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Many-body localization of Z3 Fock parafermions
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We study the effects of a random magnetic field on a one-dimensional (1D) spin-1 chain with correlated
nearest-neighbor XY interaction. We show that this spin model can be exactly mapped onto the 1D disordered
tight-binding model of Z3 Fock parafermions (FPFs), exotic anyonic quasiparticles that generalize usual spinless
fermions. Thus, we have a peculiar case of a disordered Hamiltonian that despite being bilinear in the creation
and annihilation operators, exhibits a many-body localization (MBL) transition owing to the nontrivial statistics
of FPFs. This is in sharp contrast to conventional bosonic and fermionic quadratic disordered Hamiltonians
that show single-particle (Anderson) localization. We perform finite-size exact diagonalization calculations of
level-spacing statistics, fractal dimensions, and entanglement entropy, and provide convincing evidence for the
MBL transition at finite disorder strength.
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I. INTRODUCTION

The interplay between interparticle interactions and dis-
order in low-dimensional quantum many-body systems has
been extensively studied in recent decades [1–3] and remains
an active research area (for reviews, see, e.g., Refs. [4,5]).
Numerous studies of interacting quantum many-body systems
provide a strong indication of a transition to the many-
body localized (MBL) phase at a sufficiently strong disorder.
In the MBL phase, the eigenstate thermalization hypothesis
(ETH) is violated [6–11], which leads to protection of quan-
tum states from decoherence. Recent studies of the MBL
phase also demonstrate area-law entanglement of eigenstates
[12–15] and vanishing steady transport [16–19]. Some of
these properties can be understood with the help of emerging
quasilocal conserved charges [20–22]. Numerically, one char-
acterizes the MBL transition by the level-spacing statistics
[23–28], participation entropies [29,30], entanglement struc-
ture of eigenstates [14,27,31], quantum correlations between
the neighboring states [24,32], and occupation spectra of one-
particle density matrices [33–35].

In the vast majority of cases, the MBL problem is ex-
tremely challenging for analytical treatments and, to a large
extent, the progress in this field is driven by numerical investi-
gations. Most commonly, the focus is on the one-dimensional
(1D) systems due to the computational limitations, although
recent works provide evidence of MBL in two-dimensional
systems [36–38]. Paradigmatic examples of systems studied
in the context of MBL are various spin- 1

2 chains and lad-
ders [24,39,40] and interacting single- and two-component

*M.S.B. and W.B. contributed equally to this work.

fermions, e.g., the Hubbard model [41,42]. However, even in
one dimension, the physics can be much richer as the class
of available physical models is much broader. For instance,
models of interacting spins with the value of spin higher than
1
2 often behave in a drastically different way from their spin- 1

2
counterparts, starting from the famous Haldane conjecture
[43,44]. Moreover, low-dimensional systems can host exotic
particles with nontrivial statistics that interpolates between
the conventional bosonic and fermionic ones [45–49]. While
there is a large number of studies dedicated to both higher-spin
chains and anyons in one dimension (see, e.g., Refs. [50–56]),
their behavior in the presence of disorder has so far received
little attention and many questions remain poorly addressed.

In this paper, we make a step to fill in this gap. We study
a 1D spin-1 chain with correlated nearest-neighbor XY inter-
actions in the presence of a random magnetic field. Whereas
the spin- 1

2 XY model is dual to free spinless fermions in a
lattice and exhibits single-particle (Anderson) localization in
the presence of disorder, this is no longer true for the spin-
1 XY chain. Indeed, the latter is nonfree and nonintegrable
even without any correlations in the interaction [44,57,58].
Performing exact diagonalization calculations, we show that
in the presence of a sufficiently strong random magnetic field,
the spin-1 model of XY type shows evident signatures of the
MBL transition.

