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Abstract

Modern supervised machine learning (ML) techniques have taken a prominent role in acade-
mia and industry due to their powerful predictive capabilities. While many large-scale ML
models utilize deep artificial neural networks (ANNs), which have shown great success if
large amounts of data are provided, ML methods employing Gaussian processes (GPs) out-
perform ANNs in cases with sparse training data due to their interpretability, resilience to
overfitting, and provision of reliable uncertainty measures. GPs have already been success-
fully applied to pattern discovery and extrapolation. The latter can be done in a controlled
manner due to their small numbers of interpretable hyperparameters.
In this work we develop an approach based on GPs to extract diabatic patterns from energy
spectra, adiabatic under variation of a parameter of the Hamiltonian. The emerging dia-
batic manifolds (or energy surfaces) exhibit crossings where the original (adiabatic) energy
spectra avoid to cross.
In the context of highly excited, classically chaotic dynamics, we demonstrate that our GP
regression approach can generate complete diabatic energy spectra with two exemplary sys-
tems: two coupled Morse oscillators and hydrogen in a magnetic field. For both we train GPs
with few classical trajectories in order to inter- and extrapolate actions throughout the whole
energy and parameter range to identify all points where the semiclassical Einstein-Brillouin-
Keller (EBK) quantization condition is fulfilled. While the direct EBK method is restricted to
regular classical dynamics, the interpretability of the GPs allow for controlled extrapolation
into regions where no more regular trajectories exist due to irregular motion. Hence, semi-
classical diabatic spectra can be continued into chaotic regions, where such manifolds are
no longer well-defined.
Further, we investigate the origin of resonant motion in the coupled Morse oscillator system
and their contributions to the semiclassical spectra, which provide energies along strongly
repelled adiabatic surfaces. For the hydrogen atom in a magnetic field we show that a
proper scaling of the coordinates by the magnetic field strength allows for the extraction
of an infinite series of semiclassical energies with one single trajectory which fulfills the
EBK condition. The implementation of boundary conditions into GPs, as well as scaling
techniques to higher dimensions and their properties are discussed.



Kurzfassung

Moderne Methoden für maschinelles Lernen (ML) spielen heutzutage eine wichtige Rolle in
der Wissenschaft und Industrie. Viele umfangreiche ML-Modelle basieren auf tiefen künst-
lichen neuronalen Netzen (KNN), welche großartige Erfolge erzielen, wenn große Daten-
mengen zur Verfügung stehen. In Fällen von spärlichen Datenmengen werden KNNe über-
troffen von ML-Methoden, welche auf Gaußschen Prozessen (GP) basieren, aufgrund ihrer
Interpretierbarkeit, Widerständigkeit gegenüber Überanpassung (Overfitting) und der Be-
reitstellung von verlässlichen Fehlermaßen. GPe wurden bereits erfolgreich angewandt für
Mustererkennung und deren Extrapolation. Letztere ist kontrollierbar aufgrund der kleinen
Anzahl von interpretierbaren Hyperparametern.
In der vorliegenden Arbeit entwickeln wir eine Methode basierend auf GPen für die Extrak-
tion von diabatischen Mustern aus Energiespektren, welche sich adiabatisch unter der Vari-
ation eines Parameters des Hamiltonoperators verhalten. Die resultierenden diabatischen
Mannigfaltigkeiten (oder Energieflächen) weisen Kreuzungen auf, wohingegen die origi-
nalen (adiabatischen) Energiespektren Kreuzungen vermeiden.
Im Bezug auf hoch angeregte, klassisch chaotische Dynamik demonstrieren wir, dass unsere
Methode vollständige diabatische Spektren generiert anhand von zwei Beispielsystemen:
zwei gekoppelte Morse-Oszillatoren und Wasserstoff im Magnetfeld. In beiden Fällen wer-
den GPe trainiert anhand weniger klassischer Trajektorien, um deren Wirkungen zu inter-
und extrapolieren über den gesamten Energie- und Parameterraum, und Punkte identi-
fiziert, an denen die semiklassische Einstein-Brillouin-Keller (EBK)-Quantisierungsbeding-
ung erfüllt ist. Obwohl die EBK-Methode auf reguläre klassische Dynamik beschränkt ist, er-
laubt die Interpretierbarkeit von GPen eine kontrollierte Extrapolation zu Regionen, in denen
keine Regularität mehr vorhanden ist. Dadurch können semiklassische diabatische Spektren
ins chaotische Regime fortgesetzt werden, in welchem diese nicht mehr wohldefiniert sind.
Des Weiteren untersuchen wir den Ursprung resonanter Dynamik im System zweier gekop-
pelter Morse-Oszillatoren und deren Beitrag zu den semiklassischen Spektren, welche En-
ergien entlang stark abgestoßener adiabatischer Flächen liefern. Im Fall von Wasserstoff
im Magnetfeld zeigen wir, dass eine geeignete Skalierung der Koordinaten durch die Feld-
stärke die Generierung einer unendlichen Folge von semiklassischen Energien mit nur einer
EBK-quantisierten Trajektorie erlaubt. Die Implementierung von Randbedingungen in GPen,
sowie Skaliermethoden für höhere Dimensionen und deren Eigenschaften werden diskutiert.
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1 Introduction

The year 2022 will go down in history as the year when machine learning (ML) tools
were finally made utilizable for every last person with free access to the internet. In that
year, the pioneering research organization OpenAI released their Chatbot ChatGPT-3.5 as a
free version of their gigantic generative AI model pre-trained on a vast corpus of diverse text
sources on the internet. Struck by the overwhelming variety of new possibilities, numerous
companies still scramble to find ways to apply this new sensation in order to generate money.
The novelty about this ML product is the fact that this extremely powerful tool has the mere
simple goal of generating informed and coherent output in text form. In order to keep its
application as general as possible, no specific task was designated for this ML model to solve
and everybody’s first attempts at using it revolved around making sense of it.
A similar rush on ML tools was seen in the physical sciences [1] about ten years earlier, when
software libraries became available which allowed for easy implementation of ML methods
while using the available computing power effectively, two of them being scikit-learn and
TensorFlow, released in 2007 and 2015, respectively. Building powerful predictive algo-
rithms was then no longer reserved for dedicated experts in the field, causing a flood of
scientific publications applying ML. Its success was driven by the high demand of new tech-
niques for efficient, large-scale problem solving, as well as the ability to gain insight from
data, leading to paradigm shifts in a number of areas. At the same time the broad appli-
cation of ML models lead to better understanding of some of their internal workings which
are difficult to comprehend. This triggered in turn the interest in further analyzing the
mathematical foundations of the ML tools in order to improve upon their capabilities.
Evidently, each field of application in academia and industry requires different methods and
tools tailored to its specific needs and tasks. Therefore, different ML tools hold contrast-
ing features and handle supplied data differently. However, what all ML methods do have
in common is the learning from “experience” in form of data. This manner of gaining in-
sight and making predictions displays an inverse approach to the traditional scientific way
of solving problems, i.e., the well-controlled mathematical implementation of physical laws.
Instead, the ML philosophy of solving tasks is the extraction of unknown latent structures or
relationships using an abundance of data. The underlying mechanics of such ML tools are
simple in essence but can reveal complex features. The generality of such data-driven tools
encouraged many researchers to apply these methods to their problems at hand, causing
a similar hype as we see now with end consumer products like ChatGPT. Although some
of these ML models constitute “black-boxes”, their capabilities of learning patterns and fea-
tures from data is astonishing. However, we are still scratching the surface of possibilities
and much of the benefit is yet to be uncovered.
One of the countless fields that experiences significant advancements through ML devel-
opments is chemical physics. [2] At the base of numerical molecular simulations and the
computation of observables under the Born-Oppenheimer approximation lies the represen-
tation of potential energy surfaces. The dimensionality of such surfaces grows with the size
of the considered molecule and computations of individual points on the surface require ex-



2 Introduction

pensive solutions of the Schrödinger equation. In order to reduce the computational burden,
interpolation methods using ML tools are used to find local approximations for potential en-
ergy surfaces using relatively few points as training data. The methods employed for this
task are twofold: earlier approaches involved artificial neural networks (ANNs) [3,4],
while later ones made use of Gaussian process regression (GPR). [5,6] As both methods
have quite distinct properties, this is a showcase for the question about the proper domains
of each respective ML method. Typical ANNs are large parametric models, while GPR uses
a non-parametric, Bayesian approach. For the particular case of fitting potential energy
surfaces, Reference [7] demonstrates that GPR shows superior results over ANNs.
Inspired by those results, the present work employs GPR for the investigation of energy spec-
tra of simple atomic and molecular systems under variation of a parameter. Our main focus
lies on the construction of non-adiabatic, or diabatic, energy manifolds, which emerge when
avoided crossings in the original (adiabatic) spectra are traversed. Human observation of-
ten reveals such diabatic manifolds as patterns in spectra. Hence, we approach this task
of pattern extraction using GPR, as they have been identified as powerful tools for pattern
discovery and extrapolation. [8,9] In order to generate complete diabatic energy spectra we
exploit a semiclassical approach known as the Einstein-Brillouin-Keller (EBK) quanti-
zation method, which allows for the computation of isolated eigenenergies of a system us-
ing solely regular trajectories. This method fails to describe quantum effects like tunneling
properly, leading to the neglect of energy level repulsion. When combining with regres-
sion methods like GPR, complete diabatic energy spectra can be computed by interpolation
between few regular trajectories.
In addition, we explore the properties of GPR in order to extrapolate the semiclassical en-
ergy spectra into classically irregular regions, where regular trajectories as the backbone for
semiclassical quantization no longer exist. It has been brought up in Ref. [2] that Bayesian
methods are suited for the extrapolation of physical properties, while ANNs often fall short of
delivering adequate results. We demonstrate that GPR is indeed capable of providing semi-
classical results in this regime, yielding complete diabatic spectra for systems with mixed
classical phase spaces.
The outline of this dissertation is as follows: we begin with an in-depth introduction to GPR
in Chapter 2. Its application to the extraction of diabatic manifolds in energy spectra is
demonstrated in Chapter 3. A semiclassical way of generating diabatic spectra using the
EBK quantization method in combination with GPR is discussed in Chapter 4. Chapters 5
and 6 apply the semiclassical method to two physical systems: two coupled Morse oscillators
and the hydrogen atom in a magnetic field. Therein, it is demonstrated how the ML-aided
method is capable of extrapolating results into otherwise inaccessible regions due to chaos.
Finally, our conclusions are presented in Chapter 7.
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2.1 Supervised machine learning

The term artificial intelligence covers a broad spectrum of tasks that traditionally re-
quired human decisionmaking. Amore concrete sub-field thereof is termedmachine learn-
ing (ML) which covers the generation of algorithms that improve their performance in solv-
ing specific problems by “learning from experience”. This “experience” can either be of the
form of labeled data, e.g., classified pictures of cats and dogs, unlabeled data, e.g., shopping
behaviors of online customers, or a history of rewards for taking particular actions, e.g., win-
ning games of checkers. Respectively, these three forms of input give rise to the disciplines
of supervised ML, unsupervised ML, and reinforcement learning. Evidently, each
discipline has its separate field of applications.
Supervised ML can be categorized into regression and classification. If each data point
can be assigned to one of several discrete labels, or classes, one speaks of classification. On
the other hand, if each data point can have a label given by one or more continuous numbers,
we speak of regression. The task of supervised ML is to find a generalization of an input-
output relationship that necessarily describes the given data the algorithm has been trained
on (previously referred to as “experience”) and is able to predict labels for new inputs the
algorithm hasn’t seen before. For the previous example of pictures of cats and dogs, the goal
is to correctly distinguish between the two species, or classes, on any given new picture. An
example for a regression task may be to predict the age of a person, in form of a real number,
from photographs.
Both tasks, classification and regression (the latter is also referred to as curve fitting),
have existed long before the term machine learning has first emerged. Early regressions
involved the method of least squares [10], where an empirical model function is fitted to
the data by varying its parameters to minimize the distances. However, as the complexity
or dimensionality of the problems at hand grew, more sophisticated methods were sought
after. In the middle of the 20th century artificial neural networks (ANNs) [11, 12]
came about and have taken the lead role in supervised ML by now.
Complementing ANNs, other ML methods have been developed over time that show dif-
ferent qualities and perform better than ANNs in certain applications. One such method
is Gaussian process regression (GPR) [13], which will be extensively applied within
this work. For the purpose of introducing Gaussian processes (GPs) we will first discuss
the structure of ANNs and then show that GPs emerge as a special case when applying the
central limit theorem.

Artificial neural networks

ANNs are inspired by the biological neuron structure inside a brain. [11] An ANN consists
of layers of artificial neurons which are interconnected, as depicted in Figure 2.1. A real-
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Figure 2.1: A feed-forward multilayer perceptron (MLP) for a 3-dim. input, a 2-dim.
output, and one hidden layer.

valued,𝐷-dimensional input, x ∈ R𝐷, is given as values of𝐷 nodes of a first layer, the input
layer. Each node of the input layer is connected to each node of the second layer. The value
of each node of the second layer is then a nonlinear function of the weighted sum of all the
values of the first layer plus a bias,

ℎ𝑗(x) = 𝛼

(︃
𝑢0𝑗 +

𝐷∑︁
𝑖=1

𝑥𝑖𝑢𝑖𝑗

)︃
. (2.1)

The function 𝛼(·) is called an activation function (or transfer function), the values 𝑢𝑖𝑗 are
the weights. A deep neural network consists of more than three layers. The final layer
is the output layer and layers between input and output layers are called hidden layers.
The number of nodes of the output layer is given by the dimensionality of the output in case
of regression, or the number of classes in case of classification. The values of the output
nodes are

𝑓𝑗(x) = 𝛼

(︃
𝑣0,𝑗 +

𝑁𝐻∑︁
𝑖=1

ℎ𝑖(x)𝑣𝑖𝑗

)︃
, (2.2)

where 𝑁𝐻 is the number of nodes of the last hidden layer. For regression, the activation
function for the output layer is usually chosen to be linear in order to be unbounded. For
classification, an activation function is chosen that is bounded between 0 and 1, such as the
sigmoid function, in order to assign a score to each output node, i.e., each class.
Evidently, the chosen numbers of layers and nodes in each hidden layer give rise to the com-
plexity of the input-output relationship such a model can offer. While the design of the ANN,
including the choice of the activation functions, are chosen a priori and require refinement,
the choice of all the weights connecting the neurons concern the training, or learning,
of the ANN. The latter is done by minimizing a cost function using the backpropagation
algorithm. [14]
In recent years, ML has been a rapidly evolving field due to the available computational
power and has brought miraculous breakthroughs, most of which involve more sophisti-
cated variations of the multilayer perceptron (MLP), an ANN as depicted in Fig. 2.1 and
described above. However, the vast number of parameters, i.e., the weights, together with
the choice of the design of an ANN constitute a “black box” and it is so far impossible to fully
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understand or predict the success of a particular model. The process of designing an ANN
is often trial and error as they are prone to overfitting, i.e., the effect of over-explaining
seen data at the cost of predictive power, and can converge into an sub-optimal parameter
set if, e.g., an inappropriate learning rate is chosen. There is no principled framework for
constructing an ANN; its advocates call its designing an “art”.
Clearly, while ANNs are without doubt a powerful tool for ML, there are cases where other
methods are more appropriate. One of those alternatives are GPs which can be considered
as a special branch of ANNs.

From Multilayer Perceptron to Gaussian process

Following Refs. [13,15], a particular design of a ANN shall be investigated, which will coin-
cide with a GP. Let us consider a MLP with a single hidden layer and a single output node.
The activation function for the hidden layer shall be bounded. Further, the activation func-
tion for the output shall be linear, which yields the simplified expression for Equation (2.2)

𝑓(x) = 𝑣0 +

𝑁𝐻∑︁
𝑖=1

ℎ𝑖(x)𝑣𝑖. (2.3)

As the next step, we make a crucial modification to our MLP by promoting all of its weights,
which we collectively denote as w = (𝑢𝑖𝑗 , 𝑣𝑖), to be random variables. This transforms our
MLP to a Bayesian neural network (BNN). For any choice of probability distribution over
all weights, 𝒫(w), Eq. (2.3) yields a probability distribution for the output, 𝒫(𝑓). Let us
assume that the bias, 𝑣0, is Gaussian (or normal) distributed, all other 𝑣𝑖 (𝑖 = 1, . . . , 𝑁𝐻)
be independently and identically distributed with finite variance, and all 𝑢𝑖𝑗 also be inde-
pendently and identically distributed1. Then, in the limit of infinitely many hidden nodes,
𝑁𝐻 → ∞, the central limit theorem applies:

Theorem (Central limit theorem). Let 𝜉1, 𝜉2, . . . , 𝜉𝑁 be independent and identically distributed
random variables with finite mean and variance, 𝜇, 𝜎2. For 𝑁 → ∞, the probability distri-
bution of 𝑆𝑁 =

∑︀𝑁
𝑛=1 𝜉𝑛 converges to a Gaussian distribution with mean 𝑁𝜇, and variance

𝑁𝜎2.

Hence, the central limit theorem states that the sum in the second term in Eq. (2.3) converges
to a Gaussian distribution. The output is then a sum of two Gaussian distributed random
variables, which is again Gaussian2; we write 𝑓 ∼ 𝒩 (𝜇, 𝜎2).
Analogously, the joint distribution of the outputs (︀𝑓(︀x(1)

)︀
, . . . , 𝑓

(︀
x(𝑁)

)︀)︀ for several input
vectors, (︀x(1), . . . ,x(𝑁)

)︀, converges towards a multivariate Gaussian distribution, 𝒩 (𝜇,Σ),
with mean vector

𝜇 = (𝜇1, . . . , 𝜇𝑁 )
⊤ (2.4)

and covariances

Σ𝑝𝑞 = cov
(︁
𝑓
(︀
x(𝑝)

)︀
, 𝑓
(︀
x(𝑞)

)︀)︁
= 𝐸

[︁(︁
𝑓
(︀
x(𝑝)

)︀
− 𝜇𝑝

)︁(︁
𝑓
(︀
x(𝑞)

)︀
− 𝜇𝑞

)︁]︁
, (2.5)

1Due to the bounded activation function for the hidden layer, the variance of each ℎ𝑖 is also finite.
2If 𝑋 ∼ 𝒩

(︀
𝜇𝑋 , 𝜎2

𝑋

)︀ and 𝑌 ∼ 𝒩
(︀
𝜇𝑌 , 𝜎2

𝑌

)︀, then (𝑋 + 𝑌 ) ∼ 𝒩
(︀
𝜇𝑋 + 𝜇𝑌 , 𝜎2

𝑋 + 𝜎2
𝑌

)︀.
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where 𝐸[·] is the expected value and the notation 𝑓
(︀
x(𝑝)

)︀
∼ 𝒩

(︀
𝜇𝑝, 𝜎

2
𝑝

)︀ was used. Since
the output is a function of a continuous argument, 𝒫(𝑓(x)) produces a GP. In other words,
𝒫(𝑓(x)) is a multivariate Gaussian distribution of infinite dimensions or a Gaussian distri-
bution over functions, 𝑓(x).
We have thus seen that a BNNwith one infinitely wide hidden layer and a single output node
can produce a GP. (Ref. [15] discusses cases with multiple hidden layers of infinite width
as well, giving rise to deep Gaussian processes.) Multiple output nodes would produce
mutually independent values due to the assumption that the hidden-to-output weights be
independent. Therefore, more than one output node yield no additional information.3
The transformation from a MLP to a GP has brought up a new set of properties for our ML
technique. While a conventional ANN has a large but finite number of parameters/weights
that need to be tuned, a GP has an infinite number of parameters and is therefore a non-
parametric model. And it may seem surprising, but even though the number of param-
eters is infinite, GPs are not prone to overfitting. Further, Refs. [16–18] showed that a
feed-forward ANN with a single hidden layer can uniformly approximate any continuous
function, given the number of hidden units is sufficient, making single-layer ANNs universal
approximators.
Moreover, since we consider Gaussian probabilities for the output, 𝒫(𝑓), a GP naturally
provides an uncertainty measure with its prediction. This allows a whole new spectrum
of applications and is one of, if not the most useful property of GPs. Being a non-parametric
model, GPs also do not require adjustment of any weights. Instead, the model is fitted
to a training data set using Bayesian inference. The choice of the activation function for
the hidden layer corresponds to the choice of covariance function of the GP, which will be
discussed in the next section. Lastly, there is no longer any question about the choice of
design since we considered one hidden layer of infinite width. One drawback so far is the
limitation to one single output node, which corresponds to scalar functions in the regression
case. However, multi-output (or multi-task) GPs are discussed in the literature. [19]

2.2 From multivariate Gaussian to Gaussian process

Of all the probability distributions one can think of, the Gaussian (or normal) distribution is
arguably one of the simplest and has the most practical properties. One of those properties
is the unique characterization through the mean (or expected) value and the variance – the
first and second cumulant, respectively. All higher cumulants vanish.
The importance of the Gaussian distribution results from the central limit theorem, which
states that the sum of a large number of independent random variables is again a random
variable that tends to be Gaussian distributed.4 Thus, in situations where a large number
of stochastic factors have an additive effect on a measurable quantity it is often suitable to
assume that this quantity is sampled from a Gaussian distribution.
Due to its simplicity and stochastic importance it is desirable to use Gaussian distributions
in order to make probabilistic predictions about quantities where little is known about their
characteristics. In particular, Gaussian distributions may turn out useful in order to conduct
3Although one could consider correlations between the mean and variance of the weights for one output node
and those of another. This would lead to characteristics of multi-output GPs.

4The Lyapunov variant of the central limit theorem generalizes to independent random variables, without the
condition of being identically distributed.



7

supervised ML in a probabilistic manner, using Bayesian inference.
A (univariate) Gaussian probability distribution is uniquely defined by a mean value, 𝜇, and
a variance, 𝜎2, and we write for a Gaussian distributed random variable

𝑓 ∼ 𝒩
(︀
𝜇, 𝜎2

)︀
:=

1√
2𝜋𝜎

exp

(︂
−1

2

(𝑓 − 𝜇)2

𝜎2

)︂
= 𝒫(𝑓), (2.6)

where 𝒫 denotes the probability density function (PDF).
The generalization to a vector-valued random variable (or random vector), f ∈ R𝑁 , yields
a joint probability distribution that matches a multivariate Gaussian distribution, which is
uniquely characterized by a mean vector, 𝜇 ∈ R𝑁 , and a covariance matrix, Σ ∈ R𝑁×𝑁 .
Analogously to the univariate case we write

f ∼ 𝒩 (𝜇,Σ) :=
1√︀

(2𝜋)𝑁 det(Σ)
exp

(︂
−1

2
(f − 𝜇)⊤Σ−1(f − 𝜇)

)︂
= 𝒫(f). (2.7)

In the limit of 𝑁 → ∞, i.e., infinitely many components of a random vector, we can think
of each component as values of a continuous function, 𝑓𝑗 𝑁→∞−−−−→ 𝑓(x). This means, 𝒫(𝑓(x))
becomes a Gaussian distribution over functions, more precisely a GP, which is uniquely char-
acterized by a mean function, 𝜇(x), and a covariance function, Σ(x,x′),

𝑓(x) ∼ 𝒢𝒫
(︀
𝜇(x),Σ

(︀
x,x′)︀)︀. (2.8)

Note that both mean and covariance function are scalar, while the arguments need not be
scalar.

