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Efficient circular Dyson Brownian motion algorithm
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Circular Dyson Brownian motion describes the Brownian dynamics of particles on a circle (periodic boundary
conditions), interacting through a logarithmic, long-range two-body potential. Within the log-gas picture of
random matrix theory, it describes the level dynamics of unitary (“circular”) matrices. A common scenario is that
one wants to know about an initial configuration evolved over a certain interval of time, without being interested
in the intermediate dynamics. Numerical evaluation of this is computationally expensive as the time-evolution
algorithm is accurate only on short time intervals because of an underlying perturbative approximation. This
work proposes an efficient and easy-to-implement improved circular Dyson Brownian motion algorithm for the
unitary class (Dyson index β = 2, physically corresponding to broken time-reversal symmetry). The algorithm
allows one to study time evolution over arbitrarily large intervals of time at a fixed computational cost, with no
approximations being involved.
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I. INTRODUCTION

Brownian motion describes the stochastic dynamics of mi-
croscopic particles in a thermal environment [1,2]. It connects
a broad variety of topics, including thermal physics, hydro-
dynamics, reaction kinetics, fluctuation phenomena, statistical
thermodynamics, osmosis, and colloid science [3]. Brownian
motion is intimately related to random matrix theory, which
plays a key role in the understanding of quantum statistical
mechanics and quantum chaos [4–6]. Random matrices have
eigenvalue statistics that typically can be studied using the
so-called log-gas picture [7,8]. For matrices with real eigen-
values, the joint probability distribution P of the eigenvalues
is then written as a Boltzmann factor

P = 1

Z e−βH , (1)

where Z is a normalization constant that has the interpretation
of a partition function, and β > 0 is a parameter known as the
Dyson index that has the interpretation of an inverse temper-
ature. The Hamiltonian H describes a collection of classical
massless particles on a line (the eigenvalues) repelling each
other over long ranges through a logarithmic two-body poten-
tial, held together by a confining background potential.

The log-gas picture describes long-range interacting parti-
cles. It has been found, for example, to accurately describe the
level statistics across the many-body localization transition
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[9]. As the Hamiltonian in Eq. (1) does not contain a kinetic
term, the particles obey nontrivial dynamics. The equilibrium
as well as the nonequilibrium dynamics of the particles (“level
dynamics”) are described by a phenomenon referred to as
Dyson Brownian motion [10,11]. Dyson Brownian motion
turns out to provide a good description rather generically
when long-range interactions are involved. As such, these
dynamics (as well as the corresponding stochastic evolution
of the eigenstates [12,13]) have found applications in studies
on, for example, disordered systems [14–17], random matrix
models [18–21], many-body localization [22,23], quantum
information dynamics [24–26], and cosmological inflation
[27–30].

Circular Dyson Brownian motion for unitary (“circular”)
matrices describes Dyson Brownian motion on a circle (peri-
odic boundary conditions) and without background potential.
A common scenario is that one wants to know about an
initial configuration evolved over a certain interval of time,
without being interested in the intermediate dynamics. Dyson
Brownian motion can be evolved over a time interval of
arbitrary length at a fixed computational cost, with no ap-
proximations being involved (see below for a more detailed
explanation). Circular Dyson Brownian motion, however, re-
quires extensively many evaluations over small intermediate
intervals because of a perturbative approximation underly-
ing the time-evolution algorithm. Circular Dyson Brownian
motion is thus a process that is computationally expensive
to simulate, which moreover is subject to a loss of accuracy
with progressing time. Despite significant recent [31,32] and
less recent [33–36] analytical progress on circular Dyson
Brownian motion out of equilibrium, improved numerical ca-
pabilities are thus desired.

This work proposes an improved, easy-to-implement
circular Dyson Brownian algorithm for the unitary class
(Dyson index β = 2, corresponding to systems with broken
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time-reversal symmetry). The algorithm does not require
intermediate evaluations, and thus operates at dramatically
lower computational cost compared to the currently used al-
gorithm. Moreover, it does not involve approximations, and
is thus not subject to a loss of accuracy with progressing
time. In short, it constructs the desired unitary matrices by
orthonormalizing the columns of certain non-Hermitian matri-
ces for which the elements perform Brownian motion. Similar
to Dyson Brownian motion for Hermitian matrices, this Brow-
nian motion process can be time evolved at a computational
cost independent of the length of the time interval.