Further, we show that the XY-like spin-1 chain in a
random field can be exactly mapped onto the tight-binding
chain with on-site disorder. Interestingly, this tight-binding
model is written in terms of the so-called Z3 Fock
parafermions (FPFs), which are exotic quasiparticles that
generalize usual spinless fermions by increasing the dimen-
sionality of their Hilbert space [59,60]. Recently, the FPF
tight-binding model in the absence of disorder was studied
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in Ref. [61], where it was shown that the model is neither
free nor integrable, despite being bilinear in the creation and
annihilation operators of FPFs and having no explicit interac-
tion terms. Thus, our results can be alternatively formulated
as follows: the quadratic tight-binding model of Z3 FPFs
exhibits many-body localization (and not the single-particle
one) in the presence of a random on-site potential solely due
to the nontrivial FPF statistics. Low-energy properties of the
generalized FPF tight-binding model that includes coherent
pair hopping terms were also recently investigated [62], as
well as the effects of dissipation on the FPF tight-binding
chain [63].

This paper is organized as follows: In Sec. II, we present
the generalized spin-1 XY-like model of our study and dis-
cuss its main properties. In Sec. III, we briefly review Zn

FPFs, discuss their relation to spin-1 operators for n = 3, and
map the spin-1 chain onto the FPF tight-binding model. To
characterize the MBL transition, we exploit the standard set
of localization probes, presented in Sec. IV. Our numerical
results are presented in Sec. V, and in Sec. VI we conclude.

II. SPIN-1 CHAIN WITH CORRELATED XY INTERACTION

We consider a spin-1 model with correlated XY interactions
between the neighboring spins, defined on the chain of L sites
with periodic boundary conditions. The Hamiltonian reads

H = −J

2

L∑
j=1

(S−
j ei� j S+

j+1 + H.c.) +
L∑

j=1

h jS
z
j, (1)

where we introduced a Hermitian phase operator � j that reads

� j = φ
(
1 − Sz

j

)
, (2)

with a real-valued constant φ. In Eq. (1), the coupling constant
is denoted by J and, in what follows, we set J = 1, the uncor-
related random magnetic field amplitudes h j are drawn from
the uniform distribution [−W,W ], and Sα

j with α ∈ {z,±}
are the spin-1 operators acting nontrivially on the jth site,
obeying the commutation relations

[S+
j , S−

k ] = 2δ jkSz
j,

[
Sz

j, S±
k

] = ±δ jkS±
j , (3)

with δ jk being the Kronecker delta.
Hamiltonian (1) clearly possesses the U(1) symmetry as-

sociated with the conservation of total magnetization, M =∑L
j=1 Sz

j . In what follows, we take L to be even and restrict
ourselves to the M = L/2 magnetization sector. In addition,
we impose the constraint

L∑
j=1

h j = 0, (4)

in order to ensure that midspectrum eigenstates taken from
different disorder realizations are located in the vicinity of
one and the same energy density. Sampling random numbers
subject to a fixed-sum constraint can be accomplished by
using the Dirichlet-rescale algorithm [64].

At zero phase φ = 0, Hamiltonian (1) is simply the dis-
ordered spin-1 XY model. In the absence of disorder, it has
been well studied, e.g., in Refs. [57,58,65–68]. Recently, a
generalized version of the XY model in the clean limit was

shown to host a set of many-body scar states [69]. Despite
its simple form, the spin-1 XY chain is nonintegrable, unlike
its spin- 1

2 counterpart that can be mapped onto free spinless
fermions after the Jordan-Wigner transformation. Intuitively,
this drastic difference between the spin-1 and spin- 1

2 cases
can be understood as follows. Let us note that the 1D spin-s
XY model can be viewed simply as describing the hopping
of bosonic particles with the ladder operators B†

j and B†
j .

However, Bj and B†
j are not the traditional bosonic operators

as they are subject to the hard-core constraint

〈B†
j B j〉 � 2s. (5)

This is where the difference between s = 1
2 and s = 1 comes

into play. In the former case, the constraint (5) restricts both
the occupation of a given lattice site j and the real-space
ordering of particles. Thus, particles can neither meet nor
exchange their positions, so that there can be no many-
body effects. The situation is completely different for s = 1
since now two hard-core bosons can occupy the same lattice
site. This allows particles to exchange their positions and
hence leads to an effective hard-core interaction. Therefore,
the spin-1 case clearly corresponds to a genuinely many-body
system. We emphasize that the same hard-core interaction can
be provided by adding to the spin- 1

2 XY chain additional terms
responsible for the next-nearest-neighbor XY spin-spin inter-
actions [40]. On the other hand, one can eliminate the effective
hard-core interaction from the spin-1 XY chain by including
an explicit interaction term of the form U

∑
j Sz

j (S
z
j − 1) with

U → +∞ [70]. This reduces many-body dynamics to the
single-particle one and any finite disorder localizes all eigen-
states.

