size) PEPS Applications

® PEPS: Frustrated J+-J2-J3 Square lattice (Murg et al., arXiv:0901.2019)

® Square lattices with open boundary conditions




First (finite size) PEPS Applications

® PEPS: Frustrated J+-Jo-Jz Square lattice (Murg et al., arXiv:0901.2019)

® Square lattices with open boundary conditions

S(n/2,7/2)

o
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® PEPS: Frustrated J+-J2-J3 Square lattice (Murg et al., arXiv:0901.2019)
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First (finite size) PEPS Applications

® PEPS: Frustrated J1-J2-J3 Square lattice (Murg et al., arXiv:0901.2019)

® Square lattices with open boundary conditions

I I I I I I

-0.49 -0.16 -0.39 -0.20 -0.39 -0.16 -0.49

0.48 0.43 0.52 0.50 0.49 0.51 0.43
-0.45 -0.16 -0.37 -0.20 -0.37 -0.16 -0.44

-0.15 -0.15 -0.10 -0.10 -0.10 -0.10 -0.15 -0.
-0.52 -0.12 -0.44 -0.15 -0.45 -0.12 -0.52

-0.38 -0.35 0.46 0.44 0.44 0.46 -0.36 -
-0.50 -0.12 -0.43 -0.15 -0.44 -0.12 -0.50

-0.19 -0.19 -0.12 -0.13 -0.12 -0.13 -0.19 -
-0.51 -0.12 -0.44 -0.15 -0.44 -0.12 -0.50

-0.38 -0.35 0.45 0.44 0.44 0.45 -0.36 -
-0.52 -0.11 -0.45 -0.15 -0.45 -0.11 -0.52

-0.15 -0.15 -0.10 -0.10 -0.10 -0.10 -0.15 -0.
-0.45 -0.15 -0.37 -0.19 -0.36 -0.16 -0.44

0.48 0.43 0.51 0.50 0.50 0.52 0.44
-0.49 -0.15 -0.39 -0.20 -0.39 -0.16 -0.49




First I-PEPS Applications

® PEPS: Hardcore bosons on the square lattice (Jordan et al., arXiv:0901.0420)
equivalent to S=1/2 XY model
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First MERA Applications

® MERA: Kagome lattice Heisenberg model (Evenbly and Vidal, arXiv:0904.3383)

® Confirms the hypothesis of a 36 sites VBC on the kagome lattice
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Conclusion

® DMRG is a highly successful method to treat 1D quantum mechanical
many body systems at 1=0, based on density matrix driven truncation.

® Many extension have been put forward which allow to calculate spectral
functions, real time evolution, classical systems in 2D, finite temperature
properties, dissipation, ....

® Quantum information theory provided deep insights in the possibilities and
limitations of DMRG and proposes new setups to extend DMRG to 2D.
However the efficiency of 1D DMRG has not yet been achieved in 2D.
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Thank you !