II. DYSON BROWNIAN MOTION FOR HERMITIAN
AND UNITARY MATRICES

One distinguishes between orthogonal (β = 1), unitary
(β = 2), and symplectic (β = 4) random matrix ensembles
[7]. These names reflect the type of transformations under
which the ensembles remain invariant. Physically, the type of
invariance determines the behavior of a system under time
reversal. For example, the orthogonal class correspond to
time-reversal systems, whereas the unitary class correspond
to systems with broken time-reversal symmetry. This sec-
tion considers the unitary class, which is arguably the most
convenient one.

Let H (t ) be an N × N Hermitian matrix with elements
depending on time t [10]. The initial condition H (0) can be
either random or deterministic. Dyson Brownian motion for
Hermitian matrices of the unitary class is a stochastic process
described by

H (t + dt ) = H (t ) +
√

dtM, (2)

where the time step dt , in order for the eigenvalue dynamics
to obey Dyson Brownian motion, is supposed to be small
enough such that the eigenvalues of H (t + dt ) can be obtained
accurately by second-order perturbation theory. Here, M is a
sample from the Gaussian unitary ensemble that is resampled
at each evaluation. An N × N matrix M sampled from the
Gaussian unitary ensemble can be constructed as

M = 1
2 (A + A†), (3)

where A is an N × N matrix with complex-valued elements
Anm = unm + ivnm with unm and vnm sampled independently
from the normal distribution with mean zero and variance 1/2.

Let M̃ = U †(t )MU (t ), where the time-dependent unitary
matrix U (t ) is chosen such that it diagonalizes H (t ). The
Gaussian unitary ensemble is invariant under unitary trans-
formations, meaning that M̃ can be replaced by a new
sample from the Gaussian unitary ensemble. The increments
dλn(t ) = λn(t + dt ) − λn(t ) of the eigenvalues λn(t ) when
evolving from time t to t + dt obey

dλn(t ) =
√

dtM̃nm +
∑
m �=n

dt |M̃nm|2
λm(t ) − λn(t )

, (4)

where terms of order three and higher have been ignored.
It can be shown that this time-evolution indeed describes
a Brownian motion process, for example by writing down
the corresponding Fokker-Planck equation. For t → ∞, H (t )

converges to a (scaled) sample from the Gaussian unitary
ensemble irrespective of the initial condition H (0).

Dyson Brownian motion can also be studied for unitary
matrices [10,33]. Let Q(t ) be an N × N unitary matrix with
time-dependent elements. Similar to the above, the initial
condition Q(0) can be either random or deterministic. Circular
Dyson Brownian motion for the unitary class is generated by

Q(t + dt ) = Q(t )ei
√

dtM, (5)

where again M is an N × N sample from the Gaussian uni-
tary ensemble that is resampled at each evaluation. For small
enough dt , the matrix exponent can be approximated by the
first-order expansion 1 + i

√
dtM, which is invariant under

unitary transformations (the second and higher-order terms
are not). The matrix Q(t + dt ) is thus obtained by applying in-
finitesimal orthonormality-preserving random rotations on the
columns of Q(t ). “Random” here means that rotations in each
direction are equally likely, which agrees with the observation
that 1 + i

√
dtM is invariant under unitary transformations.

Let M̃ = U †(t ) M U (t ) with the time-dependent unitary
matrix U (t ) chosen such that it diagonalizes Q(t ). As be-
fore, M̃ can be replaced by a new sample from the Gaussian
unitary ensemble. Circular Dyson Brownian motion of the
eigenvalues eiθ1(t ), eiθ2(t ), . . . , eiθN (t ) entails that the increments
dθn(t ) = θn(t + dt ) − θn(t ) of the eigenphases θn(t ) when
evolving from time t to t + dt are given by

dθn(t ) =
√

dtM̃nm +
∑
m �=n

dt |M̃nm|2
2 tan 1

2 [θm(t ) − θn(t )]
, (6)

where terms of order three and higher have been ignored.
Equations (4) and (6) describe similar dynamics on a mi-
croscopic scale since 2 tan(x/2) = x + O(x2). For t → ∞,
Q(t ) converges to a sample from the circular unitary ensemble
irrespective of the initial condition Q(0).