In Sec. V, we show that the spin-1 XY model with a
random magnetic field [i.e., the Hamiltonian (1) with φ = 0]
indeed exhibits behavior consistent with the MBL transition
(see Fig. 1), unlike the spin- 1

2 XY model that shows single-
particle localization. It is natural to expect that the existence
of the MBL phase is not specific to φ = 0. Further, in Sec. V,
we demonstrate that for φ = 2π/3, the Hamiltonian (1) also
exhibits strong evidence for the MBL transition. We expect
that the same is true for arbitrary values φ, but in this work
we focus exclusively on the point φ = 2π/3. As we will
demonstrate in the next section, in this regime Hamiltonian (1)
acquires an interesting interpretation in terms of the so-called
Z3 FPFs.

III. MAPPING TO FOCK PARAFERMIONS

A. Zn Fock parafermions

We now proceed with a brief overview of Zn FPFs. For
a more detailed discussion, see, e.g., Ref. [59], where FPFs
were first introduced. FPFs are anyonic quasiparticles that
generalize the usual identical fermions by enlarging the di-
mensionality of the Fock space. Whereas for spinless fermions
the local Hilbert space on a lattice site is two dimensional, for
Zn FPFs it is n dimensional. Thus, introducing the FPF cre-
ation and annihilation operators, F †

j and Fj correspondingly,
one has

F † m
j |0〉 = |mj〉, 0 � m � n − 1, (6)
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FIG. 1. Left panel: The average ratio of the minimum to max-
imum neighboring minigaps as a function of disorder strength for
the Hamiltonian (22) with φ = 0 and φ = 2π/3 represented by, re-
spectively, the upper and lower sets of curves at several system sizes.
Statistical errors are smaller than the marker sizes. The expectation
values 〈r〉 ≈ 0.536, 〈r〉 ≈ 0.600, and 〈r〉 ≈ 0.386 for, respectively,
GOE, GUE, and Poissonian level statistics are indicated by dashed
lines. The vertical bar indicates the critical disorder strength for
φ = 2π/3 found through the finite-size scaling collapse displayed
in the right panel. Right panel: A finite-size scaling collapse of the
data from the left panel for φ = 2π/3 with fitted critical parameters
Wc = 7.70 ± 0.03 and ν = 1.29 ± 0.02. See the main text for details.

where |0〉 is a vacuum, and |mj〉 is a Fock state with m FPFs
on the jth site and nothing on the rest of the chain. In other
words, one can have up to n − 1 identical FPFs in the same
state. For a general many-particle Fock state, the action of F †

j
and Fj is a bit more involved [59],

F †
j | . . . , mj, . . .〉 = ω−∑ j−1

k=1 mk | . . . , mj + 1, . . .〉,
Fj | . . . , mj, . . .〉 = ω

∑ j−1
k=1 mk | . . . , mj − 1, . . .〉, (7)

where ω is the nth primitive root of unity,

ω = e2π i/n. (8)

FPF creation and annihilation operators satisfy the following
relations:

F † n
j = F n

j = 0, F † m
j F m

j + F n−m
j F † n−m

j = 1, (9)

with 1 � m � n − 1, whereas for operators acting on different
sites, one has

FjFk = ωsgn(k− j)FkFj, F †
j Fk = ω−sgn(k− j)FkF †

j , (10)

where sgn(x) is the sign function. Thus, Eqs. (9) and (10) al-
low one to bring any monomial in FPFs to the normal ordered
form. Then, we can introduce the particle number operator,