Stochastic process

Loosely speaking, if our random variable of interest is a continuous function, we speak of a
stochastic process (or random process). Historically, this continuous function was often a
function of time. If the evolution of a physical process is governed by an underlying random
or uncertain behavior, each state at a given point in time could be considered a random
variable. A discrete and finite time sequence therefore yields a random vector with a joint
probability distribution. If this joint distribution is a multivariate Gaussian, our stochastic
process is a GP. As mentioned before, a stochastic process needs not be a function of only
one variable (such as time), but it can be a function of multiple variables.

Definition (Gaussian process (GP)). A GP is a collection of random variables, any finite
number of which have a joint Gaussian distribution. In other words: 𝒫(𝑓(x)) is a GP if the
marginal distribution, 𝒫

(︀
𝑓
(︀
x(1)

)︀
, . . . , 𝑓

(︀
x(𝑁)

)︀)︀
=
∫︀
𝒫(𝑓(x)) d(𝑓(Y)), for any finite subset,{︀

x(1), . . . ,x(𝑁)
}︀

⊂ 𝒳 , is a multivariate Gaussian. Here, 𝒳 ⊆ R𝐷 is the domain of x and
Y = 𝒳 ∖

{︀
x(1), . . . ,x(𝑁)

}︀
.

Note that this definition includes finite collections of random variables as well, i.e., multi-
variate Gaussians, but these are for obvious reasons not the cases of our interest.
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Marginalization of Gaussians

In a practical supervised ML application, one would represent a continuous function in a
discretized fashion on a computer. Hence, if a function needs to be represented as val-
ues of a finite subset, {︀𝑓(︀x(1)

)︀
, . . . , 𝑓

(︀
x(𝑁)

)︀}︀, it is necessary to work with the marginalized
distribution, 𝒫(︀𝑓(︀x(1)

)︀
, . . . , 𝑓

(︀
x(𝑁)

)︀)︀
=
∫︀
𝒫(𝑓(x)) d(𝑓(Y)). This integral, however, seems

intimidating, as the integration ought to be performed over the probability distributions of
an infinite number of random variables, 𝑓(Y). To our rescue comes the important marginal-
ization property of Gaussian distributions:

Theorem (Marginal distribution of Gaussians). For a Gaussian random vector, partitioned as
(f1, f2)

⊤, with correspondingly partitioned mean and (symmetric) covariance,

𝜇 = (𝜇1,𝜇2)
⊤ , Σ =

(︂
Σ11 Σ12

Σ12
⊤ Σ22

)︂
, (2.9)

the marginal distribution of f1 is another multivariate Gaussian with 𝒩 (𝜇1,Σ11). For an un-
ordered subset, f1, the components of 𝜇1 are just the components of 𝜇 for the subset and Σ11

are the corresponding rows and columns of Σ.

Evidently, marginalizing Gaussians is trivial. For a given GP, 𝒢𝒫(𝜇(x),Σ(x,x′)), the mar-
ginalized (discretized) probability distribution at {︀x(1), . . . ,x(𝑁)

}︀ is simply 𝒩 (𝜇𝑠,Σ𝑠) with

𝜇𝑠 =

⎛⎜⎝𝜇
(︀
x(1)

)︀
...

𝜇
(︀
x(𝑁)

)︀
⎞⎟⎠ , Σ𝑠 =

⎛⎜⎝Σ
(︀
x(1),x(1)

)︀
. . . Σ

(︀
x(1),x(𝑁)

)︀
... . . . ...

Σ
(︀
x(𝑁),x(1)

)︀
. . . Σ

(︀
x(𝑁),x(𝑁)

)︀
⎞⎟⎠ , (2.10)

which is in accordance with above definition of a GP. So instead of sampling a function from
a true GP, 𝑓(x) ∼ 𝒢𝒫(𝜇(x),Σ(x,x′)), in practice we sample a vector from a multivariate
Gaussian, f ∼ 𝒩 (𝜇,Σ), giving us all function values at the locations of our interest.

2.3 Mean and covariance functions

Just like a multivariate Gaussian distribution is uniquely characterized by its mean vector
and covariance matrix, a GP is fully specified by its mean, 𝜇(x), and covariance function
(or kernel), Σ(x,x′). Each sample function, 𝑓(x), drawn from a GP will be Gaussian dis-
tributed around the mean function. One writes

𝑓(x) ∼ 𝒢𝒫
(︀
𝜇(x),Σ

(︀
x,x′)︀)︀. (2.11)

Fig. 2.2 shows various sample functions drawn from a GP with a particular choice of mean
and covariance function. The mean function “guides” all sample functions by forcing them
to be distributed nearby. The covariance function, similar to a covariance matrix, measures
the correlation between two function values, 𝑓(x) and 𝑓(x′). If the covariance, Σ(x,x′),
is large, the two corresponding function values will be forced to be very similar. If it is
zero, the two values will be uncorrelated and, since they are jointly Gaussian, independent.
If the covariance is negative, large values at x will correspond to small values at x′. The
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Figure 2.2: Sample functions (colored) drawn from a GP with sinusoidal mean (dashed)
and radial basis function (RBF) covariance function with 𝜎𝑓 = 1 and 𝑙 = 0.5. The
range within the standard deviation is shown as gray shade.

diagonal of the covariance function, Σ(x,x) = 𝜎2(x), yields the variance of 𝑓(x). A valid
covariance function is symmetric and positive definite. The first property directly follows
from the definition of a covariance, Eq. (2.5), while the second property ensures positive
variance everywhere, 𝜎2(x) > 0.
In the following we will discuss one particular covariance function very commonly used for
regression purposes, namely the radial basis function (RBF) covariance function,

ΣRBF

(︀
x,x′)︀ = 𝜎𝑓

2 exp

(︃
−1

2

‖x− x′‖2
𝑙2

)︃
. (2.12)

This function is sometimes also referred to as squared exponential or Gaussian covariance
function. It is a stationary function, as it only depends on the (Euclidean) distance between
the input vectors, ‖x− x′‖. The two values 𝜎𝑓 and 𝑙 shall be called output-scale (also re-
ferred to as signal variance) and length-scale, respectively. They fall under the category
of hyperparameters, which will be discussed in Sec. 2.4.2, and differ significantly from
regular parameters, e.g., the weights in ANNs. The output-scale measures the spread of the
sample functions along the output dimension and directly yields the standard deviation, 𝜎,
if x = x′. The length-scale measures the correlation length in the input space. Large length-
scales lead to a stronger correlation between two points, causing any sample function to vary
slowly. Shorter length-scales cause sampling functions to be more wiggly, as two points are
less correlated. As the distance between two points grows, ‖x− x′‖ → ∞, their covariance
becomes smaller, ΣRBF(x,x

′) → 0, and their corresponding output values, 𝑓(x) and 𝑓(x′),
tend to be independent. In Fig. 2.2 a RBF covariance function with an output-scale of one
and a length-scale of 𝑙 = 0.5 is used. For higher input dimensions, 𝐷 > 1, one can introduce
one length-scale for each direction by replacing ‖x− x′‖2/𝑙2 → (x− x′)⊤M−1(x− x′) with
the diagonal matrix M = diag(𝑙21, 𝑙22, . . . , 𝑙2𝐷).
If a GP is characterized by a smooth mean and covariance function, its sample functions will
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be smooth as well. If either function shows any kinks, the sample functions will inherit such
kinks at the same positions. The RBF covariance function is infinitely often differentiable,
and therefore smooth. It is also stationary, meaning that its local properties do not change
when varying the input region.
Other stationary covariance functions frequently used in the literature shall be given at this
point. A generalization of the RBF covariance function is given by the rational quadratic
(RQ) function,

ΣRQ

(︀
x,x′)︀ = 𝜎𝑓

2

(︃
1 +

‖x− x′‖2
2𝛼𝑙2

)︃−𝛼

, (2.13)

where an additional length-scale appears: 𝛼 > 0. Ref. [13] describes the RQ covariance
function as an infinite sum of RBF covariance functions with different length-scales, 𝑙. In the
limit of 𝛼 → ∞, the RQ covariance function converges to an RBF covariance function. Like
the RBF, the RQ covariance function is infinitely differentiable.
One class of covariance functions of finite differentiability is the class of Matérn covariance
functions. Ordered by differentiability, the first three simplified members are

Σ
(0)
Mat
(︀
x,x′)︀ = 𝜎𝑓

2 exp

(︂
−‖x− x′‖

𝑙

)︂
, (2.14)

Σ
(1)
Mat
(︀
x,x′)︀ = 𝜎𝑓

2

(︃
1 +

√
3‖x− x′‖

𝑙

)︃
exp

(︃
−
√
3‖x− x′‖

𝑙

)︃
, (2.15)

Σ
(2)
Mat
(︀
x,x′)︀ = 𝜎𝑓

2

(︃
1 +

√
5‖x− x′‖

𝑙
+

5‖x− x′‖2
3𝑙2

)︃
exp

(︃
−
√
5‖x− x′‖

𝑙

)︃
. (2.16)

The first covariance function is not differentiable; GPs corresponding to the second and third
are respectively once and twice mean square differentiable. Many more covariance functions
exist and new exemplars can be constructed, e.g., by adding and multiplying different valid
covariance functions together. [9,13]
Two particular covariance functions have become prominent in modern GP applications and
merit special recognition: the spectral mixture (SM) [8,9] and the deep kernel learn-
ing (DKL) [20] covariance functions. The SM covariance is particularly powerful in discov-
ering and extrapolating periodic patterns occurring in data. It is constructed by superposing
multiple periodic covariance functions in order to match and extrapolate data; its hyperpa-
rameters represent the underlying periods and their corresponding scales.
DKL is the term for the combination of a deep ANN and a GP as the output layer. This method
inherits the expressive power of a deep ANN and the flexibility and meaningful predictive
uncertainty of a GP. Additionally, DKL allows for high scalability, i.e., learning from data sets
including up to millions of training points, which will be discussed in Sec. 2.5.
Both methods for constructing covariance functions are complementary. However, due to
the potentially large number of hyperparameters, such covariance functions need to be con-
structed carefully.
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2.3.1 Incorporating non-stationary features

All of the examples in the previous section were stationary covariance functions. But one
might request non-stationary behavior in form of boundary conditions or cusps, i.e., posi-
tions of non-differentiability. Incorporating such properties requires a different mean and/or
covariance function. Generally, one finds a suiting GP by choosing a mean function which
satisfies the desired conditions and modifying a stationary covariance in order to include
such features.

Example: Dirichlet boundary conditions

As a demonstration, let us start with a GP, 𝒢𝒫(𝜇,Σ), where the sample functions do not
fulfill any boundary condition, such as the one depicted in Fig. 2.2, where a sinusoidal mean
and a stationary RBF covariance function is used. The goal shall be to implement Dirichlet
boundary conditions at the edges of a Cartesian box: 𝑓(x) = 0 at |𝑥𝑑| = 𝐿𝑑 (𝑑 = 1, . . . , 𝐷).
In order for both, mean and covariance function, to vanish at the edges, one may choose to
employ a linear function which contains above boundary conditions,

𝐵(x) =
𝐷∏︁
𝑑=1

|𝑥𝑑 − 𝐿𝑑||𝑥𝑑 + 𝐿𝑑|. (2.17)

As discussed in Ref. [21], a GP with the implemented boundary conditions is then given as
𝒢𝒫
(︀
𝜇Box,ΣBox)︀ with

𝜇Box = 𝐵(x)𝜇(x), (2.18)
ΣBox = 𝐵(x)Σ

(︀
x,x′)︀𝐵(x′). (2.19)

A modified version of the GP from Fig. 2.2 with incorporated Dirichlet boundary conditions
at |𝑥| = 2 is shown in Fig. 2.3, left. As requested, the mean of the transformed GP satisfies
the boundary condition. But more importantly, the uncertainty of the GP approaches zero
towards the edges of the box. This behavior is necessary because every sample function,
𝑓(x) ∼ 𝒢𝒫

(︀
𝜇Box,ΣBox)︀, shall satisfy the boundary condition. More general boundary shapes

are discussed in Ref. [22].

Example: a single electron in a molecule

An electron bound around a molecular ion experiences an attractive potential due to the
Coulomb force. Eigenstates of the electron, 𝜓(x), given as solutions of the time-indepen-
dent Schrödinger equation, have kinks at the positions of the nuclei, R𝑖, where the
Coulomb potential is singular, and are smooth elsewhere. At large distances, they decay
away from the molecular ion like a hydrogenic eigenstate, 𝜓(x) ∼ exp

(︀
−𝑍
𝑛 ‖x−R‖

)︀, where
𝑍 is the number of protons inside themolecule, centered atR, and 𝑛 is the principal quantum
number of the hydrogenic state.
Such properties can be implemented into a stationary GP by transforming the mean and
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Figure 2.3: Transformations of the GP in Fig. 2.2: left, with Dirichlet boundary conditions
at |𝑥| = 2 using Equations (2.17) – (2.19); right, with molecular features from Eqs. (2.20)
– (2.22), using 𝛾1 = 𝛾2 = 1, 𝜂 = 2, and R1,2 = ±1.25.

covariance function using

𝐵(x) =
∏︁
𝑖

exp

(︂
−𝛾𝑖
𝜂
‖x−R𝑖‖

)︂
(2.20)

to yield, similar to Eqs. (2.18) and (2.19),

𝜇Mol = 𝐵(x)𝜇(x), (2.21)
ΣMol = 𝐵(x)Σ

(︀
x,x′)︀𝐵(x′). (2.22)

These modifications of the mean and covariance functions exhibit kinks at the positions of
the nuclei, x = R𝑖. Regarding the standard deviation of the corresponding GP far away
from the molecular ion,

𝜎Mol(x) ≡
√︁
ΣMol(x,x) = 𝜎𝑓𝐵(x) (2.23)

= 𝜎𝑓
∏︁
𝑖

exp

(︂
−𝛾𝑖
𝜂
‖x−R𝑖‖

)︂
= 𝜎𝑓 exp

(︃
−1

𝜂

∑︁
𝑖

𝛾𝑖‖x−R𝑖‖
)︃

(2.24)

‖x‖→∞−−−−−→ 𝜎𝑓 exp

(︂
−
∑︀

𝑖 𝛾𝑖
𝜂

‖x−R‖
)︂
, (2.25)

we find that it decays, as desired, like an electronic bound state. Evidently, the values of
𝛾𝑖 represent the charges of the nuclei and 𝜂 is a hyperparameter relating to the principal
quantum number. Arbitrarily, the output-scale, 𝜎𝑓 , could be chosen such that it normalizes
the area of the standard deviation, i.e., ∫︀ (︀𝜎Mol)︀2 dx = 1. However, each sample function
from the GP needs to be normalized individually.
In Fig. 2.3, right, the H+

2 molecular ion in one dimension is considered: one electron around
two protons with an intermediate distance of 2.5 atomic units (a.u.). Sample functions
from the modified GP are shown, 𝑓(x) ∼ 𝒢𝒫

(︀
𝜇Mol,ΣMol)︀, for 𝛾1 = 𝛾2 = 1, 𝜂 = 2, normalized

𝜎𝑦 and 𝑙 = 0.5. Each sample function exponentially decays for ‖x‖ → ∞. They all possess
kinks at the locations of the nuclei and are smooth elsewhere.
The non-stationary features that have been treated in this section were simple, pedagogical
cases that could be handled analytically by mindful considerations. However, many other
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cases may be more complicated and would require more involved procedures for implemen-
tation. Such cases are discussed in, e.g., Refs. [21,22].

2.4 Bayesian inference

In the previous section we have discussed GPs by exploring different mean and covariance
functions and drawing samples from the corresponding distributions. We have seen that one
can adjust a GP by incorporating features one expects due to empirical observations, such
as boundary behavior. So far, the effect of each hyperparameter appearing in the covariance
functions could be interpreted by observing different sample functions drawn from the GP.
Hence, we are able to construct a whole distribution over functions that exhibit a desired
behavior, before having seen any training data.
In this section, we tend to our original task of supervised ML, i.e., training a model on given
data in order to make predictions. For an ANN, this process involves optimizing the many
parameters, i.e., the weights, using the backpropagation algorithm in order to fit the model
function to the data. But as we have noticed, no such weights appear in a GP model. The few
variables that are left, the hyperparameters, do not determine a particular functional form,
but still yield a whole distribution of infinitely many functions. Instead, inference is done by
conditioning a prior probabilistic model on the training data. The conditional distribution,
or posterior, then provides a new distribution that carries the information of the observed
data, as well as the features of the prior.
In the philosophy of probabilities the employment of a prior belief falls into the school of
Bayesian (or evidential) probability. In the Bayesian interpretation probability expresses an
empirical or subjectively plausible belief about an event to occur. A prior probability may
include knowledge about an event gained from physical insight or previous experiments.
After a number of trials/measurements the prior belief is then “corrected” by applying Bayes’
theorem, yielding the posterior probability. This interpretation of probability opposes the
frequentist school, in which probability is defined as the physical limit of the relative
frequency of an event after a large number of trials.
Bayesian statistics is a practical tool for supervised ML since its goal is the inference of
a predictive probabilistic model from limited available data. The employment of a prior
probability, however, is a blessing and curse at the same time. While the incorporation
of prior knowledge, e.g., smoothness or stationarity, is invaluable, an unreasonable choice
could lead to futile results. To one’s benefit comes the fact that in the limit of large data sets
the role of a stationary prior becomes negligible.
In what follows, we will discuss GPs for regression purposes only. For classification, we refer
the reader to Ref. [13].

Training data

Let us assume a set of 𝑁 observations is given, referred to as the training data set,
in form of tuples of an input vector, x𝑗 ∈ R𝐷, and a corresponding scalar output, 𝑦𝑗:
{(x𝑗 , 𝑦𝑗); 𝑗 = 1, . . . , 𝑁}. Concatenating all training input vectors into columns of a matrix,
X = (x1, . . . ,x𝑁 ) ∈ R𝐷×𝑁 , and all training outputs into a vector, y = (𝑦1, . . . , 𝑦𝑁 )

⊤, we
can write {X,y} for the training set. X is referred to as the design matrix. The observed
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output values shall be noisy evaluations of the true input-output relationship,

𝑦𝑗 = 𝑓(x𝑗) + 𝜖, (2.26)

with additive independent Gaussian noise with zero mean, 𝜖 ∼ 𝒩
(︀
0, 𝜎𝑛

2
)︀. We call the true

input-output relationship, 𝑓(x), the latent function. A prior GP is defined by choosing a
mean and covariance function that resembles our prior belief about 𝑓(x), i.e., smoothness,
boundary conditions, etc.
In order to do inference, the prior model must be conditioned on the training data. This step
can be interpreted as restricting our prior distribution over functions to only those functions
which go through the training points under consideration of the underlying noise, 𝜖.

2.4.1 Conditioning on training data

For a random vector partitioned into two subvectors, (w,y)⊤, the conditional distribution
of w, conditioned on the event of a fixed y, is defined as

𝒫(w|y) := 𝒫(w,y)

𝒫(y)
. (2.27)

Here, 𝒫(w,y) is the joint probability and the marginal distribution,

𝒫(y) =

∫︁
𝒫(w,y) dw > 0, (2.28)

is positive because we do not condition on impossible events. If the conditional distribution
equals the marginal distribution, 𝒫(w|y) = 𝒫(w), then w and y are independent. Using
the definition of the conditional distribution and substituting 𝒫(w,y) = 𝒫(y|w)𝒫(w) one
obtains Bayes’ theorem:

𝒫(w|y) = 𝒫(y|w)𝒫(w)

𝒫(y)
. (2.29)

We denote 𝒫(w) as the prior distribution and 𝒫(y|w) is referred to as the likelihood of w
given y, i.e., 𝐿(w;y) = 𝒫(y|w). 𝒫(w|y) is the posterior distribution – the prior conditioned
on some fixed y.
Starting from a probabilistic supervised ML model with an initial/prior distribution over
the parameters one can use Bayes’ theorem to infer from training data. This yields the
posterior distribution over the parameters, which corresponds to the optimized weights in
a non-probabilistic ANN. In the case of a BNN the prior and posterior are the probability
distributions of the weights before and after conditioning on the training data, respectively.
(This is suggested by the nomenclature used above.) Predictions are made by marginalizing
over all weights using the posterior distribution,

𝒫(𝑓(x)|y) =
∫︁

𝒫(𝑓(x)|w)𝒫(w|y) dw. (2.30)

In Sec. 2.1 we have seen that a GP corresponds to a BNN with at least one infinitely wide
hidden layer. So instead of considering a prior distribution for infinitely many weights, we di-
rectly consider a prior GPwith amean and covariance function,𝒫(𝑓(x)) = 𝒢𝒫(𝜇(x),Σ(x,x′)).
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Bayes’ rule then writes for the posterior

𝒫(𝑓(x)|y) = 𝒫(y|𝑓(x))𝒫(𝑓(x))

𝒫(y)
. (2.31)

We see that the posterior is already our predictive distribution over functions. No marginal-
ization over weights is necessary. On top of that, another useful property of Gaussian distri-
butions comes to aid:

Theorem (Conditional distribution of Gaussians). For a Gaussian random vector, partitioned
as (f1, f2)⊤, with correspondingly partitioned mean and (symmetric) covariance,

𝜇 = (𝜇1,𝜇2)
⊤ , Σ =

(︂
Σ11 Σ12

Σ12
⊤ Σ22

)︂
, (2.32)

the conditional distribution of f1, conditioned on a fixed f2 = y, is another multivariate Gaus-
sian, 𝒫(f1|f2 = y) = 𝒩

(︀
�̂�, Σ̂

)︀
, with

�̂� = 𝜇1 + Σ12Σ
−1
22 (y − 𝜇2) , (2.33)

Σ̂ = Σ11 − Σ12Σ
−1
22 Σ12

⊤. (2.34)

Comparing this result to the marginal distribution of Gaussians, i.e. 𝒫(f1) = 𝒩 (𝜇1,Σ11),
one sees that knowledge of observed training data, y, alters the distribution of f1. This is of
course what we expect from doing inference. It is straightforward to generalize Eqs. (2.33)
and (2.34) for GPs by simply substituting the prior mean vector and covariance matrix by
continuous mean and covariance functions,

�̂�(x) = 𝜇(x) + Σ(x;X)⊤Σ(X,X)−1
(︀
y − 𝜇(X)

)︀
, (2.35)

Σ̂(x,x′) = Σ(x,x′) − Σ(x;X)⊤Σ(X,X)−1Σ(x′;X). (2.36)

Here, Σ(x;X) is the vector of functions (︀Σ(x;x1), . . . ,Σ(x;x𝑁 )
)︀⊤, Σ(X,X) is the matrix

with entries Σ𝑖𝑗 = Σ(x𝑖,x𝑗) + 𝜎𝑛
2𝛿𝑖𝑗 with the diagonal variance following from the noise

assumption in Eq. (2.26), and 𝜇(X) is the vector (︀𝜇(x1), . . . , 𝜇(x𝑁 )
)︀⊤. Our predictive pos-

terior GP is then 𝒢𝒫
(︀
�̂�(x), Σ̂(x,x′)