III. THE ALGORITHM

The Gaussian random matrix ensembles have the property
that the sum of n independent samples is a sample again,
although with a prefactor

√
n. Equation (2) and its equivalents

for the orthogonal and symplectic classes thus do not require
the time step dt to be small. This implies that numerically
obtaining H (T ) from H (0) can be done in a single instance,
at a computational cost independent of T . Equation (5) for
the evolution of unitary matrices does not allow for a similar
argument since eAeB �= eA+B when A and B do not commute.
Time-evolution for unitary matrices can thus naively only
be accomplished by subsequently evolving over infinitesimal
time intervals. Equation (5) moreover is subject to a loss of
accuracy with progressing time as it describes the desired
dynamics only up to first order.

The starting point in establishing an improved algorithm is
the observation that a random unitary matrix (circular unitary
ensemble) can be obtained by orthonormalizing a set of ran-
dom vectors [37,38]. Let A be an N × N matrix with elements
Anm = unm + ivnm with unm and vnm sampled independently
from the normal distribution with mean zero and unit variance.
Such a matrix is known as a sample from the Ginibre unitary
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ensemble [8,39]. The QR decomposition

A = QR (7)

decomposes A in a unitary matrix Q and an upper-triangular
matrix R with real-valued diagonal elements. This decompo-
sition is not unique. It can be made unique by fixing the signs
of the diagonal elements of the upper-triangular matrix, for
example, by requiring them to be non-negative. Let

� = diag

(
R11

|R11| ,
R22

|R22| , . . . ,
RNN

|RNN |
)

. (8)

Then, Q → Q� and R → �R is the QR decomposition with
the upper-triangular matrix having non-negative diagonal en-
tries. One can prove that the resulting unitary matrices Q
obey the distribution of the circular unitary ensemble. Algo-
rithmically, such unitary matrices are obtained by performing
Gram-Schmidt orthonormalization (discussed below) on the
columns of A. A sample from the circular unitary ensemble
can thus be obtained by orthonormalizing a set of random
vectors.

Let U (dt ) be an N × N unitary matrix with time-dependent
elements. The goal is to express Q(t + dt ) of Eq. (5) as

Q(t + dt ) = Q(t )U (dt ), (9)

where dt is not necessarily small. Equation (5) indicates
that the dynamics of Q(t ) are generated by orthonormality-
preserving random rotations of the columns. Thus, U (dt )
interpolates between an identity matrix (dt = 0) and a sample
from the circular unitary ensemble (dt → ∞) in a way such
that U (dt ) is invariant under unitary transformations. In other
words, it generates a finite orthonormality-preserving random
rotation of the columns of Q(t ). Generalizing the above al-
gorithm generating random unitary matrices, consider the QR
decomposition

1 +
√

dτA = U (dτ ) R (Rnn � 0). (10)

Here, A is again a sample from the Ginibre unitary ensemble.
This ensemble is invariant under unitary transformations. The
parameter dτ is some yet undetermined function of dt , which
for small enough dτ will be found to be equal to dt . The aim
is to show that U (dτ ) corresponds to U (dt ) of Eq. (9). In
Eq. (10), the columns un of U (dτ ) result from Gram-Schmidt
orthonormalization of the columns mn of the left-hand side,

un = vn

||vn|| , vn = mn −
n−1∑
m=1

(um · mn)um. (11)

In words, the nth column is obtained by substracting the
projections on the first n − 1 columns, followed by normaliza-
tion. Columns with a higher index undergo more substractions
than columns with lower indices. For Ndτ � 1, these sub-
stractions do not significantly alter the directions of the
columns, which are then rotated randomly since 1 + i

√
dτA

is invariant under unitary transformations. As the columns of
U (dτ ) are rotated randomly, U (dτ ) corresponds to U (dt ) of
Eq. (9) for a proper choice of dτ , provided that Ndτ � 1.