Nj =
n−1∑
m=1

F † m
j F m

j , (11)

which acts on the Fock states as

Nj | . . . , mj, . . .〉 = mj | . . . , mj, . . .〉, (12)

and satisfies the relations

[Nj, Fj] = −Fj, [Nj, F †
j ] = F †

j . (13)

Note that for n > 2, one has Nn
j �= Nj . One can easily check

that Eqs. (9)–(11) reduce to the standard fermionic relations
for n = 2. On the other hand, for n > 2, from Eq. (10) one
clearly sees that FPFs are anyonic-type particles with the
statistical parameter 2/n. In this case, the factor of ωsgn(k− j)

in Eq. (10) comes into play and leads to significant physical
consequences.

Just like the usual spinless fermions are related to the
spin- 1

2 Pauli operators σ x
j and σ z

j via the Jordan-Wigner trans-
formation, Zn FPF creation and annihilation operators can be
mapped to the generalized Zn Pauli operators Xj and Zj (also
called shift and clock operators) via the Fradkin-Kadanoff
transformation [71],

Fj =
j−1∏
k=1

Zk Bj, (14)

where Zk is the Zn generalization of the Pauli operator σ z
j and

the operator Bj is given by

Bj = n − 1

n
Xj − 1

n
Xj

n−1∑
m=1

Zm
j , (15)

with Xj being the Zn generalization of the Pauli operator σ x
j .

The operators Xj and Zj are unitary,

X †
j = X −1

j , Z†
j = Z−1

j , (16)

and satisfy the relations

X n
j = Zn

j = 1, X †
j = X n−1

j , Z†
j = Zn−1

j . (17)

These operators commute on different sites, XjZk = ZkXj for
k �= j, whereas on the same site they obey the commutation
relation

XjZ j = ωZjXj, (18)

with ω given by Eq. (8). Using Eq. (14), we see that the
number operator (11) can be written simply as

Nj =
n−1∑
m=1

B† m
j Bm

j , (19)

where we took into account that Zk is unitary and for k �= j
it commutes with both Zj and Xj . Finally, let us also mention
two useful identities,

Zj = ωNj = e
2π
n iNj ,

eτNj = 1 + (eτ − 1)
n−1∑
m=1

e(m−1)τ F † m
j F m

j , (20)

where τ is an arbitrary complex number. One can easily derive
Eq. (20), e.g., using the explicit matrix representations of FPF
operators given in the Appendix.

B. Spin-1 chain in terms of Z3 Fock parafermions

Let us now rewrite the Hamiltonian (1) of the spin-1 disor-
dered chain with correlated XY interactions in terms of FPFs.
Using the results of the Appendix and the previous section for
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the case of n = 3, we immediately obtain

Fj = 1√
2

j−1∏
k=1

Zk S+
j , Nj = 1 − Sz

j . (21)

Therefore, the spin chain Hamiltonian (1) in terms of Z3 FPFs
reads

H = −
L∑

j=1

(F †
j eiφNj Z†

j Fj+1 + H.c.) −
L∑

j=1

h jNj, (22)

where we used the fact that the operator (2) becomes � j =
φNj . Then, taking into account Eq. (20) with n = 3, we im-
mediately see that for φ = 2π/3, the exponential operator in
Eq. (22) cancels out with the factor of Z†

j . The remaining
Hamiltonian is then given by

H ′ = −
L∑

j=1

(F †
j Fj+1 + F †

j+1Fj + h jNj ), (23)

which is simply the tight-binding model of Z3 FPFs with an
on-site potential disorder.

The tight-binding Z3 FPF Hamiltonian (23) with h j ≡ 0
has been extensively studied in Ref. [61], and its general-
ized version that includes coherent pair-hopping terms was
investigated in Ref. [62]. It was shown that due to nontrivial
commutation relations (10) of the operators F †

j and Fj , the
FPF tight-binding Hamiltonian is nonintegrable despite be-
ing quadratic in FPF operators. In the absence of disorder,
the Hamiltonian (23) anticommutes with the parity operator
P = exp(iπNeven), where Neven is the number of excitations
on even lattice sites. This leads to the spectrum being sym-
metric around zero energy, and results in the occurrence of
zero-energy eigenstates.