)︀. We have thus seen that doing inference using GPs is
analytically tractable; we speak of GPR.
For the same reason why we marginalize in practical ML applications on a computer, we
also compute only finite values of our predictive functions. Therefore, although considering
continuous GPs, we only evaluate the conditional distribution, i.e., the posterior, using finite,
multivariate Gaussians by applying Eqs. (2.33) and (2.34).
The mayor drawback of Eqs. (2.33) – (2.36) is the necessity of computing the inverse of a
square covariance matrix of the size of the number of training points, 𝑁 . Matrix inversion is
a computationally expensive task and scales in general cubically with the size of the matrix,
𝒪(𝑁3). This matrix inversion states the major bottleneck of using GPs for supervised ML
tasks. Hence, in order to work with large training data sets, ancillary methods are necessary
to improve upon the scaling of ordinary matrix inversion. Such methods will be discussed
in Sec. 2.5.
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2.4.2 Gaussian process regression

Using Eqs. (2.33) – (2.36), we can finally make predictions about a latent function describing
an input-output relationship after the observation of some training data serving as “experi-
ence” for the ML model. Fig. 2.4, left, shows a posterior GP using the prior in Fig. 2.3, left,
conditioned on three training points. The non-stationary features from the prior, namely the
boundary conditions, are inherited in the posterior. However, the posterior mean function
carries almost no resemblance to the prior mean, except for the smoothness and the zero
boundaries. In fact, after conditioning on the training data, the mean has taken an oppo-
site trend. This behavior is indeed desirable, meaning that the detailed choice for the prior
mean is almost arbitrary, which makes inference robust. Following this observation, in most
practical cases the prior mean function can be set to be identically zero, 𝜇(x) = 0. Not only
does this choice slightly simplify Eqs. (2.33) and (2.35), but often a mean function which
lies far away from the training data prevents underfitting, on which will be elaborated in
Sec. 2.4.3. Following this insight we will solely consider zero mean priors from now on.
The posterior GP provides again a mean and covariance function. For regression tasks one
would use the posterior mean as the regression function, as it constitutes the values of the
highest probability density. The diagonal elements of the posterior covariance provide the
variance, or uncertainty, at each point, �̂�2(x) = Σ̂(x,x). Regarding the equation for the
posterior mean more closely, Eq. (2.35), one notices that it can be rewritten as (using a zero
prior mean)

�̂�(x) = Σ(x;X)⊤Σ(X,X)−1y⏟  ⏞  
:=c

(2.37)

=
𝑁∑︁
𝑗=1

𝑐𝑗Σ(x;x𝑗), (2.38)

which is simply an expansion using 𝑁 basis functions, Σ(x;x𝑗), where 𝑁 is the number of
training points. If, for instance, we choose the RBF covariance function for the prior, above
expression would yield

�̂�(x) = 𝜎𝑓
2
𝑁∑︁
𝑗=1

𝑐𝑗 exp

(︃
−1

2

‖x− x𝑗‖2
𝑙2

)︃
, (2.39)

which is a simple superposition of Gaussian functions. These functions are centered on the
positions of the training points, x𝑗 , with a common width, 𝑙, and individual coefficients given
by the 𝑗-th component of the matrix-vector product: 𝑐𝑗 =

[︀
Σ(X,X)−1y

]︀
𝑗
. (Note that the co-

efficients depend linearly on the training values.) The effect of the hyperparameters, 𝜎𝑓 and
𝑙, on the regression function becomes clear now as well. If we use a prior covariance function
with implemented non-stationary features instead, each basis function in Eq. (2.38) would
inherit such features and therefore the regression function as well, being just a weighted
sum thereof. The crucial information of the training data, embedded in y, only contributes
to the values of the coefficients, 𝑐𝑗 . Those coefficients are fine-tuned in order to ensure
that this superposition of functions precisely goes through the whole set of training values
irregardless of the values of the hyperparameters, e.g., 𝜎𝑓 and 𝑙.
The posterior covariance, Eq. (2.36), serves as a corrected prior covariance after the model
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Figure 2.4: Two posterior GPs are shown using the prior from Fig. 2.3, left, conditioned
on three data points. In the left panel, noiseless training data is assumed (crosses), while
one the right, noise is added by setting 𝜎𝑛2 = 0.1 (errorbars).

has “learned” from training observations. The first term on the right hand side of Eq. (2.36)
is the prior covariance. Subtracted from that is the second term representing the “gain in
knowledge” about the latent input-output relationship coming from the training data. Note
that it is independent of the actual values of the observations, y. The diagonal of the pos-
terior covariance yields the posterior variance, Σ̂(x,x) = �̂�2(x), serving as the predicted
uncertainty to the posterior mean. Depending on the observation noise, 𝜎𝑛, it decreases to-
wards the locations of the observations, as expected. For the stationary covariance functions
discussed in Section 2.3, it approaches the value of the output-scale with increasing distance
from training data, �̂�(x) ‖x−x𝑗‖→∞−−−−−−−→ 𝜎𝑓 , and it approaches the noise on the positions of the
observations, �̂�(x𝑗) = 𝜎𝑛.
A new and somewhat special hyperparameter has sneaked in with the noise assumption in
Eq. (2.26). As already briefly mentioned with Eqs. (2.35) and (2.36), Gaussian noise on
the observations, y, is implemented in the diagonal elements of the matrix Σ(X,X). More
accurately, one should write Σ(X,X) + 𝜎𝑛

2I instead, where I is the identity matrix and 𝜎𝑛
the hyperparameter for symmetric, Gaussian noise. One then yields for the coefficients of
the posterior mean

𝑐𝑗 =
[︁(︀
Σ(X,X) + 𝜎𝑛

2I
)︀−1

y
]︁
𝑗
. (2.40)

Fig. 2.4, right, demonstrates the effect of Gaussian noise on the training observations by
choosing a positive variance, 𝜎𝑛2 = 0.1. The posterior mean is no longer forced to precisely
pass through the values of y, but merely stays nearby, taking the uncertainty of the obser-
vations into consideration. It is further possible to consider different noise magnitudes for
each data point by replacing the constant diagonal noise, representing spherical noise,
with a diagonal noise matrix, 𝜎𝑛2I → N, where each diagonal entry specifies the individual
noise on each data point, 𝑁𝑖𝑗 = 𝜎𝑛

2
,𝑗𝛿𝑖𝑗 . The ability to implement noise on the training data

is essential whenever the data origins from physical measurements or stochastic analyses.
The diagonal noise also plays an important role from a numerical aspect. When performing
matrix inversion or solving a system of linear equations using a coefficient matrix, numerical
inaccuracy can cause two rows or columns to be nearly linear dependent, which renders the
matrix singular. In terms of Eq. (2.38), this can be caused by too large overlaps between
two basis functions, ∫︀ Σ(x;x𝑖)Σ(x;x𝑗) dx. In order to avoid such errors when inverting the
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matrix in Eq. (2.40), little diagonal noise needs to be added.
Non-Gaussian noise on the training data corresponds to non-Gaussian likelihoods in
Eq. (2.31), causing inference to be no longer tractable in closed form. This is the case for
classification tasks.

Comparing ANNs and GPR

Comparing GPR to conventional regression methods, e.g., ANNs (including BNNs), it ap-
pears that the two are fundamentally different when inferring a regression function. In
ANNs, as well as in other parametric ML models, the analytic form of the regression func-
tion is defined with the design of the model. This design defines the capacity of the model
and limits the upper bound for the complexity a regression function may have. In typical
cases, this complexity may be far beyond that of the true latent input-output relationship.
To approach overfitting of a given data set, ANNs can either be pruned, i.e., reducing the
capacity by lowering the number of nodes, or one employs regularization methods, such
as weight regularization, which causes the weights to stay small, and thus, reducing the
capacity of the model. [12]
In contrast, the posterior mean function of a GP, Eq. (2.38), gains one term in the sum for
every training point in the data set. For few training points the posterior mean will show
little structure due to the little information given, as in Fig. 2.4. A large number of data
will lead to a large number of basis functions, and hence, allows for more complexity in the
regression function. This is a desirable behavior as it prevents overfitting at few data points
and at the same time enhances flexibility for rich-structured posterior means at large data
sets. As mentioned earlier, the issue of the choice of the right design never occurs. Other
kernel methods used for supervised ML, such as support vector machines [23], share this
property. On the downside, multi-layered ANNs possess the ability to hierarchically learn
complicated features in high-dimensional training data that simple single-layer GPs fail to
resolve. Therefor an extension to deep Gaussian processes appears necessary, constituting
multi-layer GPs.

2.4.3 Learning hyperparameters

Being a non-parametric method for supervised ML, GPs require no adjustment of parame-
ters in order to fit training data. The variables inside the covariance function, e.g., 𝜎𝑓 and 𝑙,
together with the standard deviation of the Gaussian noise on the training data, 𝜎𝑛, form the
set of hyperparameters and play a special role. Other than the parameters in a parametric
model, e.g., the weights in an ANN, each reasonable set of values for the hyperparameters
will provide a meaningful regression function that fits all data points. By varying the hyper-
parameters the characteristics of the posterior can be adjusted. This is also referred to as
model selection.
As a demonstrative example, let us consider a GPR using the RBF covariance function,
Eq. (2.12), similar as in Fig. 2.2, but with a zero mean prior. The hyperparameters shall
be collectively denoted as 𝜃 = (𝜎𝑓 , 𝑙, 𝜎𝑛). Each hyperparameter has a different effect on the
posterior. The effect of Gaussian noise, 𝜎𝑛, is illustrated in Fig. 2.4. The squared output-
scale, 𝜎𝑓 2, is the prefactor of the covariance and therefore proportionally effects the variance
of both, prior and posterior; see Eq. (2.36). Its effect on the posterior mean is being coun-
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teracted by the coefficients which depend, neglecting noise, inversely on the square of the
output-scale, 𝑐𝑗 ∝ 𝜎𝑓

−2; see Eqs. (2.39) and (2.40). The length-scale, 𝑙, directly effects both
posterior mean and covariance. For all stationary covariance functions discussed in Sec. 2.3,
the length-scale inversely scales the distance, ‖x− x′‖/𝑙. This leads to longer or shorter cor-
relations between inputs, x and x′. For the RBF covariance, Eq. (2.39), larger length-scales
correspond to wider Gaussian basis functions. The posterior mean therefore varies more
slowly with x when the length-scale is large. This effect is illustrated in the left panel of
Fig. 2.5. Other covariance functions may bring new hyperparameters with different effects
on the posterior. Their effects can be interpreted by inspecting Eqs. (2.38) and (2.36).
Though for each set of hyperparameters a posterior mean can infer a proper regression on
training data, the question arises whether one set of hyperparameter values performs better
than another. As a posterior GPs gains flexibility with the size of the training data, it can
become vulnerable to over- and underfitting. Overfitting is the term for precise fitting
of training data, while performing poorly at predictions. Then, a too complex regression
function is chosen for a less complex latent function. This occurs for too small length-scales,
𝑙 → 0. On the contrary, underfitting describes the phenomenon of fitting training data
too loosely by not capturing the detailed features of the latent function. This happens if the
noise variance is chosen too large, 𝜎𝑛 ≳ 𝜎𝑓 .

Maximum likelihood estimation

In statistics, themaximum likelihood estimation (MLE) is a method for finding estimators
for the parameters of probability distributions approximately modeling the unknown PDFs
of stochastic phenomena. The likelihood is a function of the parameters, 𝜃, given a fixed
single measurement, y,

𝐿(𝜃;y) = 𝑐𝒫(y;𝜃). (2.41)

For 𝐾 independent and identically distributed measurements, the likelihood is given as the
product of the likelihoods for each single measurement,

𝐿(𝜃;y1, . . . ,y𝐾) =
𝐾∏︁
𝑖=1

𝐿(𝜃;y𝑖) = 𝑐
𝐾∏︁
𝑖=1

𝒫(y𝑖;𝜃). (2.42)

The constant prefactor, 𝑐, is merely a reminder that the likelihood function is not a valid
PDF as it needs not be normalized. The relative value of the likelihood can be interpreted
as how likely a set of measurements is under the assumption of a particular probabilistic
model. The goal is to aim at high values for the likelihood by adjusting the model, namely
by optimizing its parameters. The MLE method returns those estimators for the parameters
for which the likelihood is maximal,

𝐿(�̂�) = max
𝜃

𝐿(𝜃). (2.43)

Often it is computationally convenient to consider the natural logarithm of the likelihood
instead: ℒ(𝜃;y) := log𝐿(𝜃;y). Appendix A.1 demonstrates as an example the well-known
arithmetic mean as a maximum likelihood estimator.
For our GPR case, the probabilistic model is our prior GP and its parameters are the hy-
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Figure 2.5: The effect of different length-scales, 𝑙, of the prior RBF covariance is illustrated.
Left, two posteriors are shown using different hyperparameter sets, 𝜃 = (𝜎𝑓 , 𝑙, 𝜎𝑛). The
blue posterior uses 𝜃 = (1, 0.5, 0), while the orange posterior uses 𝜃 = (1, 2, 0.5). The
data is generated using the GP from Fig. 2.2. The hyperparameters of the blue posterior
are optimized via maximum likelihood estimation (MLE) and therefore correctly re-
produce the hyperparameters of the generating GP. In the right panel the corresponding
log-likelihood is shown (solid black) together with its data-fit (dash-dotted green) and
negative complexity penalty (dotted red) contributions. The other hyperparameters are
fixed at (𝜎𝑓 , 𝜎𝑛) = (1, 0).

perparameters, 𝜃. The training observations, y, serve as one single measurement vector,
assuming we “measured” only once at each point. Using the MLE method we can find the
set of hyperparameters under which the observed training data is most likely. The procedure
of optimizing the hyperparameters is the learning step in a GPR task. For a zero mean GP
the likelihood is given by (omitting the arbitrary factor 𝑐) the marginal distribution of y,
which is again Gaussian according to the marginalization theorem. The log-likelihood is
then

ℒ(𝜃;y) = log𝒫(y;𝜃) = −1

2
y⊤Σ𝑛

−1y⏟  ⏞  
data-fit

− 1

2
log det(Σ𝑛)⏟  ⏞  

complexity penalty

−𝑁
2
log 2𝜋, (2.44)

where Σ𝑛 ≡ Σ(X,X) + 𝜎𝑛
2I. The argmax of ℒ(𝜃;y) provides good estimators for 𝜃. Evi-

dently, this states a global optimization problem with the dimensionality given by the num-
ber of hyperparameters.
The three terms in Eq. (2.44) play different roles in the optimization of the hyperparameters.
[13] Only the first term contains the observed data and corresponds to the data-fit; the
second term serves as the complexity penalty depending only on the covariance matrix at
the training points. The third term is merely a normalization constant. The dependence
of the log-likelihood and its constituents on the length-scale is depicted in Fig. 2.5, right,
where the output-scale and noise were kept fixed at (𝜎𝑓 , 𝜎𝑛) = (1, 0). For large length-
scales the data-fit term monotonically decreases as it loses the flexibility needed to describe
the noiseless training values, y. The negative complexity penalty increases with the length-
scale due to the model becoming less complex. This contribution is essential for preventing
overfitting. The log-likelihood experiences a peak around 𝑙 = 0.5, which constitutes the
maximum likelihood estimator for 𝑙 (at fixed 𝜎𝑓 and 𝜎𝑛). This value accurately reproduces
the length-scale of the GP from which the training data was generated.
In practice all hyperparameters of a GP prior are simultaneously optimized using to the MLE
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method. In order to find the optimum numerically, any gradient-based optimizer will per-
form well. We choose the ‘L-BFGS-B’ algorithm, which is the default optimizer in the scipy
package for python. This optimizer has proven to give satisfactory results if the gradient of
the log-likelihood is provided. The gradient is given in Ref. [13],

𝜕

𝜕𝜃𝑗
ℒ(𝜃;y) = 1

2
tr

(︂
(𝛼𝛼⊤ −Σ𝑛

−1)
𝜕Σ𝑛

𝜕𝜃𝑗

)︂
, (2.45)

where 𝛼 = Σ𝑛
−1y. The provision of the gradient is optional; if no gradient is provided, the

optimizer will locally approximate the gradient using additional function evaluations.
One must always be cautious when searching for the global maximum to not get stuck in
local maxima. This can be prevented by choosing sensible initial values for the hyperpa-
rameters. Choosing a prior mean function too close to the training data will create a local
maximum of the likelihood around large values for the length-scale and the noise, as the
data can be described as white noise around the prior mean. Therefore, it is generally not
recommended to adjust prior mean functions to closely resemble observed data, as their
benefits are neglectable anyway.
The computational burden caused by Eqs. (2.44) and (2.45) is dominated by the inversion
of Σ𝑛, which scales cubically with the number of training points, and is therefore equal to
that of doing inference using Eqs. (2.35) and (2.36). However, throughout the optimization
of hyperparameters the likelihood and its gradients must be computed in each step. For
this reason, learning the hyperparameters causes much more computational expense than a
single inference.

Notes on sampling from a GP

In supervised ML applications GPs are used to infer from data to make probabilistic pre-
dictions. For that the practice of creating actual samples is not needed. Samples from a
customized GP could be used in order to generate data for the training of other ML models
or in a generative adversarial network. The crucial point to consider is that the number of
discrete evaluations of the sample function represents the dimension of the input for the
ML model. An analytic expression of a single sample function is not provided, but could be
approximated, e.g., via GPR.

2.5 Scaling to large data sets in higher dimensions

Themajor drawbacks of GPR are the computational cost of inference, Eqs. (2.35) and (2.36),
and hyperparameter learning, Eqs. (2.44) and (2.45). They involve the inversion of the co-
variance matrix, Σ𝑛

−1 =
(︀
Σ(X,X)+𝜎𝑛

2I
)︀−1, as well as the computation of the complexity

penalty for hyperparameter learning, log det(Σ𝑛). Both scale cubically with the number of
training data, 𝒪(𝑁3). For data sets containing more than about 10.000 points those oper-
ations may take computation time of the order of minutes. Sadly, the required amount of
training data suffers badly from the notorious curse of dimensionality: to thoroughly
cover higher-dimensional input spaces, 𝐷 > 1, the required amount of data grows expo-
nentially with the dimension, 𝒪(𝑁𝐷). Hence, for larger data sets one is compelled to find
approaches that improve upon the cubic scaling. Such approaches can be classified into two
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groups. The first group relies on properties of the covariance matrix and the training data
that simplify computations while keeping the results exact; see Sec. 2.5.1. The second group
uses approximations while keeping generality in the data; see Sec. 2.5.2.

2.5.1 Exact inference on structured data

Underlying structure in the positions of the training data can allow for enhancing alter-
ations when computing either Σ𝑛

−1 directly, or instead solving Σ𝑛
−1y. In particular, two

structural properties allow for major simplifications for computations involving the inverse,
namely Toeplitz and Kronecker structure. Both are complementary and are used in mod-
ern frameworks for scaling GPs to large multidimensional data sets.

Toeplitz structure

For the case of one-dimensional input, the matrix of a stationary covariance function simpli-
fies significantly if the data is equidistantly spaced. SinceΣ(x,x′) = Σ(x−x′) for a stationary
covariance, each diagonal of the covariance matrix then has equal entries, Σ𝑖𝑗 = Σ𝑖+1,𝑗+1.
Such a matrix is called Toeplitz (or diagonal-constant) matrix. Because of the symmetry
of the covariance, Σ𝑖𝑗 = Σ𝑗𝑖, the full information of Σ𝑛 = Σ + 𝜎𝑛

2I is stored in one sin-
gle row or column. Exploiting Toeplitz structure, matrix-vector multiplication can be done
in 𝒪(𝑁 log𝑁) operations. [24] Ref. [9] provides the corresponding implementation using
fast Fourier transforms. Thus, inference is efficiently done by solving the system of linear
equations

Σ𝑛z = y (2.46)

for z = Σ𝑛
−1y via the conjugate gradient (CG) method [25], which exclusively applies

matrix-vector products. The total cost of inference then drops from cubic to 𝒪(𝐽𝑁 log𝑁),
where 𝐽 is the number of iterations of the CG method.
Less efficiently provided is the complexity penalty. Exploiting Toeplitz structure, Ref. [9]
shows that log det(Σ𝑛) can be computed in 𝒪(𝑁2) operations.