The limitation on the maximum value of dτ can easily
be overcome by adapting a different, appropriate, orthonor-
malization procedure. Löwdin symmetric orthonormalization
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FIG. 1. Plots of the ensemble-averaged value of F [Eq. (15)] for
dimensions N = 10, N = 100, and N = 1000 as a function of Ndτ

on a small (left) and larger (right) range. The solid lines show plots of

(1 − Ndτ/2)2 and ((1 + Ndτ )−2 + 2
√

2Ndτ )
−1

in gray and black,
respectively.

is a procedure for which the columns are treated symmet-
rically, that is, the outcome is independent of the ordering
[40]. For M denoting some matrix, consider the singular value
decomposition

M = U1�U †
2 . (12)

Here, U1,2 are unitary matrices and � is a diagonal matrix
with real-valued non-negative entries. Löwdin symmetric or-
thonormalization gives the unitary matrix U = U1U

†
2 , which

can be shown to be optimal in the sense that the distance

d =
∑

n

∣∣∣∣
∣∣∣∣ mn

||mn|| − un

∣∣∣∣
∣∣∣∣ (13)

between the columns mn of M and un of U acquires the
minimal possible value [41]. This invites to consider the SVD
decomposition:

1 +
√

dτA = U1�U †
2 , U (dτ ) = U1U

†
2 , (14)

with A denoting a sample from the Ginibre unitary ensem-
ble. If M → U by Löwdin symmetric orthonormalization,
then V †MV → V †UV for unitary matrices V . The Ginibre
unitary ensemble is invariant under unitary transformations.
These two facts combined guarantee the rotations generated
by U (dτ ) to be random. Thus, U (dτ ) corresponds to U (dt )
of Eq. (9) for a proper choice of dτ , without dτ required to be
small.

The relation between dt and dτ can be established by
requiring U (dt ) [Eq. (9)] and U (dτ ) [Eq. (14)] to be identi-
cally distributed. For U (dτ ) [Eq. (14)], let u1(dτ ) denote the
first column (the choice for the first column is arbitrary), and
consider the overlap

F (dτ ) = N

N − 1

(
|u1(dτ ) · u1(0)|2 − 1

N

)
. (15)

The overlap is shifted and scaled such that F (0) = 1 and
F (∞) = 0. Figure 1 shows that the ensemble average of F
is almost perfectly described at all times already for N =
10 by F = (1 − Ndτ/2)2 before and F = ((1 + Ndτ )−2 +
2
√

2Ndτ )
−1

after the intersection at Ndτ ≈ 0.66211710937.
These expressions have been found empirically. Next consider
U (dt ) [Eq. (9)]. Equation (5) dictates, as can be verified nu-
merically, that the product of two independent samples U (dt1)
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dt = 0.02 (naive) dt = 0.02 (efficient)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
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FIG. 2. Density plots of |Q(dt )|2 obtained through Eq. (5)
[“naive”] and Eqs. (9), (14), and (16) [“efficient”] for dt = 0.02 (top,
dτ ≈ 0.017) and dt = 0.05 (bottom, dτ ≈ 0.086). Here, N = 50
and Q(0) = diag(1, 1, . . . , 1).

and U (dt2) is from the same distribution as U (dt1 dt2). For F
defined similar as above, this means that F (dt ) = e−Ndt since
e−Ndt1 e−Ndt2 = e−N (dt1+dt2 ). Equating F (dt ) to the piecewise
expression F (dτ ) introduced above gives

Ndt =
{

−2 ln(1 − Ndτ/2) if Ndτ � 0.662,

ln((1 + Ndτ )−2 + 2
√

2Ndτ ) if Ndτ > 0.662,

(16)
which can be inverted numerically to find dτ as a function of
dt . Up to first order, the approximation dt = dτ can be made.

IV. NUMERICAL VERIFICATION

This section provides a numerical verification of the al-
gorithm proposed above. First, the focus is on the structure
of the resulting matrices. Figure 2 shows density plots of
|Q(dt )|2 for matrices of dimension N = 50 at short (dt =
0.02) and longer (dt = 0.05) times obtained through Eq. (5)
[left, “naive”] and Eqs. (9), (14), and (16) [right, “efficient”].
The initial condition Q(0) = diag(1, 1, . . . , 1) is taken such
that Q(dt ) = U (dt ). The values of dτ corresponding to these
values of dt are given in the caption. One observes that the
matrices on the left and right show identical characteristics.