We finish this section by noting that from a practical per-
spective, it is more convenient to rewrite the Hamiltonian (23)
in terms of the operators Bj and Zj since their commutation
relations are much simpler than those for Fj and F †

j . One
then has

H ′ = −
L∑

j=1

(B†
j Z jB j+1 + Z†

j B jB
†
j+1 + h jNj ), (24)

where the number operator Nj is in the form of Eq. (19).
Using the results of the Appendix, we immediately see that
the Hamiltonian (24) has complex matrix elements, which
indicates that the time-reversal symmetry is broken. In the rest
of the paper, we study the Hamiltonian (24) and demonstrate
strong evidence of the MBL transition at sufficiently strong
disorder.

IV. MBL CHARACTERIZATIONS

One of the contrasting signatures of the MBL phase is
the absence of quantum correlations between neighboring
many-body eigenstates. This implies vanishing level repul-
sion, which is directly manifested in level-spacing statistics.
We first analyze level repulsion in a given energy shell and
then characterize quantum correlations using the Kullback-
Leibler (KL) divergence [72].

An important quantity to probe level repulsion in the many-
body spectrum of the disordered model is the ratio of the
minimum to maximum neighboring minigaps,

ri = min(δi, δi+1)

max(δi, δi+1)
, δi = Ei − Ei−1, (25)

where Ei are the ordered energy eigenvalues. In the ergodic
phase, the level-spacing distribution obeys Wigner’s surmise
of the Gaussian unitary ensemble (GUE). On the other hand,
in the MBL phase, level repulsion is expected to vanish and
there is a Poissonian distribution (PS) of the level spacings
δi. As a result, the disorder-averaged value of 〈r〉 for the
Wigner-Dyson (WD) distribution is 〈r〉W ≈ 0.600. In the lo-
calized phase, this value is 〈r〉P = 2 ln 2 − 1 ≈ 0.386. [25].
Thus, the crossover from the chaotic value 〈r〉W to 〈r〉P when
disorder strength is increased captures the MBL transition.

To quantify the quantum correlations, we consider eigen-
states in the occupation (Fock) basis. For the model (23)
with L sites and a fixed number of parafermions M with, at
most, n − 1 = 2 parafermions on each site. If one introduces
the function Pz(q) that counts restricted partitions of a pos-
itive integer q with z being the maximal allowed summand,
then one has NH -dimensional Hilbert space, with NH =∑P(n−1) (M)

k=1 CL
k , where CL

k is the binomial coefficient. We an-
alyze many-body eigenstates in this basis |S〉 = |s1〉 ⊗ |s2〉 ⊗
. . . ⊗ |sL〉, with local states |si〉 ∈ {|0〉, |1〉, . . . , |n − 1〉}. The
KL divergence is then given as KL [32,72,73],

KL =
NH∑
s=1

|ψγ (s)|2 ln

( |ψγ (s)|2
|ψγ+1(s)|2

)
, (26)

where the eigenstates |ψγ 〉 are also ordered in energy. In the
MBL phase, spatial correlations of neighboring states vanish
and the ratio | ψγ (s)

ψγ+1(s) | is exponentially large if |ψγ (s)| is not
sufficiently small. On the other hand, in the thermal phase
states, |ψγ (s)| and |ψγ+1(s)| are strongly correlated with
| ψγ (s)
ψγ+1(s) | ∼ O(1) and KL ∼ O(1) also. Thus, one can equally

identify the onset of the MBL phase with increasing disorder
strength when an abrupt change of KL occurs.

Localization in the MBL phase is equally manifested in
the entanglement structure of eigenstates. We use the von
Neumann entanglement entropy (EE) to quantify the entan-
glement between two subsystems (A and B) after bipartiting
the chain in a left- and right-hand side,

SvN = −TrρA ln ρA, (27)

where ρA is the reduced density matrix for subsystem A. For
localized states, EE(LA) saturates with the size of subsystem
LA to a constant value, when LA > l , where l is a characteristic
correlation length. For thermal states, such behavior is not
obeyed and one should have the volume law for EE. Previous
numerical experiments indeed demonstrated that the EE obeys
area law in the MBL phase [12,31], whereas in the thermal
phase a volume law is satisfied.