Kronecker structure

Matrices that decompose into a Kronecker product pose as the most desirable category,

Σ = Σ1 ⊗Σ2 ⊗ · · · ⊗Σ𝐷 =
𝐷⨂︁
𝑑=1

Σ𝑑. (2.47)

Although the inverse of such a Kronecker matrix can be easily computed as

Σ−1 = Σ−1
1 ⊗ · · · ⊗Σ−1

𝐷 , (2.48)

our actual target is the inverse of Σ + 𝜎𝑛
2I, which incorporates additional noise. Ref. [26]

shows that by exploiting the Kronecker form one can efficiently solve (Σ + 𝜎𝑛
2I)−1y and
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log det
(︀
Σ+ 𝜎𝑛

2I
)︀. Using the eigendecompositions, Σ𝑑 = Q𝑑Λ𝑑Q

⊤
𝑑 , one can rewrite(︃

𝐷⨂︁
𝑑=1

Σ𝑑 + 𝜎𝑛
2I

)︃−1

y =

(︃
𝐷⨂︁
𝑑=1

Q𝑑Λ𝑑Q
⊤
𝑑 + 𝜎𝑛

2I

)︃−1

y (2.49)

=

⎛⎝[︃ 𝐷⨂︁
𝑑=1

Q𝑑

]︃[︃
𝐷⨂︁
𝑑=1

Λ𝑑

]︃[︃
𝐷⨂︁
𝑑=1

Q𝑑

]︃⊤
+ 𝜎𝑛

2I

⎞⎠−1

y (2.50)

=
(︁
QΛQ⊤ + 𝜎𝑛

2I
)︁−1

y (2.51)

= Q
(︀
Λ+ 𝜎𝑛

2I
)︀−1

Q⊤y. (2.52)

Therefor the orthogonality of Q (since the Σ𝑑 are symmetric) and the properties of the
Kronecker product were used. Computing the inverse of the diagonal matrix in Eq. (2.52)
is trivial. What is left are the eigendecompositions of each much smaller factor matrix,
Σ𝑑, and the more expensive matrix-vector products. Latter can be efficiently implemented
exploiting the Kronecker form, reducing the cost from 𝒪(𝑁2) to 𝒪(𝐷𝑁

𝐷+1
𝐷 ), with 𝐷 ≪ 𝑁 ,

see Appendix A.2. Using the eigenvalues of Σ, which are the entries of the diagonal matrix
Λ, namely 𝜆𝑗 , one can easily compute the complexity penalty,

log det
(︀
Σ+ 𝜎𝑛

2I
)︀
= log

𝑁∏︁
𝑗=1

(︀
𝜆𝑗 + 𝜎𝑛

2
)︀
=

𝑁∑︁
𝑗=1

log
(︀
𝜆𝑗 + 𝜎𝑛

2
)︀
. (2.53)

In total, the computational expense drops from cubic to𝒪
(︀
𝐷𝑁

𝐷+1
𝐷

)︀ and the covariance ma-
trix can be stored in 𝒪(𝐷𝑁2/𝐷) instead of 𝒪(𝑁2). This is a huge advantage; the complexity
then scales roughly linearly with the dimension and the number of points in the training
data set.
The question arises when a covariance matrix becomes a Kronecker product: a product of
one-dimensional covariance functions,

Σ(x,x′) =
𝐷∏︁
𝑑=1

Σ𝑑(𝑥𝑑, 𝑥
′
𝑑), (2.54)

can form a Kronecker product if the training data lies on a multidimensional Euclidean
lattice,{︁

x(1), . . . ,x(𝑁)
}︁
⊂ 𝒳 = 𝒳1 × · · · × 𝒳𝐷 ⊆ R𝐷. (2.55)

The grid spacing in each dimension needs not be equidistant, but if it is, the Toeplitz struc-
ture of the factor matrices can be exploited additionally. The prerequisite of Eq. (2.54) is
minor restrictive, as many popular multidimensional covariance functions possess this prop-
erty, in particular the RBF and the SM covariance functions. The major restriction states the
grid structure of the data. Such data can appear in image analysis, sensor arrays, and, more
importantly, numerical data assimilation due to the data being often generated on discrete
grids of parameters. However, training sets forming complete grids are rarely provided.
The full grid requirement can be relaxed to incomplete grids [27,28] (or almost grid-like data
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sets) by adding data points with arbitrary output value and infinite Gaussian noise in order
to complete a full grid. Those additional points serve as dummies and permit a Kronecker
decomposition as in Eq. (2.47). The original training data set forming the incomplete grid,
{(x𝑗 , 𝑦𝑗); 𝑗 = 1, . . . , 𝑁}, is then expanded by 𝑀 points with (𝑦𝑁+1, . . . , 𝑦𝑁+𝑀 ) = 0 and
positions, (x𝑁+1, . . . ,x𝑁+𝑀 ), such that together they fill all𝑁+𝑀 grid sites. The covariance
matrix and training vector for the completed grid shall be denoted as Σ(𝑁+𝑀) and y(𝑁+𝑀),
respectively. The diagonal noise matrix is then correspondingly expanded to

D𝑛 =

(︂
𝜎𝑛

2I𝑁 0
0 𝜖I𝑀

)︂
, (2.56)

where I𝑁 stands for the identity matrix of dimension R𝑁×𝑁 and the dummy noise tends
to infinity, 𝜖 → ∞. As before, variable individual noise on the original observations can be
implemented by substituting 𝜎𝑛2I𝑁 → N, where 𝑁𝑖𝑗 = 𝜎𝑛

2
,𝑗𝛿𝑖𝑗 . Refs. [27,28] show that the

augmentation of the dummy set has no corrupting effect on the inference result,(︁
Σ(𝑁+𝑀) +D𝑛

)︁−1
y(𝑁+𝑀) =

(︀
Σ+ 𝜎𝑛

2I
)︀−1

y. (2.57)

Since the diagonal noise matrix, Eq. (2.56), is no longer a multiple of the identity matrix,
the previous decomposition, Eqs. (2.49) – (2.52), is no longer possible. Instead, inference
can be efficiently done by solving the system of linear equations(︁

Σ(𝑁+𝑀) +D𝑛

)︁
z = y (2.58)

for z =
(︀
Σ(𝑁+𝑀) + D𝑛

)︀−1
y via the CG method. This method iteratively solves Eq. (2.58)

by solely applying matrix-vector products. Same as for Eq. (2.52), products of Kronecker
matrices and vectors can be efficiently computed in 𝒪(𝐷(𝑁 +𝑀)

𝐷+1
𝐷 ) operations, see Ap-

pendix A.2. The computational burden of the CG solver is then 𝒪(𝐽𝐷(𝑁 +𝑀)
𝐷+1
𝐷 ), where

𝐽 is the number of iterations. In Refs. [27,28] the preconditioner matrix for the CG method,
D𝑛

− 1
2 , is suggested. However, this choice of preconditioner has not improved convergence

in our experiments.
On the downside, the complexity penalty for hyperparameter learning, Eq. (2.53), must be
approximated. Two methods were proposed, where the first method is limited to spherical
noise on the original data on the incomplete grid, 𝜎𝑛2I. For this case, Ref. [28] used the
observation that the dummy variables do not alter the result, Eq. (2.57), and suggests to
consider only the original data. They apply Eq. (2.53) and approximate the eigenvalues of
Σ by using the 𝑁 largest eigenvalues of Σ(𝑁+𝑀),

log det
(︀
Σ+ 𝜎𝑛

2I
)︀
=

𝑁∑︁
𝑗=1

log
(︀
𝜆𝑗 + 𝜎𝑛

2
)︀
≈

𝑁∑︁
𝑗=1

log

(︂
𝑁

𝑁 +𝑀
𝜆
(𝑁+𝑀)
𝑗 + 𝜎𝑛

2

)︂
, (2.59)

where 𝜆(𝑁+𝑀)
𝑗 are the eigenvalues of Σ(𝑁+𝑀), which can be cheaply computed due to its

Kronecker form.
On the other hand, for the more general case of variable, individual noise, 𝑁𝑖𝑗 = 𝜎𝑛

2
,𝑗𝛿𝑖𝑗 ,

Ref. [27] suggests to consider the completed-grid data set and approximates the noise matrix
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with a scaled identity matrix,

log det
(︁
Σ(𝑁+𝑀) +D𝑛

)︁
≈ log det

(︁
Σ(𝑁+𝑀) + 𝛾(D𝑛)I

)︁
=

𝑁+𝑀∑︁
𝑗=1

log
(︁
𝜆
(𝑁+𝑀)
𝑗 + 𝛾(D𝑛)

)︁
,

(2.60)

where 𝛾(D𝑛) =
(︁∏︀𝑁+𝑀

𝑗=1 D𝑛,𝑗𝑗

)︁ 1
𝑁+𝑀 is the geometric mean. In either case, only the com-

plexity penalty, hence the learning of the hyperparameters, undergoes a small approxima-
tion while inference remains exact. The total computational cost for data on incomplete
grids is now 𝒪(𝐽𝐷(𝑁 +𝑀)

𝐷+1
𝐷 ) instead of 𝒪(𝐷𝑁

𝐷+1
𝐷 ) for the data producing a complete

lattice. Again, the number of operations scales superlinearly with the number of training
points. The storage cost remains the same.
Above considerations are suited to handle data that exhibit partial grid structure. If a data
set has even one dimension along which it shows no grid structure at all the computational
cost becomes 𝒪(𝑁3) again, since one Kronecker factor matrix for the completed grid will
have dimension 𝑁 .

2.5.2 Approximative inference on generic data

In the previous section Toeplitz and Kronecker properties are used to immensely improve
upon the scalability of GPR. While keeping inference exact, both rely on lattice structures in
the training data, rendering such improvements rarely applicable. For generic data, infer-
ence and learning can be sped up by employing approximations to the covariance matrix or
its inverse. Early popular methods rely on subsets of training locations, so called inducing
points, in order to reduce the size of the covariance matrix to be inverted. Suchmethods are
coined greedy or sparse approximations, many of which are summarized in Refs. [29,30].
They all have in common that the number of inducing points, 𝑀 , must be chosen much
smaller than the size of the training data set,𝑀 ≪ 𝑁 , in order to improve upon the compu-
tational effort, at the expense of accuracy for the regression. The computational cost then
reduces to 𝒪(𝑀2𝑁 +𝑀3). Still, the curse of dimensionality remains unbroken since the
number of necessary inducing points exponentially grows with the dimension.
Refs. [31,32] propose to combine such approximations using inducing points with the effi-
ciency gains coming from structured data, discussed in Sec. 2.5.1, by placing the induc-
ing points, (u1, . . . ,u𝑀 ), on a regular grid. Due to the lattice structure a much larger
set of inducing points can be treated, 𝑀 > 𝑁 . The covariance at training locations is
then cubically interpolated between two neighboring inducing points, resulting in a sparse
matrix with interpolations weights, W ∈ R𝑁×𝑀 . The original covariance matrix of the
training inputs is then approximated by a simple matrix product of sparse weight matrices
and the covariance matrix of the inducing point lattice with Toeplitz and Kronecker forms,
Σ(X,X) ≈ WΣ(U,U)W⊤ ≡ ΣSKI. The authors call this method structured kernel
interpolation (SKI). With fast matrix-vector multiplication enabled, inference is done by
solving the system of linear equations

(ΣSKI + 𝜎𝑛I) z = y (2.61)

for z = (ΣSKI + 𝜎𝑛I)
−1 y ≈ (Σ+ 𝜎𝑛I)

−1 y via the CG method. The complexity penalty for
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hyperparameter learning can be computed using Eq. (2.59), where ΣSKI takes the role of
Σ(𝑁+𝑀). Using a large number of inducing points reduces the magnitude of the approxima-
tion without sacrificing scalability into multiple dimensions. The restrictions on the train-
ing data set are completely lifted. The total computational complexity is thus reduced to
𝒪(𝑁 +𝐽𝑀 log𝑀) operations and 𝒪(𝑁 +𝑀) storage when exploiting Toeplitz structure for
𝐷 = 1, and 𝒪(𝐽𝐷𝑀

𝐷+1
𝐷 ) operations and 𝒪(𝑁 +𝐷𝑀

2
𝐷 ) storage when exploiting Kronecker

structure for 𝐷 > 1.
Evidently, the initial cost of𝒪(𝑁3) for GPR is immensely reduced. The curse of dimensional-
ity, however, remains in the number of inducing points,𝑀 , which grows exponentially with
𝐷. In order to enable GPR in very high input dimensions, 𝐷 ≫ 5, Ref. [33] further employs
the Lanczos approximation to the covariance matrix resulting in truly linear runtime with
the dimension. An alternative approach is DKL [20], where an SKI GP is used as an output
layer of a deep ANN, improving upon expressive power and scalability at the same time.
For the predictive covariance, Eq. (2.36) remains to be efficiently solved. Building upon
the SKI method in Ref. [31], Ref. [34] supplies an approximate method for computing the
uncertainty and sampling from the posterior distribution using a Lanczos decomposition of
the prior covariance matrix.

2.5.3 On the convergence of the CG method

In this section it was shown that many methods for lowering the computational complexity
efficiently use fast matrix-vector multiplication. The costly computations involving the in-
verse of the covariance matrix are then executed using the CG method for solving systems of
linear equations, since it relies solely onmatrix-vector products. The total computational cost
then scales like 𝒪(𝐽𝑀 log𝑀) for Toeplitz and 𝒪(𝐽𝐷𝑀

𝐷+1
𝐷 ) for Kronecker matrices, where

𝐽 is the number of iterations of the CG method and 𝑀 the number of training/inducing
points, i.e., the dimension of the covariance matrix.
The CGmethod iteratively solves a system of linear equations,Az = y. From an (arbitrarily)
chosen starting point, z0, the norm of the residual, ‖r𝑖‖ = ‖y −Az𝑖‖, is decreased by mov-
ing, step by step, in A-conjugate directions, i.e., d⊤

𝑖 Ad𝑗 = 0 ∀𝑖 ̸= 𝑗. Neglecting round-off
errors, the method arrives at its solution, ‖r𝐽‖ = 0, in 𝐽 ≤𝑀 iterations, whereA ∈ R𝑀×𝑀 .
In practice, however, the number of iterations heavily depends on the condition of matrix
A. For well-conditioned covariance matrices, 𝐽 ≪𝑀 , rendering the effective computational
costs of inference from𝒪(𝐽𝑀 log𝑀) for Toeplitz and𝒪(𝐽𝐷𝑀

𝐷+1
𝐷 ) for Kronecker structures

to 𝒪(𝑀 log𝑀) and 𝒪(𝐷𝑀
𝐷+1
𝐷 ), respectively. On the other hand, for ill-conditioned covari-

ance matrices, 𝐽 can become much larger than 𝑀 . More precisely, we find that for longer
correlations, i.e., larger length-scales, 𝑙, the CG algorithm converges weaker and the num-
ber of iterations become prohibitively large, 𝐽 > 𝑀 , worsening the overall computational
burden.
In Fig. 2.6 the effect of the length-scale in the RBF covariance function, Eq. (2.12), on the
convergence of the CG method is depicted. The underlying set of data points is located on a
complete four-dimensional lattice with ten equidistant points in each dimension, summing
up to a total of𝑀 = 104 points. The distance between two neighboring points is 1. The resid-
ual in each iteration is shown for the five different length-scales 𝑙 = 0.5, 0.75, 1.0, 1.25, 1.5.
The larger the length-scale is chosen, the slower the CG method converges. The other hyper-
parameters, 𝜎𝑓 and 𝜎𝑛, as well as the values of the training data, y, do not alter the scaling
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behavior of the convergence. Note that since the optimal value for the length-scale accord-
ing to the MLE, Eq. (2.44), depends on the values of y, the range of optimal 𝑙 is in general
unbound. As a consequence, the computational efficiency of the CGmethod heavily depends
on the length-scale of the covariance function. In the experiment in Fig. 2.6, the number of
iterations already exceeds the number of data points at length-scales larger than 1.25 times
the nearest neighbor distance. Prohibitively large numbers of iterations of the CG solver,
𝐽 > 𝑀 , render many up-scaling methods discussed within this section counterproductive.
This kind of behavior is not discussed in the cited literature.
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Iterations, J

10−8

10−6

10−4

10−2

100

102

104

kr
k 2

Figure 2.6: The effect of different length-scales, 𝑙, of the RBF covariance matrix on the
convergence of the CG method is illustrated. The values are 𝑙 = 0.5 (blue), 0.75 (orange),
1.0 (green), 1.25 (red), 1.5 (purple). The iterations were stopped when either a threshold
of the residual, ‖r‖2, was reached, or the number of iterations exceeded 3·104. The training
points were located on the sites of a four-dimensional Euclidean lattice with 10 points in
each dimension and distances of 1.
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2.6 Active learning

A GP naturally provides uncertainty measures. A practical task could not only be the fitting
of a training data set, but also come with the question of where additional training points
are needed the most. We shall call such a task active learning (AL). The uncertainty of
a posterior GP can be a sensible measure for the lack of information about the true latent
function, thus enabling AL procedures.
If one considers any stationary covariance function, such as those discussed in Sec. 2.3, one
finds that the uncertainty grows with the distance to the training data. This behavior is
exactly what one expects and was already discussed in Sec. 2.4.2. However, for an open
range in the input space, this is generally little useful for AL, as new training locations, x⋆,
would be suggested at ‖x⋆ − x𝑛‖ → ∞, where x𝑛 is the nearest training point. For the case
of finite, discrete test points GPs significantly improve the sampling for additional training
points over random sampling, as shown in Ref. [35]. For continuous input spaces one has
to define boundaries by incorporating boundary conditions into the GP. [36]
Coming back to our two examples for incorporating non-stationary features into a GP in
Sec. 2.3.1, we can demonstrate AL procedures using the uncertainty to successively find
locations where new training points ought to be added.

Example: a particle in a box

One of the simplest, exactly solvable quantum systems to consider is a free particle in a
Cartesian box with infinitely high potential walls,

𝑉 (x) =

{︃
0 if 0 ≤ 𝑥𝑖 ≤ 𝐿𝑖 ∀𝑖,
∞ else. (2.62)

Since the potential is time-independent, the eigenstates of this system are given as solutions
of the time-independent Schrödinger equation,

𝐻𝜓(x) =

[︂
− ℏ2

2𝑚
∇2 + 𝑉 (x)

]︂
𝜓(x) = 𝐸𝜓(x), (2.63)

all of which have the properties of being continuously differentiable inside the box and zero
outside the box. Such properties were already considered in Sec. 2.3.1, where Dirichlet
boundary conditions were implemented into a GP, Eqs. (2.18) and (2.19). Using such a
prior (with zero mean) we can conduct an AL procedure for reconstructing an eigenstate by
efficiently placing training points in a subsequent manner.
Fig. 2.7 illustrates such a procedure for the eigenstate with quantum numbers (2, 1). Before
possessing any training data, the standard deviation of the prior GP, 𝜎, having the proper
boundary features implemented, suggests placing the first training point in the center of the
box, where the standard deviation is maximal; see the top right panel. After evaluating the
true wave function at this point, we compute the first posterior GP by conditioning the prior
GP on this first training point. The second training point is then placed, where the posterior
uncertainty is maximal, yielding the second training point. Repeating this a number of times
one efficiently collects a sensible training data set for the given eigenstate. The two bottom
panels of Fig. 2.7 show the GPR after ten iterations. The two optimized length-scales of the
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Figure 2.7: An AL procedure for the (2, 1) eigenstate of a particle in a 2-dim. box is il-
lustrated. The top left panel shows the true eigenstate; the bottom left panel shows the
posterior mean using the ten training points depicted as their number of inclusion into the
training set. The two right panels show the uncertainties of the prior (top) and posterior
GP (bottom).

posterior are 𝑙1 ≈ 0.4 for the 𝑥1-direction and 𝑙2 ≈ 1.0 for the 𝑥2-direction, expressing the
fact that 𝜓 has a node in 𝑥1-direction but none in 𝑥2-direction.
Note that it was assumed that the true wave function can be evaluated. In a realistic scenario
this could possibly not be the case. Still, AL can be conducted since the posterior covariance,
Eq. (2.36), does not depend on the training values, y, but only on the positions, x𝑗 . After
actively learning 𝑁 positions of a training set, the corresponding y-values can be evaluated
by diagonalizing the Hamiltonian, 𝐻, in the basis of the GP basis functions, see Eq. (2.38).
This would state a generalized eigenvalue problem, the solutions of which yield the first 𝑁
approximated eigenenergies, 𝐸𝑖, and the corresponding eigenvectors, v𝑖, whose elements
are the coefficients, 𝑐𝑖𝑗 , from Eq. (2.38). The only difference of AL without evaluating the
true target function is the fact that the hyperparameters cannot be adjusted to the training
data in each step, Eq. (2.44). This is, however, not problematic, since the diagonalization of
the system Hamiltonian yields all 𝑁 eigenstates, each of which will have different optimal
hyperparameters anyway.

Example: the H+
2 molecular ion

As a second example for AL we consider the case of an singly ionized hydrogen molecule,
H+

2 . The properties of the electronic eigenstates of this system were discussed in Sec. 2.3.1,
where a GP with same properties was developed. Specifically, we employ the prior (with
zero mean) from the right panel of Fig. 2.3, where two nuclei with charges 𝛾1 = 𝛾2 = 1 at
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Figure 2.8: AL procedures for the symmetric (left) and anti-symmetric (right) LCAO
eigenstates of the H+

2 molecular ion are illustrated. To reduce the system to one dimen-
sion, the wave function is only considered along the molecular axis. The top two panels
show the posterior means with the actively learned training sets depicted as crosses, num-
bered by their order of inclusion into the training set. Themiddle row shows the posterior
uncertainties, approaching zero at each training point. The bottom two panels show the
errors of the regressions.

the positions R1,2 = ±1.25 were used.
As approximate solutions to the molecular ions lowest eigenstates we use the linear com-
bination of atomic orbitals (LCAO) ansatz [37] of two hydrogen ground states, 𝜓1,2, at
the positions of the two nuclei,

𝜓𝑠 = 𝑐𝑠(𝜓1 + 𝜓2), (2.64)
𝜓𝑎 = 𝑐𝑎(𝜓1 − 𝜓2), (2.65)
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with

𝑐𝑠 =

√︃
1

2(1 + 𝑆)
, (2.66)

𝑐𝑎 =

√︃
1

2(1− 𝑆)
, (2.67)

𝑆 =

(︃
1 + ‖R1 −R2‖+

‖R1 −R2‖2
3

)︃
𝑒−‖R1−R2‖, (2.68)

where the subscripts ‘𝑠’ and ‘𝑎’ stand for the symmetric and anti-symmetric solutions, respec-
tively. As unit of length the Bohr radius, 𝑎0 = 1 a.u., is used. For demonstration purposes
we consider only the wave function along the molecular axis, rendering the problem one-
dimensional.
Fig. 2.8 illustrates an AL procedure, similarly to Fig. 2.7. The non-stationary properties of
the prior, namely the cusps at the nuclei and the exponential decay away from the nuclei,
suit all eigenstates of the system. The exponential decay of the GP is crucial for reasonable
data acquisition: the actively selected training points are located around the nuclei, where
the wave functions exhibit their characteristic structures. No manual boundaries for the
learning regions have to be set. For both eigenstate regressions the optimal hyperparameter
relating to the principal quantum number approaches 𝜂 = 1, which correctly restores the
ground states in the LCAO ansatz.

2.6.1 Bayesian optimization

The possibility of actively collecting data in order to efficiently gain information about the
true latent function suggests modifications that enable finding specific values of that func-
tion, such as extrema, i.e., minima and maxima. [38] Finding extrema of functions falls into
the discipline of optimization. Local optimizers, e.g., the gradient descend algorithm, often
follow the steepest descent to arrive at the local minimum of a latent function. More difficult
to find are global extrema; local optimizers usually get stuck around local extrema. To find
global extrema large numbers of function evaluations are usually required in order find all
local extrema.
Due to their predictive power while requiring relatively few function evaluations, GPs have
turned into a popular tool for global optimization. [39] The procedure of finding global
extrema using the posterior mean and variance of a GP was coined Bayesian optimization
(BO). BO is essentially an AL algorithm that iteratively adds training points. The difference
to AL in the previous section is that new training points are added not where the uncertainty
is largest, but instead where an acquisition function, such as

𝛼(x) = �̂�(x)± 𝜅�̂�(x), (2.69)

has a maximum or minimum, respectively. For the first case, above acquisition function
is large in regions of high predictive mean, �̂�, and high uncertainty, �̂�, and its maximum
provides sensible candidates for global maxima. High values of the parameter 𝜅 lead to more
exploration, i.e., searching in regions of high uncertainty, while small values of 𝜅 lead to
more exploitation, i.e., sampling close around predicted maxima. A sensible choice for the
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value of 𝜅 is given in Ref. [40].
In Fig. 2.9 a snapshot of an BO task for maximization is shown. As prior GP for AL the
one from the right panel of Fig. 2.3 was used, since it includes the prior knowledge that
the latent function, depicted in blue, decays as ‖x‖ → ∞. If no prior knowledge about the
latent function is at hand, a simple RBF covariance, Eq. (2.12), can be used instead. At each
step, the acquisition function, Eq. (2.69), is maximized to locate the next training point,
being the potential candidate for a global maximum. The posterior GP after six iterations is
shown. The oscillatory character of the latent function causes local optimization procedures
to likely get stuck in local maxima, as they usually follow gradients until converged. Instead,
BO utilizes the uncertainty to sample unexplored regions where maxima can occur. Hence,
Bayesian optimizers never get stuck locally and at the same time use much fewer latent
function evaluations, which is particularly important if such evaluations are costly.
One notices that the optimization task has shifted from optimizing the true latent function to
maximizing/minimizing an acquisition function, Eq. (2.69). The reason is that optimizing
the acquisition function is much less costly, as its evaluations correspond to the evaluations
of the posterior GP, Eqs. (2.38) and (2.36), which scales 𝒪(𝑁).
While being very efficient, the application of BO requires no computations of gradients of the
latent function. Latter needs not be analytic or possess any specific properties, e.g., being
continuous. Both, the training GP and the acquisition function can be tuned to the problem
at hand, e.g., to ignore divergences or define preferred regions for exploration. Recently, BO
has become a prominent method for designing ANNs as well. [41]
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Figure 2.9: BO is illustrated on finding the global maximum of a sample function (blue)
generated from a GP similar to that of the right panel of Fig. 2.3. The same GP is used as
prior for the BOmethod. At six iterations the posterior mean (dashed) and standard devia-
tion (gray shades) are shown together with the actively selected training points, numbered
by their order of inclusion into the training set.