A sample from the unitary equivalent of the Rosenzweig-
Porter model, considered next, can be obtained as Q(dt =
N−γ ) by taking Q(0) = diag(eiθ (0)

1 , eiθ (0)
2 , . . . eiθ (0)

N ) with the
phases θ (0)

n sampled independently from the uniform distri-
bution ranging over [0, 2π ) [21]. See Refs. [42,43] for an
introduction to the Rosenzweig-Porter model and its relation
to Dyson Brownian motion. Level statistics are here quantified
by the average ratio 〈r〉 of consecutive level spacings [44,45].
For unitary matrices with ordered eigenphases θn, the nth ratio

0.5 1.0 1.5 2.0 2.5
0.40

0.45

0.50

0.55

0.60

γ

〈r
〉

N = 100
N = 1000
N = 10 000

−15 −10 −5 0 5
(γ 2) ln(N)

FIG. 3. The average ratio of consecutive level spacings 〈r〉 as a
function of γ [left] and (γ − 2) ln(N ) [right] for the unitary equiv-
alent of the Rosenzweig-Porter model. The data is obtained using
Eqs. (9), (14), and (16). See the main text for details.

is defined as

rn = min

(
θn+2 − θn+1

θn+1 − θn
,

θn+1 − θn

θn+2 − θn+1

)
. (17)

The average is taken over all n and a large number of
realizations. Wigner-Dyson level statistics are characterized
by 〈r〉 ≈ 0.600, while Poissonian level statistics obey 〈r〉 ≈
0.386. The Rosenzweig-Porter model shows a transition (at
finite dimension, a crossing) from Wigner-Dyson to Poisso-
nian level statistics at γ = 2. When plotted as a function
of (γ − 2) ln(N ), the average ratio is numerically found to
be independent of N (finite-size collapse) [21,46]. Figure 3
shows that the algorithm proposed in this work leads to the
same results, and illustrates the capability of the algorithm
proposed in this work to operate at large matrix dimensions
(here, up to N = 10 000). Reference [47] (Fig. 1) shows a
visually indistinguishable plot obtained using Eqs. (9) and
(10) with the first-order approximation dt = dτ .

V. CONCLUSIONS AND OUTLOOK

Circular Dyson Brownian motion describes the Brown-
ian dynamics of particles interacting through a long-range
two-body potential in a one-dimensional environment with
periodic boundary conditions. This work proposed an easy-
to-implement algorithm [Eqs. (9), (14), and (16)] to simulate
circular Dyson Brownian motion for the unitary class (Dyson
index β = 2, physically corresponding to broken time-
reversal symmetry). For short times Ndt � 1, Eq. (14) can
be replaced by the computationally cheaper Eq. (10), and
the first-order approximation dt = dτ can be used instead
of the more complicated relation (16). The latter approach
is a generalization of a commonly used algorithm generat-
ing samples from the circular unitary ensemble, proposed
in Refs. [37,38]. In contrast to the currently used circular
Dyson Brownian motion algorithm [Eq. (5)], here the time
step dt does not have to be small, and no approximations
have been involved. This allows one to study time-evolution
over arbitrarily large time intervals at a computational cost
independent of the length of the time interval, without loss
of accuracy. In typical settings, this algorithm dramatically
reduces the computational costs, thereby for example opening
the possibility to perform detailed studies without the need for
high-performance computing facilities.

023264-4



EFFICIENT CIRCULAR DYSON BROWNIAN MOTION … PHYSICAL REVIEW RESEARCH 6, 023264 (2024)

An arguably interesting follow-up question would be how
to modify the algorithm for the orthogonal and symplectic
classes. From a sample Q of the circular unitary ensemble,
a sample S from the circular orthogonal ensemble can be
obtained as S = QT Q [48]. It is thus tempting to hypothesize
that circular Dyson Brownian motion for the orthogonal class
can be simulated by the algorithm proposed in this work, and
by taking the product of the transpose of the resulting unitary
matrix and the resulting unitary matrix itself as the output.

Circular Dyson Brownian motion can be used to numeri-
cally generate nonergodic unitary matrices (“unitaries”) with
fractal eigenstates and a tunable degree of complexity [21,47].
Next to what is mentioned above, this work can thus be ex-
pected to be relevant for future studies on the emergence and
breakdown of statistical mechanics in the context of unitary

(periodically driven) systems. It also relates to recent develop-
ments on algorithms generating random rotations [49]. Dyson
Brownian motion recently attracted a spurge of interest in the
context of the Brownian SYK model [50–56]. Unitary Brow-
nian quantum systems are of current interest in the context of
Brownian quantum circuits [57–62]. This work finally can be
expected to provide new opportunities in the context of the
nontrivial dynamics of Brownian quantum systems.
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