Equipartition of the many-body eigenstates |ψγ 〉 in the
Hilbert space is a necessary condition for thermal behavior.
In the MBL phase, this is violated. We next characterize this
absence of thermalization in the computational basis. Frac-
tal dimensions Dq usually serve as a standard tool for this
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purpose. The set of Dq is determined from the scaling of
participation entropies Sq with NH ,

Sq = 1

q − 1
ln

⎛
⎝ NH∑

s=1

|ψγ (s)|2q

⎞
⎠ NH →∞−−−−→ Dq ln(NH ). (28)

Localized eigenstates |ψγ 〉 have a finite support set of |s〉 and
Sq’s do not scale with NH . The latter implies Dq = 0 for any
q > 0. On the other hand, thermal states satisfying ETH with
|ψα (s)|2 ∼ NH

−1 have Dq = 1. The multifractal states with
0 < Dq < 1 are nonergodic, albeit extended. In this study, we
confine ourselves to the second fractal dimension D2.

To ease the numerical treatment of the model (22), we
mapped the Hamiltonian onto a system of bosons using
the Fradkin-Kadanoff transformation (see Sec. III). We ex-
ploit shift-invert exact diagonalization to obtain a finite
window of eigenstates at zero energy for system sizes L ∈
{8, 10, 12, 14}. Due to the broken time-reversal symmetry,
the memory requirement to store the corresponding sparse
matrices is doubled, compared to the time-reversal symmet-
ric case. The Hilbert space dimension corresponding to the
largest system size is NH = 45 474. For all system sizes, the
total number of states in the considered ensemble is always
less than 1% of the total spectrum and the number of disorder
realizations is ND ∼ 103.

V. NUMERICAL RESULTS

Here, we present numerical evidence pointing towards the
presence of the MBL transition in the model described by the
Hamiltonian of Eq. (22). In all figures, statistical errors are
smaller than the marker sizes and are thus omitted.

First, we focus on the eigenvalue statistics through the aver-
age ratio of the minimum to maximum neighboring minigaps
of Eq. (25). Figure 1 shows the ensemble average of this quan-
tity as a function of the disorder strength at several system
sizes for φ = 0 and φ = 2π/3. At weak disorder strengths,
the GUE (Gaussian Orthogonal Ensemble [GOE]) value 〈r〉 ≈
0.600 (〈r〉 ≈ 0.536 for φ = 0) for ergodic systems is ap-
proached. For strong disorder, 〈r〉 tend towards the value for
Poissonian level statistics 〈r〉 ≈ 0.386. In the present con-
text, this indicates localization of the many-particle system.
Rescaling W → (W − Wc)L1/ν with numerically optimized
parameters Wc = 7.70 ± 0.03 and ν = 1.29 ± 0.02 results in
a universal curve, plotted in the right panel of Fig. 1. Uncer-
tainty estimates for the critical parameters have been obtained
by bootstrap analysis. The present finite-size scaling analysis
suggests the presence of the MBL transition in the thermody-
namic limit for both φ = 0 and φ = 2π/3 and hence supports
our qualitative picture presented in the previous sections.
Hereafter, we limit ourselves solely to the φ = 2π/3 case and
expect qualitatively similar results for other values of φ �= 0
(broken time-reversal symmetry).