3 Adiabatic and diabatic dynamics

All states and processes of matter underlie the laws of quantum physics. The dynamical de-
scription of non-relativistic particles on the atomic scale is governed by the time-dependent
Schrödinger equation [42], which describes the time-evolution of a quantum system,
represented by a wave function, Ψ,

𝑖ℏ
𝜕

𝜕𝑡
Ψ(x, 𝑡) =

[︂
− ℏ2

2𝑚

𝜕2

𝜕x2
+ 𝑉 (x, 𝑡)

]︂
Ψ(x, 𝑡) ≡ 𝐻(x, 𝑡)Ψ(x, 𝑡). (3.1)

The operator 𝐻 is the Hamiltonian of the system – the observable containing all the terms
that contribute to its energy. If an atom or molecule is completely isolated from its envi-
ronment, it can be described by a time-independent Hamiltonian, 𝐻(x). The eigenener-
gies, 𝐸𝑗 , and eigenstates, 𝜓𝑗 , of the Hamiltonian are governed by the time-independent
Schrödinger equation (TISE),

𝐻(x)𝜓𝑗(x) = 𝐸𝑗𝜓𝑗(x). (3.2)

Due to the linearity of Eq. (3.1), its general solution for the time-independent case can be
written as the superposition of all eigenstates of 𝐻,

Ψ(x, 𝑡) =
∑︁
𝑗

𝑎𝑗𝑒
− 𝑖

ℏ𝐸𝑗𝑡𝜓𝑗(x). (3.3)

Without any perturbation, a system, originally in an eigenstate, would remain forever in that
state, i.e., |Ψ(𝑡)|2 = |𝜓𝑗 |2 ∀𝑡. A change in the external or internal conditions will alter the
state of the system. Such a change can be quantified by a, likely time-dependent, parameter
variation in the Hamiltonian,𝐻(𝜆), causing its eigenenergies and eigenstates to vary as well:
𝐸𝑗(𝜆), 𝜓𝑗(𝜆).

Adiabatic theorem

Throughout a perturbation the evolution of an initial system state starting from an eigenstate
depends on the relative time-scales. If we consider an electron inside an atom, the time-scale
of its motion around the nucleus is of the order of femtoseconds, 10−15𝑠. A much slower
perturbation of the Hamiltonian will have a smaller effect on the system than a perturbation
of similar time-scale. This is stated by the adiabatic theorem: [43]

Theorem (Adiabatic theorem). A physical system remains in its instantaneous eigenstate if a
given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue
and the rest of the Hamiltonian’s spectrum.

Slowly means that the time-scale of the intrinsic dynamics of the system is much smaller than
that of the change of the perturbation, i.e., d𝜆

d𝑡 → 0. An initial system state in an eigenstate,
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𝜓𝑗(𝜆(𝑡0)), will adapt to the slow changes of the system and end up in the corresponding
eigenstate of the final Hamiltonian, 𝜓𝑗(𝜆(𝑡1)), assuming its eigenenergy has not crossed
that of another. The initial and final eigenstates will in general not have the same shape,
𝜓𝑗(𝜆(𝑡0)) ̸= 𝜓𝑗(𝜆(𝑡1)). Such behavior is called adiabatic.
For the case of quickly changing conditions, the system state will not be able to adapt to
the changes and ceases being an eigenstate. In the limit of infinitely rapid perturbation,
d𝜆
d𝑡 → ∞, the shape of the wave function will remain unaltered, i.e., |Ψ(𝑡0)|2 = |Ψ(𝑡1)|2.
Such behavior is called non-adiabatic or diabatic.
For intermediate perturbations, 0 < d𝜆

d𝑡 <∞, the system state will in general neither remain
unchanged nor an eigenstate. When a measurement of the system energy is conducted the
possible measurement outcomes are the eigenenergies of the Hamiltonian with probabilities
given as the squared absolute value of the overlap between system state and the corre-
sponding eigenstate: 𝑃 (𝐸𝑗) =

⃒⃒⃒∫︀
𝜓*
𝑗Ψdx

⃒⃒⃒2
. For simple two-level systems the probability of

the transition from one to the other eigenstate, ∫︀ 𝜓*
1𝜓0 dx, can be approximated with the

Landau-Zener formula. [44–47]

Avoided crossings

Continuously changing perturbations of a system, described by a Hamiltonian depending
on a parameter,𝐻(𝜆), are reflected in changing eigenenergies and eigenstates of the system
Hamiltonian. The top left panel of Fig. 3.1 shows eigenenergies of bound states of an exam-
ple Hamiltonian as functions of a perturbation. These spectra exhibit various crossings of
energy surfaces, as well as avoided crossings, most prominent around 𝜆 ≈ 0.4. The details
of the underlying physical system, namely two kinetically coupled Morse oscillators, will be
discussed in Chapter 5 and shall not be of concern for now.
The fact that energy surfaces cross, i.e., become degenerate, implies that the system must
have more than one degree of freedom, since there are no degenerate bound eigenstates
in one-dimensional non-singular systems. [48] Consequently, all bound eigenstates exhibit
avoided crossings. A proof for this statement is provided in Appendix A.3.
For higher-dimensional systems the von Neumann-Wigner theorem [49] states that in gen-
eral eigenenergies can only cross on amanifold of𝑁𝜆−3 dimensions, where𝑁𝜆 is the number
of continuous real parameters of the Hamiltonian. For instance, a diatomic molecule, having
only one parameter, namely the internuclear distance, will in general not exhibit any cross-
ings. A triatomic molecule, having three configurational parameters, will in general exhibit
a crossing of energies at isolated points, so-called conical intersections. [50]
For systems that possess symmetries, eigenenergies corresponding to eigenstates of different
symmetry can cross on manifolds of 𝑁𝜆 − 1 dimensions. Thus, the variation of one single
parameter will locate intersections of eigenenergies. A derivation of the von Neumann-
Wigner theorem is given in Appendix A.4.
The system of which the energy spectrum is depicted in Fig. 3.1 possesses a symmetry. The
blue and orange energy surfaces in the top left panel correspond to symmetric and anti-
symmetric eigenstates, respectively. While energies belonging to symmetric states can cross
those of anti-symmetric states, they avoid all crossings with other symmetric states. I.e.,
blue and orange lines cross, while blue lines avoid crossing other blue lines. The same goes
for orange anti-symmetric states. Considering only symmetric or only anti-symmetric states,
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the adiabatic theorem states that a system state starting on any energy surface will remain
in that particular eigenstate if the perturbation is changing slowly. Hence, we shall denote
the individual lines of one symmetry adiabatic manifolds or adiabats.
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Figure 3.1: The top left panel shows the energy spectra of two identical, coupled Morse
oscillators with dissociation threshold 𝐷𝑒 for a range of the coupling parameter, 𝜆. The
blue lines correspond to symmetric and the orange lines to anti-symmetric eigenstates.
The top right panel shows three diabats (dashed) constructed via GPR from the symmetric
energy spectrum. The bottom left panel zooms into the black rectangle in the top right
panel. The colored lines show the eigenenergies, the dashed line the constructed diabat,
and the dotted lines the energies corresponding to the orthogonal states from the diabatic
transformation, Eqs. (3.5) – (3.6). The bottom right panel shows the auto-correlation
functions for each of the eigenstates in the bottom left panel in their associated colors, as
well as the auto-correlation of the transformed diabatic state in black. 𝜓(𝜆0) is the initial
state of the black diabat at 𝜆0 = 0.32.
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3.1 Finding diabats using GPR

The energy spectra in the top panels of Fig. 3.1 show a rich abundance of avoided crossings,
some of which are more prominent and others barely resolved. Human observation of the
spectra reveals for each state a pattern which is continued after each avoided crossing by
other states of the same symmetry. While such patterns, which occur for numerous spectra
of other systems as well, are simply discovered with the naked eye, it is not straightforward
to isolate them in an automated fashion using a computer.
Pattern recognition falls into the set of tasks of ML. In Ref. [8] GPR has been successfully
applied to extrapolate complicated patterns, proving that GPs are a capable tool for pattern
extrapolation. The crucial strength of GPs is, as we shall see later, the interpretability of the
hyperparameters in the covariance function. This enables the user to extrapolate from data
in a controlled manner.
GPR shall be applied to the problem of finding the correct continuation beyond avoided
crossings for any eigenstate in Fig. 3.1, top left. The perturbation parameter represents the
input space, 𝑥 = 𝜆, while the energy denotes the output values of the GP, 𝑓(𝑥) = 𝐸(𝜆).
Ref. [8] employs a SM covariance function – a combination of various periodic covariances
– in order to correctly reproduce complicated patterns in the training data. As no such
periodicity is seen in our spectra, we apply the simple RBF covariance function, Eq. (2.12),
instead.
Since all states of either symmetry are completely decoupled from states of the other sym-
metry, we shall only focus on symmetric (blue) states from now on. Starting from a point
where the chosen adiabat is well-separated from other states, i.e., away from any avoided
crossings, one initially collects points of the same manifold, comprising a first training data
set. Inferring from this data set, the posterior GP will supply a smooth continuation of the
data. In order to correctly extrapolate, the posterior mean, Eq. (2.38), must pick up the
trend of the small set of points. For this to happen, the hyperparameters must be chosen
appropriately. Luckily, we know precisely what effect each hyperparameter has on the pos-
terior GP. The crucial hyperparameter for detecting long-range correlations in training data
is the length-scale, 𝑙. For the RBF covariance, the length-scale corresponds to the widths of
the Gaussian basis functions comprising the posterior mean, Eq. (2.39). For extrapolation
it must generally be chosen much larger than the nearest neighbor distance in the data set,
𝑙 ≫ Δ𝜆. Observation of our particular spectra in Fig. 3.1, top left, reveals that the length-
scale of the long-ranged patterns are much larger than the given range of the perturbation
parameter, i.e., 𝑙 ≫ 1. Such boundaries for the hyperparameters can be supplied to the
optimizer for the MLE method.
To reconstruct the full pattern of the continued eigenstate, we successively add batches
of new training points at regions of low uncertainty and whose energies lie closest to the
extrapolating GPR. This is done, similarly to the active learning procedure from Sec. 2.6.1,
by adding points where an acquisition function exhibits minimal values. The acquisition
function to minimize for this procedure is

𝛼(𝜆,𝐸𝑖) = |𝐸𝑖(𝜆)− �̂�(𝜆)|+ 𝜅�̂�(𝜆), (3.4)

where 𝐸𝑖 are the eigenenergies of the spectra, and �̂�(𝜆) and �̂�(𝜆) are the mean and uncer-
tainty of the posterior GP, respectively. The first term of the right hand side ensures that the
test point lies close to the extrapolated regression function. The second term only depends
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on the test point locations and aids to select points with low uncertainties. Its parameter
should be chosen rather large compared to the length-scale, 𝜅 ≫ 𝑙. The acquisition func-
tion is evaluated at all points of the spectra and batches of points with lowest 𝛼(𝜆,𝐸𝑖) are
repeatedly added to the training set.
The top right panel of Fig. 3.1 shows three specimen of patterns of eigenenergies that were
constructed by the presented method. Using the MLE method, the lower boundary for the
optimization of the length-scales has been set to 𝑙 ≥ 5, while the other hyperparameters, 𝜎𝑓
and 𝜎𝑛, were optimized freely. The size of each batch of points that is added subsequently
to the data set can be chosen large if the length-scale of the pattern is large. The method is
robust under variation of the batch size, but it should be kept smaller than the training data
set.
Once all points for a full construction of the pattern are collected, a final GPR produces a
smooth continuation of the manifold, as shown as the black dashed lines in the top right
panel of Fig. 3.1. In order to prevent distortions at the avoided crossings, additional noise
has been added at the jumps between the eigenstates by substituting 𝜎𝑛2𝛿𝑖𝑗 → 𝜎𝑛

2
,𝑗𝛿𝑖𝑗 in

Eq. 2.40.
The question that remains is what physical behavior is represented by such patterns? To
answer this, let us consider one black line in Fig. 3.1, top right. Starting on an eigenstate at
small 𝜆 < 0.2, it clearly follows the pattern throughout a number of avoided crossings. The
bottom left panel zooms into the black rectangle inside the top right panel. Therein, all four
states involved in the avoided crossing are shown in different colors. The bottom right panel
shows the corresponding auto-correlation functions, i.e., the overlap with the initial eigen-
state, for each state in the respective color. A high auto-correlation, i.e., |⟨𝜓𝑗(𝜆)|𝜓(𝜆0)⟩| ≈ 1,
means that it closely resembles the shape of the initial eigenstate. One can see that each
intermediate state consecutively gains a high auto-correlation for a short 𝜆-range, while af-
ter the avoided crossing only the final (brown) state shares a high auto-correlation with the
initial eigenstate. Evidently, along the emergent pattern that is extracted with our method,
we find that d𝜆 |𝜓(𝜆)⟩ ≃ 0. For this reason, we shall denote such curves as diabatic manifolds
or diabats.

3.2 Diabatic transformation

Although the constructed diabatic manifolds do not resemble eigenenergies at the regions
of avoided crossings, they represent a likely path for system states under diabatic param-
eter variation, i.e., for perturbations that happen rather fast. Along such diabats the wave
functions carry their invariant characteristics; one could argue that the diabatic spectra are
associated with constants of motion of the system, as we shall discuss in the following chap-
ters.
Another case where a diabatic representation is advantageous is when molecules are consid-
ered. Computation of the eigenenergies of molecules is regularly done under the application
of the Born-Oppenheimer (or adiabatic) approximation leading to adiabatic potential en-
ergy surfaces that depend parametrically on the nuclear coordinates. This approximation
exploits the fact that the masses of the atoms are much larger than that of the electrons,
causing their dynamics to evolve at different timescales. However, in regions of avoided
crossings this approximation fails and a diabatic transformation of states is needed. [51,52]
The simplest way of assembling the corresponding diabatic wave functions to each diabatic
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energy surface is by mixing the lower and upper adiabatic states such that they fulfill some
criterion. For molecules, this criterion is usually the diagonal representation of the kinetic
energy operator for the nuclear coordinates. Ref. [53] supplies another way of mixing two
eigenstates if no particular criterion needs to be met. In our case, our constructed diabatic
surface provides a criterion for the diabatic wave function.
A diabatic state, 𝜓𝑑(𝜆), can be constructed as a mixture of the corresponding lower and
upper adiabatic states, 𝜓𝑎0,1(𝜆), whose crossing is avoided. The diabatic state is then given
as a superposition of the two adiabatic states. At the same time an orthogonal diabatic state
emerges as the complementary superposition. Such a mixing can be written as a unitary
rotation around a diabatic mixing angle 𝜗(𝜆) ∈ [0, 𝜋2 ],(︂

𝜓𝑑0(𝜆)
𝜓𝑑1(𝜆)

)︂
=

(︂
cos𝜗(𝜆) sin𝜗(𝜆)

− sin𝜗(𝜆) cos𝜗(𝜆)

)︂
⏟  ⏞  

𝑈(𝜆)

(︂
𝜓𝑎0(𝜆)
𝜓𝑎1(𝜆)

)︂
. (3.5)

The two-level Hamiltonian in this diabatic basis has the non-diagonal form

𝐻𝑑(𝜆) = 𝑈

(︂
𝐸0(𝜆) 0

0 𝐸1(𝜆)

)︂
𝑈⊤ =

(︂
cos2 𝜗𝐸0 + sin2 𝜗𝐸1 cos𝜗 sin𝜗(𝐸1 − 𝐸0)
cos𝜗 sin𝜗(𝐸1 − 𝐸0) sin2 𝜗𝐸0 + cos2 𝜗𝐸1

)︂
. (3.6)

The minimal energy level splitting of 2
⃒⃒
𝐻𝑑

01

⃒⃒
= 𝐸1 − 𝐸0 occurs at 𝜗 = 𝜋

4 .
Using GPR for the discovery of a diabat, 𝐸𝑑GP(𝜆), the emerging regression gives the condition
for the energy of the corresponding diabatic state, 𝜓𝑑0(𝜆). One can extract a mixing angle by
minimizing the energy difference

min
𝜗

{︂⃒⃒⃒
𝐸𝑑GP −𝐻𝑑

00(𝜗)
⃒⃒⃒2}︂

(3.7)

at each 𝜆. Once that mixing angle is extracted both diabatic states can be constructed.
The advantage of our proposed procedure over that of Ref. [53] is the following: our proce-
dure is more general in the sense that the mixing angle is not fixed, but must be supplied by
another criterion, in our case the GPR. Thus, the provided GPR enables diabatization over
multiple avoided crossings at once, such as in Fig. 3.1. The method in Ref. [53] can only
handle pairwise diabatization, since their procedure provides a fixed mixing angle between
two states. The special choice for the mixing angle of

𝜗(𝜆) = arccos

√︂
1 + 𝑆(𝜆)

2
(3.8)

leads to the method in Ref. [53], where 𝑆(𝜆) is defined in therein.
The bottom left panel of Fig. 3.1 shows the constructed diabats in dashed black. The mix-
ing angle is extracted according to Eq. (3.7), considering the immediate lower and upper
adiabatic states at each 𝜆. These two adiabatic states change whenever the diabat crosses
an adiabatic surface. The energies of the orthogonal diabatic states are depicted as black
dotted lines.
The bottom right panel of Fig. 3.1 shows the auto-correlation with the initial eigenstate of
the constructed diabatic state in black. It closely resembles the initial eigenstate but has
small dips every time the diabatic energy crosses an adiabatic surface. Such dips are un-
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avoidable if the diabatic state jumps multiple surfaces at one avoided crossing. In fact, these
fluctuations of the diabatic wave function display a shortcoming of the assumption that only
two states couple at any given point. In reality, multiple states couple whenever they col-
lectively undergo an avoided crossing. The coupling of more than two states involves more
than one mixing angle. However, the diabatic surface constitutes only one single condition
for choosing the mixing angles, leaving the resulting problem underdetermined.
Although considering only pairwise couplings, the constructed diabatic state carries the
properties of the initial eigenstate throughout the whole parameter range. It shall be em-
phasized that such a state was assembled by solely considering the adiabatic energy spectra.
The information of the shape of the eigenstates was not used for the diabatization.





4 Semiclassical diabatization via Gaussian
process regression

In the previous chapter we investigated diabatic states and their construction using GPR.
There we considered each energy surface individually, which leads to a huge computational
overload if the full spectrum shall be transformed. Instead, one would seek a way to compute
the diabatic energy spectra of a system directly. Such spectra would ignore any couplings
between eigenstates. Rather, each eigenenergy should be determined in an isolated fashion.
Such methods for determining eigenenergies of quantum systems bring us back to the very
beginning of quantum mechanics.

4.1 EBK quantization

Very early attempts to describe the quantized energy spectra of atoms relied on the heuristic
Bohr-Sommerfeld quantization condition, [54]∮︁

𝑝𝑖 d𝑞𝑖 =

∫︁ 𝑇𝑖

0
𝑝𝑖
d𝑞𝑖
d𝑡

d𝑡 = 2𝜋ℏ · 𝑛𝑖 , 𝑖 = 1, . . . , 𝐷, (4.1)

which quantizes the allowed path a bound particle may take in 𝐷 degrees of freedom if the
motion is separate in its coordinates, i.e., the motion along each coordinate is independent
from another. Here, 𝑝𝑖 is the momentum canonically conjugate to the coordinate 𝑞𝑖 and 𝑛𝑖
serves as a quantum number assuming integer values. The integral is taken along a full
period, 𝑇𝑖, in each degree of freedom.
Albert Einstein realized very early that the condition of separate variables, which depends
on the choice of the coordinate system, causes the quantization rules to have no invariant
meaning and therefore proposed a coordinate-invariant formulation. [55,56] He pointed out
that classical trajectories, under certain conditions which will be specified later, are confined
to a𝐷-dimensional torus in phase space. Such a torus offers precisely𝐷 topologically distinct
ways of closing loops on its surface, 𝐶𝑖, along which the phase integral ∮︀𝐶𝑖

p ·dq is invariant
for different but topologically similar choices of 𝐶𝑖. Since these integrals depend on the
energy but are coordinate-independent, Einstein proposed the invariant modification for
the quantization rules,∮︁

𝐶𝑖

p · dq =

∮︁
𝐶𝑖

𝐷∑︁
𝑑=1

𝑝𝑑 d𝑞𝑑 = 2𝜋ℏ · 𝑛𝑖 , 𝑖 = 1, . . . , 𝐷. (4.2)

Note that the paths, 𝐶𝑖, are generally not the path of the trajectory but any closed path on
the torus.
In one dimension the Bohr-Sommerfeld quantization condition is derived from the TISE
by using the semiclassical Wentzel-Kramers-Brillouin (WKB) approximation [57–59],
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while Einsteins quantization rule corresponds to its multidimensional generalization. How-
ever, the WKB method yields a small correction to the quantization rule, namely∮︁

𝐶𝑖

p · dq = 2𝜋ℏ
(︁
𝑛𝑖 +

𝜈𝑖
4

)︁
, 𝑖 = 1, . . . , 𝐷, (4.3)

where 𝜈𝑖 is the Maslov index – an integer that counts the encounters of caustics along a
path. This modified version of Einsteins quantization rule was derived 40 years later by Keller
[60] and was coined Einstein-Brillouin-Keller (EBK) quantization by Percival. [61] This
quantization condition constitutes a semiclassical approximation to the exact solutions of the
TISE, i.e., they emerge in the limit of ℏ → 0.
The EBK quantization condition serves as a tool to identify eigenenergies of quantum me-
chanical systems by locating classical trajectories which fulfill this condition, namely the
𝑛𝑖 being integers for every topologically distinct loop around their phase space tori. The
energy of such a trajectory provides the eigenenergy of the quantum system corresponding
to the quantum numbers, i.e., 𝐸(𝑛1, . . . , 𝑛𝐷). The major advantage of such a procedure is
the numerical simplicity of computing classical trajectories, which can be done parallelly
and independently in large numbers. In addition, methods for the generation of wave func-
tions from such “eigentrajectories” (which fulfill the EBK quantization condition) have been
brought forward, e.g., in Ref. [62].
While the EBK method gives the impression that for any given system the eigeneneries can
be computed using classical trajectories only, there are a number of downsides to this semi-
classical method. Many physical systems show classical trajectories whose dynamics is ir-
regular, i.e., not confined to a 𝐷-torus in phase space. Generic systems may experience
both regular and irregular (or chaotic) classical dynamics. [63] Unfortunately, the EBK quan-
tization can only be applied to trajectories of the regular type, although attempts have been
made to push this method into the irregular regime. [64] Semiclassical treatment of quan-
tum systems with chaotic behavior was initialized by Martin Gutzwiller. [65,66] Instead of
considering individual states, he derived an equation for the density of states of a chaotic
system from the sole knowledge of closed periodic trajectories, which is now referred to as
the Gutzwiller trace formula. For the case of purely regular systems, both procedures
for the calculation of energy spectra are directly related. [67,68]
The property of regularity or irregularity/chaoticity of a Hamiltonian system is determined
by its number of constants of motion. [69] If the number of independent, Poisson-commuting
constants of motion is equal or greater than the number of degrees of freedom, the classi-
cal dynamics is regular. Such systems are called integrable. If there are fewer Poisson-
commuting constants of motion than degrees of freedom, the motion is irregular. Such
systems are called nonintegrable. For autonomous (or time-independent) systems the en-
ergy is conserved and therefore constitutes a constant of motion. For this reason, there is no
irregularity in one-dimensional autonomous systems.
Integrable systems – including separable systems as a special subgroup – are much rarer
than nonintegrable systems. However, the Kolmogorov-Arnol’d-Moser (KAM) theorem
[70–73] implies that for integrable systems under perturbation regular dynamics often partly
remains. In such regular regions the EBKmethod can still be applied, even though the system
is nonintegrable.
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Figure 4.1: An illustration of a torus with a trajectory winding around its surface. The
two areas, 𝐴1 and 𝐴2, show two topologically distinct ways of cutting through the torus.
The figure is taken from Ref. [74].

4.2 Quasiperiodic and periodic trajectories

A trajectory (or orbit) of a system of𝐷 degrees of freedom is regular if it is confined to a𝐷-
dimensional torus in 2𝐷-dimensional phase space. A two-dimensional torus is illustrated in
Fig. 4.1. Note that this is merely an illustration with the reduced phase space dimensionality
of three; for two degrees of freedom the torus would be a two-dimensional submanifold
in four-dimensional phase space. A regular trajectory will almost always densely fill the
surface of that torus when winding around it an infinite number of times. One denotes such
trajectories as quasiperiodic. However, there are special trajectories that are confined to
a torus but instead of densely filling its surface, they wind around it periodically, i.e., they
repeat to follow one and the same path that draws a single line looping around the torus.
The arrows winding around the torus in Fig. 4.1 represent a path such a trajectory may take.
These trajectories are called periodic and they fill a subspace in phase space of measure
zero and are therefore hard to find.
A torus filled by a quasiperiodic orbit can be cut in 𝐷 topologically distinct ways, each of
which providing an invariant action variable given as the phase integral along the edge of
the slice,

𝑆𝑖 =

∮︁
𝐶𝑖

p · dq , 𝑖 = 1, . . . , 𝐷. (4.4)

The two topologically distinct ways of slicing the torus in Fig. 4.1 are suggested by the areas
𝐴1 and 𝐴2. The possibilities of slicing are not unique. The loops created by the slicing are
candidates for the paths, 𝐶𝑖, along which the phase integral, Eq. (4.4), is invariant under
different but topologically similar ways of slicing.
The left panel of Fig. 4.2 shows a projection onto position space of a quasiperiodic trajectory
for 𝐷 = 2. One can see that this trajectory fills only a portion of the energetically allowed
region. The four “edges” formed by the trajectory locate the caustics, which can be thought
of as higher-dimensional generalizations of the one-dimensional turning points, although
there themomentum does in general not vanish. A periodic trajectory would also be confined
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by caustics, but it would not densely fill the area. Instead, it would close on itself after a
number of periods, yielding a single line only.
Irregular/chaotic trajectories are not confined to a torus in phase space and their projections
onto position space would not show clear edges but fill the energetically allowed region
almost entirely.

4.3 Poincaré surfaces of section

One way of investigating the properties of trajectories is the Poincaré surfaces of section
(SOS) method. [75] In this section the use of the SOSmethod to extract action variables [76]
will be presented. A Poincaré SOS is a (2𝐷 − 1)-dimensional representation of a trajectory
moving in a 2𝐷-dimensional phase space. It can be constructed by defining a plane in phase
space, often by choosing a fixed value for one of the 2𝐷 phase space coordinates, e.g., 𝑞2 = 0.
Every time a trajectory pierces through the predefined plane in one direction, e.g., 𝑝2 > 0,
all values of phase space coordinates are registered. The plane can be freely positioned,
although the velocity vector should not be tangent to the section at any point. [77]
The method is illustrated in Fig. 4.2. The two planes are chosen at the constant values of
𝑞2 = 0 and 𝑞1 = 0 and are drawn as blue and orange dashed lines, respectively. Every time
the trajectory penetrates the blue plane in negative direction, i.e., from positive to negative
values of 𝑞2, the position on that plane, 𝑞1, and the tangential component of the momentum,
𝑝1, are recorded as a blue point in the right panel. A linear interpolation scheme for the
positions on the SOS is shown in Appendix A.5. After many cycles the scattered points will
supply a SOS plot such as the ones in the right panel of Fig. 4.2. The values of the normal
components of the momenta, 𝑝2 < 0, are implicitly known from the values of 𝑞1, 𝑝1 and
𝑞2 = 0, given the constant energy 𝐸, and are therefore omitted in all SOS figures.
A quasiperiodic trajectory will yield a pattern of scattered points on the SOS that form one
or more narrow lines, as shown in the right panel. A periodic trajectory will create finitely
many isolated points on a SOS and an irregular/chaotic trajectory will fill an area.
If a SOS is chosen such that it cuts once through two opposing caustics of a quasiperiodic
trajectory, such as in Fig. 4.2, left, then the Poincaré SOS depicts a single closed loop, such
as the ones in Fig. 4.2, right. For a trajectory in two degrees of freedom, there are two ways
of cutting in such manner. These two cuts correspond to the two topologically distinct torus
cuts in Fig. 4.1. The areas inside the loops in the right panel of Fig. 4.2 are the actions in
Eq. (4.4) and can be computed using the “shoelace” formula for the quadrature of polygon
areas. For this example the SOS are located at 𝑞2 = 0 and 𝑞1 = 0 and the two actions
then yield 𝐽1 =

∮︀
𝑝1(𝑞1) d𝑞1 and 𝐽2 =

∮︀
𝑝2(𝑞2) d𝑞2. This procedure can only be applied to

quasiperiodic trajectories, since periodic and irregular trajectories do not yield closed loops
on their SOS.
While the Poincaré SOS method for the extraction of all 𝐷 action variables is a straight-
forward and robust procedure, it requires the correct positioning of𝐷 planes in phase space.
For non-resonant separable and nearly separable systems a quasiperiodic trajectory can be
represented as a “box” in position space, such as the one in Fig. 4.2, left. For these box-like
trajectories it is relatively easy to correctly place the section planes. For resonant quasiperi-
odic trajectories, which will be discussed in the next chapter, a full set of 𝐷 section planes
is hard to find. However, it is always possible to replace one of the action variables of the
torus cuts with the action along the trajectory for one or more periods and closing both
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Figure 4.2: Left: A quasiperiodic trajectory is shown in gray for a limited number of
cycles. The thick black line follows the trajectory for roughly one loop around its phase
space torus and corresponds to the projection of the arrows in Fig. 4.1 onto position space.
The boundary of the classically allowed region, 𝑉 (𝑞1, 𝑞2) = 𝐸, is depicted by the elliptical
line. Right: The two Poincaré SOS corresponding to the two cuts (dashed lines) in the left
panel are depicted in the respective colors. Each scatter point represents the position at
which the trajectory pierces through the dashed line in the left panel in one direction and
the corresponding momentum tangential to the dashed line.

ends along the torus. This method was termed “trajectory-close” method and it has
been used to apply the EBK quantization condition to resonant trajectories in two degrees
of freedom. [78]
For a quasiperiodic trajectory with an 𝛼 : 𝛽 resonance, the EBK quantization condition for a
closed trajectory becomes

𝐽close =
∫︁ qfin

qini
p · dq+Δ𝐽 = 𝛼 · 2𝜋ℏ

(︀
𝑛1 +

1
2

)︀
+ 𝛽 · 2𝜋ℏ

(︀
𝑛2 +

1
2

)︀
, (4.5)

whereΔ𝐽 is the action coming from closing the two endpoints, qini and qfin, along the torus,
𝛼 is the number of cycles along one coordinate, e.g., 𝑞1, and 𝛽 the number of cycles along
the other coordinate, e.g., 𝑞2. The Maslov indices are set to 𝜈 = 2 since in each cycle the
trajectory touches two pairs of opposing caustics. Eq. (4.5) can be further simplified,

𝐽close = 2𝜋ℏ
(︂
𝛼𝑛1 + 𝛽𝑛2⏟  ⏞  

𝑚

+
𝛼+ 𝛽

2

)︂
= 2𝜋ℏ

(︂
𝑚+

𝛼+ 𝛽

2

)︂
. (4.6)

If one chooses 𝐽1 = 2𝜋ℏ
(︀
𝑛1 +

1
2

)︀ as one quantization condition, 𝑚 can only take up values
of 𝑚 = 𝛼𝑛1 + 𝛽𝑛2 where 𝑛2 are non-negative integers. Therefore one must keep in mind
that 𝑚 cannot assume all integer values.
The Poincaré SOS method has been extended to three degrees of freedom. [79,80] However,
generating proper torus cuts becomes more involved in higher dimensions. More sophisti-
cated methods for the computation of action variables of quasiperiodic orbits involve the
representation of the coordinates and momenta as Fourier series. [81–83] The action vari-
ables are then computed using the Fourier coefficients obtained via fast Fourier transform.
Clearly, the advantage of this method is the liberation from the construction of SOS and
therefore allows to treat systems with more degrees of freedom, 𝐷 ≥ 3. In any case, how-
ever, the runtime of each trajectory necessary for convergence grows exponentially with the
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dimensionality.

4.4 EBK quantization via GPR

Once the action variables of a quasiperiodic trajectory are extracted, one can check whether
they fulfill the EBK quantization condition, i.e., all quantum numbers, 𝑛𝑖, in Eq. (4.3) being
integers. For arbitrary quasiperiodic trajectories, however, the values of the 𝑛𝑖 will in general
not be integers but real numbers. In order to find all trajectories that can be quantized one
would have to scan a multidimensional range of initial conditions and conduct a root-search
for every combination of quantum numbers, requiring the propagation of prohibitively many
trajectories.
To circumvent root-searching each trajectory individually, Ref. [84] suggests a method that
applies interpolation between the action variables of arbitrary trajectories to points where
the EBK condition is satisfied. The energies at those points then approximate the semiclas-
sical eigenenergies of the Hamiltonian. Inter- and extrapolation compose the general task
of regression. While Ref. [84] employs primitive interpolation methods limited to two or
three dimensions, modern regression methods, such as GPR, are capable of constructing
high-dimensional manifolds given relatively few training data. Additionally, GPR allows for
pattern extrapolation in a controlled matter. For these reasons, we apply GPR to the task of
finding semiclassical eigenenergies. GP models will be trained by sets of action variables of
various quasiperiodic trajectories which need not fulfill any quantization condition. On top
of the 𝐷 actions, perturbation parameters of the Hamiltonian, 𝜆𝑗 , can be included into the
input dimensions of the GP, yielding energy spectra as functions of the perturbations, i.e.,
𝐸𝑖(𝜆1, 𝜆2, . . . ). The resulting regression provides accurate interpolation to extract semiclas-
sical eigenenergies but also enables extrapolation into regions where no quasiperiodic orbits
are given.

4.5 Semiclassical diabatization in one dimension

Our goal is the construction of diabatic energy spectra, i.e., energy manifolds, 𝐸𝑗(𝜆), that
cross at adiabatically avoided crossings when the perturbation parameter, 𝜆, is varied. As
we have learned, primitive semiclassical eigenenergies constructed from single trajectories
that fulfill the EBK quantization condition, Eq. (4.3), are extracted in isolated fashion and
one expects coupling effects between individual states not to take place. [85]
The consequence of this semiclassical treatment shall be portrayed in a comparison of the
EBK spectra of a one-dimensional bound potential with the exact solutions of the TISE. As
a demonstrative potential we choose a concatenation of two harmonic wells with varying
width ratio as the perturbation, 𝜆 = 𝜔2/𝜔1. Fig. 4.3 compares the eigenstates given by an
exact solution of the TISE in the left column to the semiclassically quantized trajectories in
the right column. The crucial difference between classical trajectories and quantum wave
functions is the ability of the latter to tunnel through the potential barrier. A primitive
classical trajectory is confined within its energetic boundaries. In order for two states in
separate wells to couple, tunneling is necessary. The bottom two panels show the energy
spectra under variation of the width of the right well, 𝜔2, while fixing the width of the left
well. The true eigenenergies in the bottom left panel given by the TISE avoid all crossings.
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This is to be expected, since there are no degeneracies in one-dimensional regular bound
systems, as shown in Appendix A.3. For the semiclassical case in the bottom right panel no
crossings are avoided. The semiclassical energies therefore correspond to the diabatic case
discussed in Chapter 3.
We conclude that the ability of tunneling is crucial for classically separated states to inter-
act. In one dimension tunneling always occurs through potential barriers. In two or more
dimensions a different kind of tunneling comes about, which takes place between classically
disconnected regions in phase space that are not necessarily separated by any potential bar-
riers. This kind of tunneling is referred to as dynamical tunneling. [86] In order to treat
tunneling effects semiclassically, complex-valued phase spaces have been employed, allow-
ing trajectories to connect otherwise classically disconnected regions. [87] Such treatment
yields a correction to the primitive semiclassical eigenenergies and can lead to splittings be-
tween degenerate energy levels. For our purpose, however, primitive, real-valued trajectories
do the trick, providing diabatic spectra as requested. In the remainder of this work, we will
employ GPR for the semiclassical EBK quantization method to construct complete diabatic
spectra for Hamiltonian systems of two degrees of freedom plus a perturbation parameter.
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Figure 4.3: A visualization of the differences between the exact eigenstates given by the
TISE (left) and the semiclassical EBK eigenstates (right) for a one-dimensional potential
of two concatenated harmonic wells. The width ratio of the two wells is 𝜔2/𝜔1 = 1.5 in
the top row and 𝜔2/𝜔1 = 0.5 in the middle row. A selection of eigenstates is drawn in
colored lines in the top and middle left panels, whereas the right panels show the energies
of the periodic orbits within their classically accessible range. The bottom row shows the
energy spectra as functions of the width 𝜔2 in the color code of the eigenstates. The black
vertical lines locate the 𝜔2-values used in the top and middle rows.



5 Semiclassical diabatization of a triatomic
molecule

In this chapter we shall demonstrate the proposed method for semiclassical diabatization
using GPR on the vibrational dynamics of a linearly aligned triatomic molecule, as depicted
in Fig. 5.1, left. This system with two degrees of freedom can be described by two coupled
Morse oscillators. [88] The one-dimensional Morse potential is given by [89]

𝑉Mor(𝑥) = 𝐷𝑒

(︀
1− 𝑒−𝑎𝑥

)︀2
. (5.1)

An example of the Morse potential is shown in the right panel of Fig. 5.1. The values of 𝑎 and
𝐷𝑒 define the stiffness and the dissociation energy as 𝑥 → ∞, respectively. The coordinate
𝑥 represents the disposition of the interatomic distance from the equilibrium at 𝑥 = 0. For
our investigations we consider the special case of a symmetric triatomic molecule, i.e., the
two outer atoms being identical. The Hamiltonian for the vibrational dynamics can then be
represented by two identical Morse oscillators with a kinetic coupling term,

𝐻Mor(𝜆) =
𝑝21
2𝜇𝑟

+
𝑝22
2𝜇𝑟

+ 𝑉Mor(𝑞1) + 𝑉Mor(𝑞2)− 𝜆𝑝1𝑝2. (5.2)

The derivation for this Hamiltonian is shown in Appendix B. The reduced mass, 𝜇𝑟 = 𝑚𝑀
𝑚+𝑀 ,

shall be set to 𝜇𝑟 = 1. The mass of the outer atoms is 𝑚 and the mass of the center atom
is 𝑀 . The coupling/perturbation parameter is the inverse of the mass of the center atom,
𝜆 = 1/𝑀 . Due to the reduced mass being set to one, the perturbation parameter takes up
values in the range 0 ≤ 𝜆 ≤ 1. [90] The value of 𝜆 = 0 represents the case of a center atom
of infinite mass, decoupling both vibrations completely and leaving 𝜇𝑟 = 𝑚.
The opposite case of 𝜆 = 1 corresponds to outer atoms of infinite masses and 𝜇𝑟 =𝑀 . This
renders the two degrees of freedom linearly dependent,

𝐻Mor(𝜆 = 1) = 1
2

(︀
𝑝21 + 𝑝22 − 2𝑝1𝑝2

)︀⏟  ⏞  
(𝑝1−𝑝2)2

+𝑉Mor(𝑞1) + 𝑉Mor(𝑞2). (5.3)

As a consequence, the dynamics becomes one-dimensional. The sole motion happens along
the asymmetric stretch, i.e., the center atom oscillates between the two outer atoms which
are static due to their infinite masses.
Appendix B.1 demonstrates a rotation of coordinates in which the coupling term, ∼ 𝑝1𝑝2,
vanishes. In that coordinate system the coupling comes solely from the potential shape. The
two corresponding coordinates are the symmetric, 𝑞𝑠 ∼ 𝑞1 + 𝑞2, and asymmetric stretches,
𝑞𝑎 ∼ 𝑞2 − 𝑞1. However, the coordinates of Eq. (5.2) are convenient due to the separate form
of the Hamiltonian at 𝜆 = 0.
Being a simple model for triatomic molecules, the two coupled Morse oscillators have been
extensively studied in the literature. A summary of early investigations is given in Ref. [91].
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Figure 5.1: Left: An illustration of a linear, symmetric, triatomic molecule with two vibra-
tional degrees of freedom. Right: The Morse potential (black) with a number of bound
eigenenergies (colored). The parameters were set to 𝐷𝑒 = 32 and 𝑎 = 1/5, while using
units of ℏ = 𝜇𝑟 = 1.

5.1 Solving the TISE

The TISE for the Hamiltonian (5.2) can be efficiently solved if it is represented in a basis of
bound, orthogonal Morse oscillator eigenstates, [92]

𝜓𝑛(𝑥) = 𝑁𝑛𝑧
𝑘−𝑛− 1

2 𝑒−
1
2
𝑧𝐿(2𝑘−2𝑛−1)

𝑛 (𝑧), (5.4)

with eigenenergies

𝑒𝑛 = ℏ𝜔
(︂
𝑛+

1

2

)︂
− ℏ2𝜔2

4𝐷𝑒

(︂
𝑛+

1

2

)︂2

, (5.5)

where

𝑧(𝑥) = 2𝑘𝑒−𝑎𝑥 (0 < 𝑧 <∞), (5.6)

𝜔 = 𝑎

√︃
2𝐷𝑒

𝜇𝑟
, (5.7)

𝑘 =

√
2𝜇𝑟𝐷𝑒

𝑎ℏ
, (5.8)

𝑛 = 0, 1, . . . ,

[︂
𝑘 − 1

2

]︂
, (5.9)

with [𝜉] denoting the maximum integer quantum number≤ 𝜉 and 𝐿(𝛼)
𝑛 (𝑧) are the associated

(or generalized) Laguerre polynomials. The normalization factor is

𝑁𝑛 =

√︃
𝑎(2𝑘 − 2𝑛− 1)𝑛!

Γ(2𝑘 − 𝑛)
, (5.10)

where Γ(·) denotes the Γ-function. Appendix B derives the matrix elements of Hamilto-
nian (5.2) in the basis of bound Morse oscillator eigenstates. The only non-trivial term is
the coupling term, involving integrals of the form ∫︀

𝜓𝑚
d
d𝑥𝜓𝑛 d𝑥. The results for the matrix
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elements are

⟨𝑚1,𝑚2|𝐻Mor |𝑛1, 𝑛2⟩ = 𝛿𝑚1𝑛1𝛿𝑚2𝑛2(𝑒𝑛1 +𝑒𝑛2)+𝜆ℏ2 ⟨𝑚1|
d

d𝑥1
|𝑛1⟩ ⟨𝑚2|

d

d𝑥2
|𝑛2⟩ , (5.11)

where

⟨𝑚| d

d𝑥
|𝑛⟩ =

∫︁
𝜓𝑚(𝑥)

d

d𝑥
𝜓𝑛(𝑥) d𝑥 =

⎧⎪⎨⎪⎩
𝑁𝑚𝑁𝑛(−1)𝑚−𝑛 Γ(2𝑘−𝑚)

2𝑛! if 𝑚 > 𝑛,

−𝑁𝑚𝑁𝑛(−1)𝑛−𝑚 Γ(2𝑘−𝑛)
2𝑚! if 𝑚 < 𝑛,

0 if 𝑚 = 𝑛,

(5.12)

satisfying the property ⟨𝑚| d
d𝑥 |𝑛⟩ = −⟨𝑛| d

d𝑥 |𝑚⟩.
If the Morse parameters, 𝐷𝑒 and 𝑎, are chosen such that 𝑘 gets large, the number of bound
states increases and the Γ-function in Eq. (5.12) can no longer be evaluated, as is quickly
diverges. To circumvent this problem, we choose Morse parameters such that 𝑘 becomes an
integer. This allows us to rewrite the Γ-function as

Γ(2𝑘 − 𝑛) = (2𝑘 − 𝑛− 1)! (5.13)

and lets us to treat systems with more eigenstates, since we will be dealing with a fraction
of integers in Eq. (5.12). Throughout this chapter we set ℏ = 𝜇𝑟 = 1 and choose 𝐷𝑒 = 32
and 𝑎 = 1/5, yielding 𝑘 = 40.
Still, the basis of bound Morse eigenstates comes with one drawback, namely the fact that
the size of the basis is limited by the value of 𝑘, see Eq. (5.9). In order to investigate conver-
gence we choose, in addition, to represent the system Hamiltonian on a finite grid, which
provides an alternative basis of arbitrary size. This method is also known as the finite dif-
ferences method [93] and yields for the kinetic energy terms of the Hamiltonian sparse,
off-diagonal matrices and for the potential terms diagonal matrices. Using such a basis one
finds that with increasing energy towards the dissociation energy, 𝐷𝑒, eigenstates can no
longer be properly converged using the finite Morse basis, as one would trivially expect.
Additionally, with increasing perturbation parameter, 𝜆, already some low-energetic states
cannot be converged using the finite Morse basis. Such states correspond to eigenfunctions,
𝜓(𝑞1, 𝑞2), with large numbers of nodes along the symmetric stretch, 𝑞𝑠 ∼ 𝑞1+ 𝑞2. The failure
in the convergence is caused by the fact that strongly coupled systems with 𝜆 → 1 become
more and more linearly dependent. At 𝜆 = 1 the dynamics occurs along the asymmet-
ric stretch only, leaving only one degree of freedom. All eigenfunctions of the system are
therefore compressed as 𝜆 grows and become more narrow in their symmetric spread, Δ𝑞𝑠.
Eigenstates with a large number of nodes along 𝑞𝑠 quickly lose energy and at the same time
strongly oscillate due to the compression along 𝑞𝑠. Such strong oscillations require highly
oscillating basis functions, which the finite Morse basis no longer includes. Instead, a grid
basis with a large number of grid points can be used to generate a spectrum of desired con-
vergence. We have used 106 grid points, but stopped converging the bound spectra in the
range of 𝜆 ≤ 0.9 at a relative error of 10−3 for a gain in computing speed.
At 𝜆 = 1 all states are fully “flattened” to one-dimensional wave functions and all nodes
along the symmetric stretch have vanished. The former degree of freedom, 𝑞𝑠, i.e. the
distance between the two infinitely heavy outer atoms, takes the role of a parameter of the
Hamiltonian: 𝐻Mor(𝑞𝑎;𝜆 = 1, 𝑞𝑠).
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5.1.1 Symmetric and anti-symmetric eigenstates