Next, we focus on the statistical properties of the eigen-
states. First, we consider the KL divergence KL of Eq. (26).
Figure 2 shows the ensemble average of the KL divergence
for the eigenstates as a function of disorder strength at several
system sizes. Ergodic and correlated eigenstates are char-
acterized by 〈KL〉 = 1, which is observed at low disorder
strengths. In the thermodynamic limit, localized systems are
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FIG. 2. Top panel: The average KL divergence for φ = 2π/3 as
a function of disorder strength at several system sizes. The expecta-
tion value 〈KL〉 = 1 for ergodic systems is indicated by a dashed
horizontal line. The vertical line indicates the critical disorder
strength found by the finite-size scaling collapse of the average ratio
of the minimum to maximum neighboring minigaps. Statistical errors
are smaller than the marker sizes. Lower left panel: The distribution
of the KL divergence in the ergodic phase for several system sizes.
Lower right panel: The distribution of the KL divergence in the
many-body localized phase for several system sizes.

characterized by an extensive KL divergence. The crossing
points of the curves increase with increasing system size
rather significantly. As such, no quantitative estimate for the
critical disorder strength can be obtained. However, focusing
on the distribution of the KL divergence in the lower panels
of the figure, we observe two qualitatively different phases at
low (W ≈ 1.8) and high (W = 10.0) disorder strength. In the
thermal phase, the width of the Gaussian distribution of KL
shrinks with system size, exhibiting self-averaging behavior.
On the other hand, in the MBL phase, this feature is lost.

Next, we focus on the average eigenstate entanglement
entropy per lattice site. In the ergodic phase, the eigenstate
entanglement entropy obeys volume-law scaling. Figure 3
shows the average eigenstate entanglement entropy per site
for a decomposition of the system in equally sized left- and
right-hand sides. The data indicate that the system is in an er-
godic phase at low disorder strengths. Localized systems obey
area-law scaling of the eigenstate entanglement entropy. In the
thermodynamic limit, one thus expects 〈S/L〉 → 0. A finite-
size scaling collapse similar to the one for the average ratio
of the minimum to maximum neighboring minigaps indicates
a transition at the critical disorder strength Wc = 7.25 ± 0.02,
where the uncertainty indicates the statistical error. Because
of smaller sample-to-sample variations than above, the er-
ror is smaller here. With increasing system size, the scaling
tends towards a volume (an area) law for W < Wc (W > Wc).
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FIG. 3. Left panel: The average bipartite entanglement entropy
per site for φ = 2π/3 as a function of disorder strength at several
system sizes. The system is divided into equally sized left- and
right-hand sides. Statistical errors are smaller than the marker sizes.
The vertical dotted line indicates the critical disorder strength found
through the finite-size scaling collapse for the ratio of the minimum
to maximum neighboring minigaps. The vertical bar indicates the
critical disorder strength found through the finite-size scaling col-
lapse displayed in the right panel. Right panel: A finite-size scaling
collapse of the data from the left panel with fitted critical parame-
ters Wc = 7.25 ± 0.02 and ν = 0.90 ± 0.0049. See the main text for
details.

Following the discussion above, this provides supporting ev-
idence for a many-body localization transition at a disorder
strength close to the one found above.

Finally, we consider the average second fractal dimension
〈D2〉. Ergodic systems are characterized by D2 = 1 (eigen-
states are spread out over the full Hilbert space), while
localized systems obey 〈D2〉 = 0 (eigenstates are spread out
over a vanishing fraction of the Hilbert space). Figure 4 shows
the average of the second fractal dimension as a function
of disorder strength at several system sizes. At low disorder
strength, the curves tend towards D2 = 1 with increasing sys-
tem size, while they tend to D2 = 0 at strong disorder strength.
The crossing points of the curves are close to the critical disor-
der strength for the average ratio of the minimum to maximum
neighboring minigaps. Focusing on the distribution of D2 in
the lower panels, we observe that the ergodic and many-body
localized phases are qualitatively different: the distribution
of D2 in the ergodic phase has vanishing moments with the
system size, whereas in the localized phase it broadens and
shows opposite skewness.