For a Hamiltonian which is invariant under exchange of the coordinates, 𝑞1 ↔ 𝑞2, all eigen-
functions are either symmetric or anti-symmetric under such exchange. This is exactly our
case for the two identical Morse oscillators with the coupling term ∼ 𝑝1𝑝2. In order to ex-
tract all (anti-)symmetric eigenfunctions, one can (anti-)symmetrize the basis, in which the
Hamiltonian matrix is expressed,

|𝑛1, 𝑛2⟩ →
⃒⃒
𝑛1, 𝑛

±
2

⟩︀
:=

{︃
1√
2
(|𝑛1, 𝑛2⟩ ± |𝑛2, 𝑛1⟩) if 𝑛1 ̸= 𝑛2,

|𝑛1, 𝑛2⟩ if 𝑛1 = 𝑛2 and symmetric.
(5.14)

Here the ‘+’ represents symmetric and the ‘−’-symbol anti-symmetric states. For the matrix
elements we get for symmetric states⟨︀

𝑚1,𝑚
+
2

⃒⃒
𝐻
⃒⃒
𝑛1, 𝑛

+
2

⟩︀
=

⎧⎪⎨⎪⎩
⟨𝑚1,𝑚2|𝐻 |𝑛1, 𝑛2⟩ if 𝑚1 = 𝑚2 and 𝑛1 = 𝑛2,
1√
2

(︀
⟨𝑚1,𝑚2|𝐻 |𝑛1, 𝑛2⟩+ ⟨𝑚1,𝑚2|𝐻 |𝑛2, 𝑛1⟩

)︀ if 𝑚1 = 𝑚2 or 𝑛1 = 𝑛2,

⟨𝑚1,𝑚2|𝐻 |𝑛1, 𝑛2⟩+ ⟨𝑚1,𝑚2|𝐻 |𝑛2, 𝑛1⟩ else,
(5.15)

and for anti-symmetric states⟨︀
𝑚1,𝑚

−
2

⃒⃒
𝐻
⃒⃒
𝑛1, 𝑛

−
2

⟩︀
= ⟨𝑚1,𝑚2|𝐻 |𝑛1, 𝑛2⟩ − ⟨𝑚1,𝑚2|𝐻 |𝑛2, 𝑛1⟩ (5.16)

if 𝑚1 ̸= 𝑚2 and 𝑛1 ̸= 𝑛2. Here we have used the property

⟨𝑚1,𝑚2|𝐻 |𝑛1, 𝑛2⟩ = ⟨𝑚2,𝑚1|𝐻 |𝑛2, 𝑛1⟩ (5.17)

following from the symmetry of our Hamiltonian.
In order to extract the symmetric and anti-symmetric eigenstates in a grid basis, we make
use of the rotation from Appendix B.1. In this coordinate system, the symmetric and anti-
symmetric states correspond to the property 𝜓(𝑥, 𝑦) = ±𝜓(𝑥,−𝑦), respectively. The (anti-)
symmetrized basis is then given by⟨

𝑥, 𝑦
⃒⃒⃒
𝑥𝑗 , 𝑦

±
𝑗

⟩
= ⟨𝑥|𝑥𝑗⟩

⟨
𝑦
⃒⃒⃒
𝑦±𝑗
⟩

(5.18)

= 𝛿(𝑥− 𝑥𝑗)
1√
2
[𝛿(𝑦 − 𝑦𝑗)± 𝛿(𝑦 + 𝑦𝑗)] , 𝑦𝑗 > 0. (5.19)

The resulting spectrum is shown in Fig. 3.1 and Fig. 5.5, left, for𝐷𝑒 = 32 and 𝑎 = 1/5 using
𝜇𝑟 = ℏ = 1.
The discussed symmetry of above Hamiltonian appears whenever identical particles are con-
sidered. Then, the symmetric states correspond to bosonic particles and the anti-symmetric
states correspond to fermionic particles. Chapter 3 discussed the fact that for Hamiltoni-
ans with symmetries, the eigenenergies do not cross the energies of other eigenstates of the
same symmetry when varying a perturbation parameter. On the other hand, the energies of
eigenstates with different symmetries do cross.
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5.2 Classical dynamics

The classical dynamics of two coupled Morse oscillators has been extensively studied. [94–
101] A classical trajectory is numerically propagated by solving Hamilton’s equation of mo-
tion,

dq

d𝑡
=
𝜕𝐻

𝜕p
,

dp

d𝑡
= −𝜕𝐻

𝜕q
. (5.20)

These equations can be numerically integrated using the leap frog method, [37]

q𝑖+
1
2 = q𝑖 +

Δ𝑡

2

𝜕𝐻

𝜕p

⃒⃒⃒⃒
p=p𝑖

, (5.21)

p𝑖+1 = p𝑖 −Δ𝑡
𝜕𝐻

𝜕q

⃒⃒⃒⃒
q=q𝑖+1

2

, (5.22)

q𝑖+1 = q𝑖+
1
2 +

Δ𝑡

2

𝜕𝐻

𝜕p

⃒⃒⃒⃒
p=p𝑖+1

, (5.23)

where 𝑖 = 0, 1, 2, . . . is the index for each time step and (q0,p0) are initial conditions.
Depending on the initial conditions, the Hamiltonian (5.2) yields three different types of
trajectories: non-resonant, resonant, and irregular trajectories. An example for each type is
depicted in the top row of Fig. 5.2 together with a SOS along the axis of symmetry, 𝑞1 = 𝑞2,
in the bottom row. Any non-resonant trajectory, like the one in the top left panel, will inherit
the symmetry of the Hamiltonian, i.e., an exchange of 𝑞1 ↔ 𝑞2 yields the same trajectory.
Resonant trajectories may inherit the same symmetry, otherwise they appear in degenerate
pairs. One such pair is the resonant trajectory in the middle row and its counterpart, which is
the mirror image with respect to the axis of symmetry. Many kinds of resonant trajectories
exist; the one in the middle of Fig. 5.2 is a 2 : 1 resonance since it oscillates twice along
the asymmetric stretch and once along the symmetric stretch before coming back near its
starting point. Both non-resonant and resonant trajectories are quasiperiodic and can be
quantized using the EBK method. For the 2 : 1 resonance the areas inside both loops on
the SOS are equal and determine one action variable. The trajectory in the right panels of
Fig. 5.2 is irregular. It is not confined to a torus but instead fills a portion in phase space.
The SOS reveals this by showing densely filled areas instead of lines. Consequently, such
trajectories cannot be quantized.
Figures 5.3 and 5.4 exhibit the dynamics of system (5.2) for different energies and coupling
strengths. Both figures show Poincaré SOS located along the axis of symmetry, 𝑞1 = 𝑞2.
At each energy trajectories were run for various initial conditions, sampling the full ener-
getically accessible phase space. In two degrees of freedom the full phase space of an au-
tonomous system can be explored by using initial conditions along a suited one-dimensional
curve of constant energy. [102] We chose initial conditions along the edge of the energeti-
cally allowed region of the potential, i.e., 𝑞1, 𝑞2 : 𝑉 (𝑞1, 𝑞2) = 𝐸 and 𝑝1 = 𝑝2 = 0.
Fig. 5.3 explores the dynamics at a fixed coupling strength of 𝜆 = 0.6. The three types
of trajectories from Fig. 5.2 can be found here. At low energies of 𝐸 < 0.5𝐷𝑒, quasiperi-
odic trajectories fill the phase space. The outer loops, as well as the island in the center
correspond to non-resonant trajectories. The four smaller islands surrounding the center
island correspond to the pairs of 2 : 1 resonant trajectories. At about half of the dissociation
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Figure 5.2: The top row depicts three types of bound trajectories in coordinate represen-
tation for the Hamiltonian of two kinetically coupled, identical Morse oscillators, Eq. (5.2).
The left trajectory represents non-resonant motion, themiddle one represents a quasiperi-
odic 2 : 1 resonance, and the right one shows irregular behavior. The Morse potential is
shown as green contour lines. The Morse parameters were set to 𝐷𝑒 = 32 and 𝑎 = 1/5
and the coupling strength is 𝜆 = 0.6. The bottom row shows the corresponding SOS along
the blue dashed line in the top panels. The values �̃� denote the positions along the blue
dashed line and �̃� denote the projections of the momenta tangential to that line.

energy, 𝐸 ≈ 0.5𝐷𝑒, irregular motion appears near the separatrices between the regular is-
lands. With increasing energy chaotic dynamics spreads through phase space, swallowing
the outer non-resonant trajectories, as well as the resonant islands, which disappear around
𝐸 ≈ 0.7𝐷𝑒. Only the non-resonant island in the center persists up to (and beyond) the
dissociation threshold.
Fig. 5.4 explores the system at fixed 𝐸 = 0.5𝐷𝑒 for various coupling strengths. At 𝜆 = 0
the system is fully separated and (almost) all trajectories come in degenerate pairs of 1 : 1
resonances, forming two distinct degenerate islands. At finite coupling, 𝜆 > 0, non-resonant
trajectories create the center island and the outer rings, which exist throughout the whole
range of 0 < 𝜆 < 1. The two islands belonging to the 1 : 1 resonances [103] decrease in
size with increasing 𝜆. As the coupling varies, resonant islands appear and disappear. Low
order resonances are more prominent in phase space than higher order resonances. Chaotic
motion is apparent for the whole range of 0 < 𝜆 < 1, but least prominent at large 𝜆. Note
that for both 𝜆 = 0 (separable) and 𝜆 = 1 (one-dimensional) the dynamics is fully regular.
In Ref. [98] the approximate relative area of chaotic and non-chaotic phase space regions is
provided for the whole 𝜆-range at energies of 0.8𝐷𝑒 and 1.0𝐷𝑒.
The origin of the resonant quasiperiodicmotion can be directly seenwhen comparing the two
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coupled Morse oscillators, Eq. (5.2), to the dynamics of two coupled harmonic oscillators,

𝐻HO(𝜆) =
𝑝21
2𝜇𝑟

+
𝑝22
2𝜇𝑟

+ 𝑉HO(𝑞1) + 𝑉HO(𝑞2)− 𝜆𝑝1𝑝2, (5.24)

where 𝑉HO(𝑥) = 1
2𝜇𝑟𝜔

2𝑥2 and 𝜔 = 𝑎
√︀

2𝐷𝑒/𝜇𝑟 (Eq. (5.7)). Using the same rotation in coor-
dinates as in Appendix B.1, system (5.24) can be completely decoupled into two separate
harmonic oscillators with different effective masses, [104]

�̃�HO(𝜆) =
𝑝′1

2

2𝜇𝑟
(1− 𝜇𝑟𝜆) + 𝑉HO(𝑞′1) +

𝑝′2
2

2𝜇𝑟
(1 + 𝜇𝑟𝜆) + 𝑉HO(𝑞′2) (5.25)

with energies

𝐸HO(𝑛1, 𝑛2;𝜆) = ℏ𝜔
√︀
1− 𝜇𝑟𝜆⏟  ⏞  
𝜔1

(︀
𝑛1 +

1
2

)︀
+ ℏ𝜔

√︀
1 + 𝜇𝑟𝜆⏟  ⏞  
𝜔2

(︀
𝑛2 +

1
2

)︀
. (5.26)

The energy spectra of both systems, Eq. (5.2) and Eq. (5.24), are depicted in Fig. 5.5, left
and right, respectively. Close examination reveals a resemblance between the two spectra.
The Morse potential is an anharmonic distortion of the harmonic potential with a dissocia-
tion threshold and consequently one expects the energetically lower-lying states to behave
nearly harmonic. The major difference between the two systems is the separability of the
coupled harmonic oscillators. Hence, the dynamics is a superposition of two independent
one-dimensional motions and no irregularity occurs. Additionally, due to the separability no
crossings are avoided.
The degeneracies in the energy spectra in Fig. 5.5, right, occur whenever the two harmonic
oscillators fulfill the resonance condition, i.e., whenever the ratio of their frequencies be-
comes a rational number,

𝜔2

𝜔1
=

√︃
1 + 𝜇𝑟𝜆

1− 𝜇𝑟𝜆
=
𝛼

𝛽
, 𝛼, 𝛽 ∈ Z. (5.27)

Whenever this condition is fulfilled, we refer to the resonance as “𝛼 : 𝛽 resonance”. Due to
the positivity of 𝜆 we have 𝜔2 ≥ 𝜔1. The most prominent resonances are the 1 : 1 resonance
at 𝜆 = 0 and the 2 : 1 resonance at 𝜆 = 0.6, being the two resonances of lowest orders.
For 𝛼 : 𝛽 resonant harmonic oscillators all trajectories become periodic and wind 𝛼 times
around one topologically distinct loop around their phase space torus and 𝛽 times around
the other loop before connecting back into themselves. Such a resonant torus is densely
filled by a family of periodic resonant trajectories. The top row of Fig. 5.6 depicts three
resonant trajectories for the Hamiltonian (5.24).
If the harmonic system is perturbed into a system of anharmonic Morse oscillators, the res-
onant tori break up into alternating pairs of elliptic (stable) and hyperbolic (unstable) peri-
odic orbits, creating the island chains surrounding the non-resonant center island, as seen in
Figs. 5.3 and 5.4. This is a consequence of the Poincaré-Birkhoff theorem. [105] These
island chains correspond to the quasiperiodic resonances mentioned before. The bottom
row of Fig. 5.6 depicts three quasiperiodic resonances of the anharmonic system, Eq. (5.2),
corresponding to the periodic resonances of the harmonic system, Eq. (5.24), in the top row.
As we will see in the upcoming section, such quasiperiodic resonances provide “corrected”
EBK energies to the non-resonant EBK spectra.
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Figure 5.3: Poincaré SOS are given for the Hamiltonian (5.2) for various energies and
𝜆 = 0.6, 𝐷𝑒 = 32 and 𝑎 = 1/5. The section plane of Fig. 5.2 is used, i.e., along the axis of
symmetry, 𝑞1 = 𝑞2. The values �̃� denote the positions along the section plane and �̃� denote
the projections of the momenta tangential to the section plane.
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Figure 5.4: Same as Fig. 5.3, but for various coupling strengths and 𝐸 = 0.5𝐷𝑒.
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Figure 5.5: The energy spectra of two kinetically coupled Morse oscillators (left),
Eq. (5.2), and two kinetically coupled harmonic oscillators (right), Eq. (5.24), are shown.
The blue eigenenergies correspond to symmetric and the orange eigenenergies to anti-
symmetric eigenstates.

Figure 5.6: Three resonances of the coupled harmonic oscillators, Eq. (5.24), are depicted
in the top row, together with their quasiperiodic resonant counterparts of the coupled
Morse oscillators, Eq. (5.2), in the bottom row. The left column shows a 2 : 1, the
middle column a 3 : 1, and the right column a 3 : 2 resonance. These resonances are
located at 𝜆 = 0.6, 𝜆 = 0.8, and 𝜆 = 5/13 ≈ 0.38, respectively. The potentials are shown
as green contour lines.
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5.3 EBK quantization via GPR

Using quasiperiodic trajectories, semiclassical EBK spectra can be computed. Therefor we
compute trajectories for various initial conditions throughout a range of energies and per-
turbations and compute their two actions, 𝑆1 and 𝑆2, as described in Chapter 4. Time steps
for the numerical propagation are chosen such that the relative error of the trajectory en-
ergy remained below 10−5. All irregular trajectories as well as those whose actions are not
properly converged are discarded. The two (non-integer) quantum numbers, relating to the
actions by

𝑆𝑖 = 2𝜋ℏ
(︀
𝑛𝑖 +

1
2

)︀
, 𝑖 = 1, 2, (5.28)

together with the perturbation parameter and the energy of each trajectory are used as train-
ing data for a GPR. The values 𝑆1, 𝑆2 and 𝜆 are used as components of a three-dimensional
input and the energy is the corresponding output value.
Fig. 5.7 illustrates the method at a single fixed value of 𝜆 = 0.3. The left panel shows
the energy surface trained by a number of quasiperiodic trajectories. The energy landscape
appears to be very flat and smooth with varying 𝑛1 and 𝑛2. The GPR registers this flatness by
assigning large length-scales of 𝑙1, 𝑙2 ≈ 12 via the MLE method, which are much larger than
the average distance between nearest trajectories, depicted as circles. At the same time the
noise hyperparameter is very small, 𝜎𝑛 ≈ 10−4, implying that all training points lie precisely
on the trained energy surface. The very large length-scales allow for extrapolation to regions
where no training data is provided, i.e., energies above 𝐸 ≥ 0.5𝐷𝑒. The right panel of
Fig. 5.7 marks all energies at points where 𝑛1 and 𝑛2 are integers and hence fulfill the EBK
quantization condition. Naturally, with growing distance to the training data the uncertainty
grows. However, as the learned length-scales are very large, the uncertainty grows very
slowly with distance, allowing still for precise extrapolation. The depicted uncertainties in
the right panel of Fig. 5.7 are highly upscaled solely for the purpose of visibility.
The method illustrated in Fig. 5.7 at a single value for 𝜆 is conducted using variable 𝜆 as
a third input dimension. Trajectories are propagated using distributed initial conditions
throughout the full energy range 0 < 𝐸 < 𝐷𝑒 and various perturbation strengths 0 ≤
𝜆 < 1. Of all the propagated trajectories, only those quasiperiodic ones are used whose
phase space torus is properly densely filled, i.e., their Poincaré SOS depict closed loops
without large gaps between neighboring points. Due to these criteria the number of useful
trajectories decreases with increasing energies above 𝐸 ≳ 0.5𝐷𝑒, as chaotic dynamics takes
over phase space. Within the full batch of quasiperiodic trajectories, non-resonant, as well as
trajectories with different resonances are treated separately. While non-resonant trajectories
are found throughout the whole range of perturbation strengths, different resonances occur
within narrow ranges of 𝜆. For this reason, we generate one full 𝜆-range of semiclassical
energy spectra using only non-resonant trajectories, whereas resonant trajectories are only
interpolated within the small region where they really occur. The resonant EBK energies
then yield only components of spectra within narrow 𝜆-ranges.
The result for the semiclassical eigenenergies is shown in Fig. 5.8. In the left panel the EBK
spectra arising from GPR using non-resonant trajectories are partially depicted in colored
dashed lines. The first section plane for the Poincaré SOS was chosen along 𝑞1 = 𝑞2, as
depicted in Fig. 5.2. The second section was located perpendicularly such that it properly
dissects the phase space torus. Consequently, the first SOS, yielding the values for 𝑆1, are
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Figure 5.7: The left panel illustrates the GPR for the energy (colormap) as a function of
the two (non-integer) quantum numbers of various quasiperiodic trajectories (circles) at
fixed 𝜆 = 0.3. The black dots locate the positions where the EBK quantization condition
is fulfilled. The length-scales and noise hyperparameters of the GPR are 𝑙1, 𝑙2 ≈ 12 and
𝜎𝑛 ≈ 10−4. The right panel shows the EBK energies corresponding to dots in the left
panel. The dashed line shows the energy up to which trajectories were computed in the
left panel. The errorbars are highly upscaled uncertainties of the GPR.

the ones shown in Figs. 5.2 – 5.4. The inter- and extrapolated integer quantum numbers 𝑛1
are associated with the number of nodes of the eigenfunctions along the symmetric stretch,
𝑞𝑠 ∼ 𝑞1 + 𝑞2. Accordingly, the perpendicular SOS yield the values for 𝑆2 and 𝑛2, the latter
of which corresponds to the number of nodes of the eigenfunctions along the asymmetric
stretch, 𝑞𝑎 ∼ 𝑞2 − 𝑞1. A GP is trained on the 𝑛1, 𝑛2, 𝜆 and 𝐸-values of 500 non-resonant
trajectories. The MLE method yields optimal length-scales of (𝑙1, 𝑙2, 𝑙3) ≈ (22, 22, 0.12) and
a noise hyperparameter of 𝜎𝑛 ≈ 10−3. The first two length-scales correspond to the length-
scales along the 𝑛1 and 𝑛2-directions. Evidently, the energy landscape is extremely flat and
smooth in those directions, allowing for extrapolation to higher energies, where chaotic
dynamics takes over. The small noise hyperparameter implies that all training points lie
precisely on the trained regression surface.
The blue, orange, green and red lines in the left panel of Fig. 5.8 represent energies of
eigenstates with quantum numbers satisfying 𝑛1 + 𝑛2 = 6, 7, 8 and 9, respectively. For
visualization purposes only states with even 𝑛2 are shown, i.e., with an even number of nodes
along the asymmetric stretch. This condition selects only those states which are symmetric
under coordinate exchange, 𝑞1 ↔ 𝑞2. In gray, the symmetric full quantum spectra are shown
for comparison. One can immediately see that the EBK energies show the diabatic spectra
of the system, ignoring all avoided crossings. The result shares strong resemblance with the
spectra of the harmonic system shown in Fig. 5.5, right. One convenience of this semiclassical
method is the persistence of the sets of quantum numbers throughout the parameter 𝜆,
allowing for immediate identification of the states belonging to one and the same diabatic
manifold. Note that the restrictions in the quantum numbers and symmetry of the shown
states was done for visualization improvements only. The described method always supplies
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Figure 5.8: The left panel shows the full quantum (gray) and semiclassical EBK (dashed
colored) spectra for symmetric states. For selected states the EBK quantum numbers,
(𝑛1, 𝑛2), are given. The errorbars show an upscaled GPR uncertainty. The length-scales
and noise hyperparameters of the GPR are (𝑙1, 𝑙2, 𝑙3) ≈ (22, 22, 0.12) and 𝜎𝑛 ≈ 10−3. The
right panel shows the full quantum spectra for both symmetric (blue) and anti-symmetric
(orange) states, as well as energies of resonant quasiperiodic trajectories that fulfill the
EBK condition in black.