VI. CONCLUSIONS

In this work, we provide numerical evidence for the
MBL transition in a disordered tight-binding chain of Z3

Fock parafermions and the dual correlated spin-1 XY model.
At weak disorder, the system is in an ergodic phase and
the eigenstate thermalization hypothesis is obeyed. This is
shown by the GUE/GOE statistics of energy minigaps and
strong level correlations, quantified via KL calculations. At
strong disorder, level correlations vanish and hence Poisson
statistics of energy minigaps is exhibited. These distinctive
features at weak and strong disorder strongly suggest that
the system undergoes the MBL transition at intermediate
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FIG. 4. Top panel: The average second fractal dimension as a
function of disorder strength for φ = 2π/3 at several system sizes.
The vertical line indicates the critical disorder strength found by the
finite-size scaling collapse of the average ratio of the minimum to
maximum neighboring minigaps. Statistical errors are smaller than
the marker sizes. Lower left panel: The distribution of the second
fractal dimension in the ergodic phase for several system sizes.
Lower right panel: The distribution of the second fractal dimension
in the many-body localized phase for several system sizes.

disorder strength. These results are supported by quantified
Hilbert space equipartition and entanglement of many-body
eigenstates at small/large disorder strengths, characterized by
fractal dimensions and entanglement entropy.

Let us conclude with a few remarks regarding the nature
of the transition found in this work. It is well known (see,
e.g., Ref. [74]) that one of the key differences between the
Anderson (single-particle) and the MBL transitions in one-
dimensional systems is their occurrence at arbitrarily small
and finite disorder strength, correspondingly. In other words,
observing a transition to the localized phase at finite disor-
der strength (which is the case in this work) provides strong
evidence for a genuine MBL transition. Thus, the disordered
Fock parafermionic tight-binding model (23) provides us with
an interesting example of a Hamiltonian that demonstrates
a behavior consistent with MBL, despite being quadratic in
terms of creation/annihilation operators of particles with a
well-defined Fock space. This observation is in striking dif-
ference with more conventional one-dimensional fermionic
or bosonic disordered bilinear Hamiltonians, which exhibit
Anderson localization. On the other hand, the presence of an
MBL transition in the Hamiltonian (23) is quite natural since,
in the absence of disorder, the model cannot be described
in terms of free particles [61]. In fact, to the best of our
knowledge, all known (Fock) parafermionic models that allow
for a single-particle description are necessarily non-Hermitian
[63,75]. From this perspective, it would also be very
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interesting to find a Hermitian parafermionic model that ex-
hibits a single-particle localization. We leave this question for
future work.

Note added. Recently, we have learned that the authors of
Ref. [77] obtained similar results on MBL of Z3 FPFs. As far
as our studies overlap, our results are in agreement with each
other.
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APPENDIX: MATRIX REPRESENTATION
OF Zn OPERATORS

For completeness, in this Appendix we provide matrix rep-
resentations of the Zn operators Xj , Zj , and Bj . The so-called
shift Xj and clock Zj operators act nontrivially on the jth
site and their matrix representations are Xj = 1 ⊗ · · · 1 ⊗ X ⊗
1 · · · and Zj = 1 ⊗ · · · ⊗ Z ⊗ · · · , where X and Z are n × n

matrices given by

X =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0

...
. . .

0 0 0 . . . 1
1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠, Z =

⎛
⎜⎜⎝

1 0 . . . 0
0 ω . . . 0
...

. . .
...

0 0 . . . ωn−1

⎞
⎟⎟⎠.

(A1)

In compact form, the matrix elements of X and Z are Xa,b =
δ(a mod n)+1,b and Za,b = δa,bω

a−1, correspondingly. Clearly,
for n = 2, one has ω = −1 and the shift and clock matrices
reduce, respectively, to the Pauli matrices X = σ x, Z = σ z.
Then, from Eq. (15), for the operators Bj , we have the rep-
resentation Bj = 1 ⊗ · · · ⊗ B ⊗ · · · with the n × n matrix B
given by

B =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0

...
. . .

0 0 0 . . . 1
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠. (A2)

Likewise, one has Nj = 1 ⊗ · · · ⊗ N ⊗ · · · with a diagonal
matrix N = diag{0, 1, 2, . . . , n − 1}.

Then, restricting ourselves to the case n = 3 and taking into
account that spin-1 operators from Eq. (3) are represented as

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, S+ =

√
2

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠, (A3)

we immediately obtain S+ = √
2B and Sz = 1 − N , which

gives us Eq. (21) in the main text.
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