the full spectrum.
We have thus shown that the full diabatic spectrum of the system can be extracted with one
single GPR using only a few hundred regular, non-resonant trajectories. The errorbars at
small 𝜆-values are the ten times upscaled uncertainties of the posterior GP. These uncer-
tainties appear due to the quasiperiodic 1 : 1 resonances taking up a large portion of phase
space, leaving little space for non-resonant trajectories. This effect can be seen in the two
bottom panels of Fig. 5.4. Since the optimal length-scale for the 𝜆-direction is rather small,
𝑙3 ≈ 0.12, extrapolation in 𝜆-direction is less meaningful. If one were still to conduct extrap-
olation, the respective length-scale should be forced to take up larger values, which can be
achieved by setting a lower bound for the MLE optimizer, e.g., 𝑙3 ≥ 1. On the other hand,
the very large length-scales 𝑙1 and 𝑙2 suggest that extrapolation to higher energies is justi-
fied. Indeed, diabatic spectra can be continued into regions where chaotic dynamics already
takes place. This can be seen in Fig. 5.9, where full diabats are shown for the energy region
above 𝐸 > 0.5𝐷𝑒, where chaotic dynamics takes over the majority of phase space, as can
be seen in Fig. 5.3. This method thus serves as a tool to generate semiclassical EBK spectra
where classical dynamics is irregular. The generated diabatic energy spectra correspond to
a purely regular approximation to the system. One could say that an additional, missing
constant of motion is assumed, treating the system as if it were integrable. This aspect will
be further investigated in the next chapter.
As discussed in Sec. 5.1, the higher the quantum number 𝑛1, the stronger the eigenstate
loses energy with increasing coupling, 𝜆. This is due to the effect of compression of the
eigenfunction along the direction of the symmetric stretch.
In the right panel of Fig. 5.8 the full quantum spectra for symmetric and anti-symmetric
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states are depicted in blue and orange, respectively. The semiclassical EBK eigenenergies
of resonant trajectories are marked in black. The energies at small 𝜆 < 0.2 correspond to
pairs of degenerate 1 : 1 resonances and the energies around 𝜆 = 0.6 correspond to degen-
erate pairs of 2 : 1 resonances, such as the one shown in Fig. 5.6, bottom left. The energies
around 𝜆 = 5/13 ≈ 0.38 correspond non-degenerate 3 : 2 resonances, such as the one shown
in Fig. 5.6, bottom right. All resonant trajectories are located in a small portion in phase
space in a narrow 𝜆-region. Most resonant trajectories, especially higher-order resonances,
do not fulfill the EBK quantization condition as their phase space torus is too narrow, i.e.,
𝑛 < 0 for at least one quantum number (or 𝑆 < 𝜋 for at least one action). Quasiperiodic
resonances merge into non-resonant trajectories with changing initial conditions or pertur-
bation strengths, and with increasing energies they vanish into the irregular sea, as seen in
Fig. 5.3. The resonant EBK energies are results of GP interpolation between resonant tra-
jectories. The narrow 𝜆-regions in which these resonances exist cause extrapolation beyond
those regions to be somewhat unphysical. However, extrapolation to higher energies into the
irregular regime should be permitted, which is confirmed by the optimal GP length-scales
along the 𝑛1 and 𝑛2-directions. These values lie at 𝑙1, 𝑙2 ≈ 6 and are quite larger than the
nearest distance between quantum numbers, Δ𝑛𝑖 = 1. The non-resonant EBK spectra in
the left panel are the result of an interpolation ignoring the small regions where resonant
trajectories take place.
The partial spectra coming from resonant trajectories are qualitatively different from the
non-resonant spectra. Fig. 5.8, right, shows that eigenenergies coming from resonances
tend to lie on those states that are most strongly repelled at the avoided crossings. Hence,
they “correct” the interpolated non-resonant spectra at avoided crossings. The 1 : 1 and 2 : 1
resonances come in degenerate pairs and therefore lie close to pairs of almost degenerate
states with opposite symmetries, i.e., where one blue and one orange state nearly overlap.
This is most visible for the 1 : 1 resonance at 𝜆 < 0.2, but similar for the 2 : 1 resonance. The
3 : 2 resonance is located where symmetric and anti-symmetric states are far apart from each
other. This is in agreement with the fact that those trajectories do not come in degenerate
pairs, since they inherit the symmetry of the Hamiltonian, i.e., exchange of 𝑞1 ↔ 𝑞2 yields
the same trajectory. For these resonances it is also most visible that the lower-energetic anti-
symmetric states vanish. This is caused by the mentioned effect that resonant quasiperiodic
trajectories exist in a confined region of phase space and fulfill the EBK quantization condi-
tion only above a certain energy threshold. From a physical perspective one can observe that
with increasingly avoided crossings resonant EBK energies gain larger contributions. If one
were to extrapolate to larger quantum numbers, more states, including those missing anti-
symmetric ones, would emerge. The connection between classical quasiperiodic resonances
and avoided crossings has been investigated, e.g., in Ref. [106].
It should be noted that the quantum numbers, 𝑛1 and 𝑛2, corresponding to resonant tra-
jectories take different values than those of non-resonant tori. More precisely, if the first
quantum number of a quasiperiodic resonance is taken to be the area inside one loop such
as the ones in the bottom middle panel of Fig. 5.2, then the second quantum number will
be much larger due to the elongated torus, 𝑛2 > 𝑛1. This effect increases with the order of
the resonance. For the case of the 3 : 2 resonance in Fig 5.8, right, all visible symmetric EBK
states correspond to 𝑛1 = 0 and all anti-symmetric ones to 𝑛1 = 1.
The primitive trajectories considered here live entirely in real-valued phase space and there-
fore do not account for effects due to dynamic tunneling, which would lead to splittings in
the energies between pairs of degenerate, mirrored trajectories. Such effects are not present
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at 𝜆 = 0, due to the separability of the system. With increasing coupling strength, 𝜆 > 0,
the system loses its separable character and tunneling effects grow in strength. Such effects
are likely to lead to the energy splittings that are visible at the right ends of the black lines
depicting the 1 : 1 resonances at 𝜆 < 0.2. [107] However, this was not investigated within
the present work. Contributions of other resonances besides the three depicted were not
included. But according to Fig. 5.4, other resonances might also yield spectral fragments
within the energy range of Fig. 5.8.
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Figure 5.9: Similar to the left panel of Fig. 5.8, symmetric states of the the full quantum
(gray) and semiclassical EBK (dotted colored) spectra are shown. The errorbars show the
GPR uncertainty.





6 Semiclassical diabatization of hydrogen in
a magnetic field

In this chapter we will demonstrate the method for semiclassical diabatization using GPR
on the energy spectra of a single hydrogen atom exposed to an external homogeneous mag-
netic field. This simple but prominent system exhibits both regular and irregular classical
dynamics and allows for a useful scaling transformation. [108]
The electronic TISE with minimal coupling to a magnetic field with vector potentialA(x, 𝑡) is
found by substituting themomentum operator in the followingway: p → p−𝑞A(x, 𝑡), where
𝑞 = −𝑒. We will be using atomic units throughout the whole chapter: ℏ = 𝑚𝑒 = 𝑒 = 𝑎0 = 1.
For a homogeneous magnetic field parallel to the 𝑧-axis, B = (0, 0, 𝐵)⊤, we use a vector
potential in the symmetric gauge,

A =
𝐵

2
(−𝑦, 𝑥, 0)⊤ . (6.1)

The Hamiltonian then writes

𝐻 =
1

2

(︀
p+A(x, 𝑡)

)︀2 − 1

𝑟
(6.2)

=
p2

2
+
𝐵

2
(𝑥𝑝𝑦 − 𝑦𝑝𝑥)⏟  ⏞  

𝐿𝑧

+
𝐵2

8

(︀
𝑥2 + 𝑦2

)︀
− 1

𝑟
. (6.3)

Due to the cylindrical symmetry of the system, one can perform a coordinate transformation
to cylindrical coordinates, (𝑥, 𝑦, 𝑧) → (𝜌, 𝜙, 𝑧), where 𝜌 =

√︀
𝑥2 + 𝑦2 and 𝜙 = arctan

(︀ 𝑦
𝑥

)︀,
yielding for the Laplace operator

Δ =
1

𝜌

𝜕

𝜕𝜌

(︂
𝜌
𝜕

𝜕𝜌

)︂
+

1

𝜌2
𝜕2

𝜕𝜙2
+

𝜕2

𝜕𝑧2
(6.4)

=
1

𝜌

𝜕

𝜕𝜌
+

𝜕2

𝜕𝜌2
+

1

𝜌2
𝜕2

𝜕𝜙2
+

𝜕2

𝜕𝑧2
. (6.5)

The 𝑧-component of the orbital angular momentum, 𝐿𝑧, is a constant of motion and its
corresponding magnetic quantum number, 𝑚, is therefore a good quantum number of the
system. The full single-electron wave function is separable in the azimuthal angle, 𝜙, [109]

𝜓(𝜌, 𝜙, 𝑧) = 𝜓(𝜌, 𝑧)
𝑒𝑖𝑚𝜙√
2𝜋
. (6.6)

Here the 𝜙-dependence follows from the fact that the spherical harmonics, 𝑌𝑙𝑚(𝜃, 𝜙),
are eigenfunctions of the orbital angular momentum operator, 𝐿𝑧. What is left is the non-
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separable part of the TISE for the coordinates (𝜌, 𝑧),[︃
1

2

(︂
−1

𝜌

𝜕

𝜕𝜌
− 𝜕2

𝜕𝜌2
− 𝜕2

𝜕𝑧2
+
𝑚2

𝜌2

)︂
+
𝐵2

8
𝜌2 − 1√︀

𝜌2 + 𝑧2

]︃
𝜓(𝜌, 𝑧) = 𝐸𝜓(𝜌, 𝑧), (6.7)

where we neglect the linear Zeeman term, 1
2𝐵𝐿𝑧, which just adds a constant contribution

to the energy. This system corresponds to that of a particle moving in an effective two-
dimensional potential,

𝑉eff(𝜌, 𝑧) =
𝑚2

2𝜌2
+
𝐵2𝜌2

8
− 1√︀

𝜌2 + 𝑧2
. (6.8)

In order to compute the eigenenergies and eigenstates of the system, one represents the
Hamiltonian in a specified basis and diagonalizes the corresponding matrix. The generic
method of finite differences, which discretizes the eigenstates on a grid and has been used
in the previous chapter, is presented in Appendix C.1. This method is unsuited to treat the
singularity in the center of the atom properly and the number of necessary grid points per
dimension becomes prohibitively large.
A more suitable basis needs to quickly converge to the true eigenenergies. For the hydrogen
atom in a magnetic field the orthogonal Sturmian functions pose as a sensible basis. Non-
orthogonal Sturmian functions have been first applied to the hydrogen in a magnetic field
in Refs. [110,111]. Later, Ref. [112] introduced an orthogonalized version of the Sturmian
functions, which will be applied in the present chapter.

6.1 Orthogonal Sturmian basis

A suitable basis for the hydrogen atom in a magnetic field can be formed using orthogonal-
ized Sturmian functions, [112–114]

𝑆
(𝜁)
𝑛𝑙 (𝑟) = 𝜁

3
2

√︃
(𝑛− 𝑙 − 1)!

(𝑛+ 𝑙 + 1)!
𝑒−

𝜁𝑟
2 (𝜁𝑟)𝑙𝐿

(2𝑙+2)
𝑛−𝑙−1(𝜁𝑟). (6.9)

The associated (or generalized) Laguerre polynomials, 𝐿(𝛼)
𝛽 (𝑥), satisfy the relation∫︁ ∞

0
d𝑥 𝑒−𝑥𝑥𝛼𝐿(𝛼)

𝛽 (𝑥)𝐿
(𝛼)
𝛽′ (𝑥) =

(𝛼+ 𝛽)!

𝛽!
𝛿𝛽′𝛽, (6.10)

from which the orthogonality of the Sturmian functions follows. The parameter 𝜁 speci-
fies around which principal quantum number, 𝑛, the eigenenergies converge fastest. If one
chooses 𝜁 = 2/𝑛⋆, the eigenvalues around 𝑛 = 𝑛⋆ experience the highest accuracy. Using
the basis ⟨𝑟, 𝜃, 𝜙|𝑛, 𝑙,𝑚⟩ = ⟨𝑟|𝑛, 𝑙⟩ ⟨𝜃, 𝜙|𝑙,𝑚⟩ ≡ 𝑆𝑛𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜙), where 𝑌𝑙𝑚 are the spher-
ical harmonics, the matrix elements of the Hamiltonian, given in spherical coordinates as
(neglecting the constant linear Zeeman term)

𝐻(𝑟, 𝜃, 𝜙) =
𝑝2

2
− 1

𝑟⏟  ⏞  
𝐻0

+
𝐵2

8
𝑟2 sin2 𝜃, (6.11)
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are ⟨︀
𝑛′, 𝑙′,𝑚′⃒⃒𝐻 |𝑛, 𝑙,𝑚⟩ =

⟨︀
𝑛′, 𝑙′,𝑚′⃒⃒𝐻0 |𝑛, 𝑙,𝑚⟩⏟  ⏞  

𝐼0

+
𝐵2

8

⟨︀
𝑛′, 𝑙′

⃒⃒
𝑟2 |𝑛, 𝑙⟩⏟  ⏞  
𝐼1

⟨︀
𝑙′,𝑚′⃒⃒ sin2 𝜃 |𝑙,𝑚⟩⏟  ⏞  

𝐼2

.

(6.12)

The expressions for the matrix elements are derived in Appendix C.2; the results are

𝐼0 = − 𝜁2

8
𝛿𝑛′𝑛𝛿𝑙′𝑙𝛿𝑚′𝑚 +

𝜁2

2
𝛿𝑙′𝑙𝛿𝑚′𝑚

√︃
(𝑛′ − 𝑙′ − 1)!

(𝑛′ + 𝑙′ + 1)!

√︃
(𝑛− 𝑙 − 1)!

(𝑛+ 𝑙 + 1)!

×
≤𝑛′−𝑙′−1
𝑛−𝑙−1∑︁
𝜏=0

(2𝑙 + 𝜏)!

𝜏 !

[︂
(𝑛− 𝑙 − 1)(𝑛− 𝑙 − 𝜏)(𝑛′ − 𝑙 − 𝜏)

− (𝑛+ 𝑙 + 1)(𝑛− 𝑙 − 1− 𝜏)(𝑛′ − 𝑙 − 𝜏) +

(︂
𝑛− 2

𝜁

)︂
(2𝑙 + 𝜏 + 1)

]︂
, (6.13)

𝐼1 = 𝜁−2

√︃
(𝑛′ − 𝑙′ − 1)!

(𝑛′ + 𝑙′ + 1)!

(𝑛− 𝑙 − 1)!

(𝑛+ 𝑙 + 1)!
(4 + 𝑙 + 𝑙′)!

×
≤𝑛′−𝑙′−1
𝑛−𝑙−1∑︁
𝜏=0

(−1)𝑛
′+𝑙′+𝑛+𝑙+𝜏

(︂
2− 𝑙′ + 𝑙

𝑛′ − 𝑙′ − 1− 𝜏

)︂(︂
2 + 𝑙′ − 𝑙

𝑛− 𝑙 − 1− 𝜏

)︂(︂−5− 𝑙′ − 𝑙

𝜏

)︂
,

(6.14)

𝐼2
𝑚′=𝑚
=

2
(︀
𝑙2 + 𝑙 +𝑚2 − 1

)︀
(2𝑙 + 3)(2𝑙 − 1)

𝛿𝑙′𝑙 −
√︀
(𝑙 +𝑚)(𝑙 +𝑚− 1)(𝑙 −𝑚)(𝑙 −𝑚− 1)√︀

(2𝑙 + 1)(2𝑙 − 3)(2𝑙 − 1)
𝛿𝑙′,𝑙−2

−
√︀
(𝑙 −𝑚+ 1)(𝑙 −𝑚+ 2)(𝑙 +𝑚+ 1)(𝑙 +𝑚+ 2)√︀

(2𝑙 + 1)(2𝑙 + 5)(2𝑙 + 3)
𝛿𝑙′,𝑙+2. (6.15)

Integral 𝐼1 has non-vanishing terms only for 𝑙′ = 𝑙 and 𝑙′ = 𝑙±2, which are listed explicitly in
Refs. [113,114]. To simplify integral 𝐼2, equal magnetic quantum numbers were assumed,
𝑚 = 𝑚′. Due to the neglection of the linear Zeeman term only positive magnetic quantum
numbers need to be considered,𝑚 ≥ 0, and hence eigenstates with different signs of𝑚 have
degenerate energies.
For the range of spectra shown in Fig. 6.4 the parameter of the Sturmian basis has been set
to 𝜁 = 2/20, ensuring convergence of states corresponding to principal quantum numbers
𝑛 ≈ 20.

6.2 Scaling and regularization

6.2.1 Scaling transformation

The classical dynamics given by the Hamiltonian in Eq. (6.3) is invariant under a scaling
of the coordinates and momenta by the magnetic field strength. [108, 115] Ignoring the
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contribution of the constant linear Zeeman term, 𝐵𝐿𝑧/2, the Hamiltonian in cylindrical
coordinates is given by

𝐻 =
1

2

[︂
𝑝2𝜌 +

𝐿2
𝑧

𝜌2
+ 𝑝2𝑧

]︂
− 1√︀

𝜌2 + 𝑧2
+
𝐵2

8
𝜌2, (6.16)

with 𝐿𝑧 = 𝜌2𝑚𝑒�̇�. Now we introduce the following scaling transformation

r = 𝐵−2/3r̃, (6.17)
p = 𝐵1/3p̃, (6.18)

which yields the Hamiltonian in scaled coordinates,

�̃� = 𝐵−2/3𝐻 =
�̃�2𝜌
2

+
�̃�2𝑧
2

+
�̃�
2
𝑧

2�̃�2
− 1√︀

�̃�2 + 𝑧2
+

1

8
�̃�2 = 𝐵−2/3𝐸 ≡ 𝜖. (6.19)

The classical dynamics is now controlled by two scaled parameters: the scaled energy, 𝜖 =
𝐵−2/3𝐸, and the scaled angular momentum, �̃�𝑧 = 𝐵1/3𝐿𝑧. Accordingly, the action along a
classical trajectory is scaled by

𝑆(𝐸,𝐿𝑧, 𝐵) =

∮︁
p(q) · dq = 𝐵−1/3

∮︁
p̃(q̃) · dq̃ ≡ 𝐵−1/3�̃�(𝜖, �̃�𝑧). (6.20)

With this transformation we have effectively eliminated the explicit dependence on the mag-
netic field strength and hence reduced the number of parameters by one.
Another major advantage of this scaling transformation is the possibility of completely fac-
toring out the magnetic field strength from the action, as seen on the right hand side of
Eq. (6.20). As a consequence, one can cancel out the 𝐵-dependence by simply consider-
ing the ratio of action variables of a given quasiperiodic trajectory. The EBK quantization
condition is then stated as

𝑆1
𝑆2

(6.20)
=

�̃�1

�̃�2

(4.3)
=

𝑛1 +
𝜈1
4

𝑛2 +
𝜈2
4

, (6.21)

with 𝑛1, 𝑛2 being integers. As was the case in the previous chapter, for two oscillators the
Maslov indices count two encounters of caustics per torus cut: 𝜈1, 𝜈2 = 2. Then the EBK
condition can be written as

�̃�1

�̃�2

!
=
𝑛1 +

1
2

𝑛2 +
1
2

=
2𝑛1 + 1

2𝑛2 + 1
, (6.22)

which is simply a fraction of two odd numbers. Hence, one single trajectory which fulfills
above condition, namely their action ratio being a ratio of two odd numbers, yields semiclas-
sical EBK eigenenergies for all quantum numbers which maintain the same ratio. For exam-
ple, if one finds one quasiperiodic trajectory evolving according to the Hamiltonian (6.19)
which fills a phase space torus with actions such that �̃�1/�̃�2 = 1/3, semiclassical eigenener-
gies are obtained for all quantum numbers with (𝑛1, 𝑛2) = (𝑗, 3𝑗 + 1), where 𝑗 = 0, 1, 2, . . . .
A general relation for the compatible quantum numbers for an action ratio �̃�1/�̃�2 = 𝑎/𝑏 of
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two odd numbers, 𝑎 and 𝑏, is given as

(𝑛1, 𝑛2) =

(︂
𝑎𝑗 +

𝑎− 1

2
, 𝑏𝑗 +

𝑏− 1

2

)︂
, 𝑗 = 0, 1, 2, . . . . (6.23)

If one deals with action ratios with general (different) Maslov indices,

�̃�1

�̃�2

=
𝑎

𝑏

!
=
𝑛1 +

𝜈1
4

𝑛2 +
𝜈2
4

=
4𝑛1 + 𝜈1
4𝑛2 + 𝜈2

, (6.24)

all values for the compatible quantum numbers can be found once the first (lowest) pair
of quantum numbers, (𝑛⋆1, 𝑛⋆2), corresponding to given action ratio is found. Assuming the
valid reduced action ratio �̃�1/�̃�2 = 𝑎/𝑏, one common integer factor 𝑘 yields for the quantum
numbers (𝑛⋆1, 𝑛⋆2)

𝑘𝑎 = 4𝑛⋆1 + 𝜈1, (6.25)
𝑘𝑏 = 4𝑛⋆2 + 𝜈2, (6.26)

or

𝑛⋆1 =
𝑎𝑘 − 𝜈1

4
, (6.27)

𝑛⋆2 =
𝑏𝑘 − 𝜈2

4
. (6.28)

Then one needs to increase 𝑘 by integer steps ofΔ𝑘 such that (𝑛1, 𝑛2) remain integer values

𝑛1 =
𝑎(𝑘 + 𝑗 ·Δ𝑘)− 𝜈1

4
, (6.29)

𝑛2 =
𝑏(𝑘 + 𝑗 ·Δ𝑘)− 𝜈2

4
. (6.30)

Since we know that 𝑘𝑎 = 4𝑛⋆1 + 𝜈1, we can rewrite above equation as

𝑛1 =
𝑎(𝑘 + 𝑗 ·Δ𝑘)− 𝜈1

4
(6.31)

=
𝑘𝑎− 𝜈1 + 𝑎𝑗Δ𝑘

4
(6.32)

=
4𝑛⋆1 + 𝑎𝑗Δ𝑘

4
(6.33)

= 𝑛⋆1 + 𝑎𝑗
Δ𝑘

4
, (6.34)

and similarly 𝑛2 = 𝑛⋆2+ 𝑏𝑗Δ𝑘4 . Since 𝑎/𝑏 is already a reduced fraction, we find that Δ𝑘 must
equal to 4, yielding the general generators

(𝑛1, 𝑛2) = (𝑎𝑗 + 𝑛⋆1, 𝑏𝑗 + 𝑛⋆2) , 𝑗 = 0, 1, 2, . . . . (6.35)

In summary, the scaling transformation, Eqs. (6.17) and (6.18), allows for factoring the
magnetic field strength out of the expression for the scaled action, Eq. (6.20). By simply
considering the ratio of the two actions one obtains a whole series of quantum numbers for
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which the EBK condition is simultaneously fulfilled, Eq. (6.21). In order to generate a full
spectrum, regular trajectories for various values of the action ratio are needed. The resulting
values for 𝐸 and 𝐵 can be extracted from the relations

𝐸 = 𝐵−2/3𝜖, (6.36)
𝑆1 = �̃�1𝐵

−1/3 = 2𝜋ℏ
(︁
𝑛1 +

𝜈1
4

)︁
. (6.37)

Note that the scaled action remains dependent on the two parameters 𝜖 and �̃�𝑧.

6.2.2 Regularization

The singularity of the potential at r = 0 forbids efficient propagation of classical trajectories.
Every time a trajectory approaches the singularity, the time step size must be decreased
accordingly to avoid extreme kicks from the steep potential, see Eq. (5.22). To circumvent
this problem, we introduce a regularization using semiparabolic coordinates, (𝜇, 𝜈), [109]

𝜈2 = �̃� − 𝑧, (6.38)
𝜇2 = �̃� + 𝑧, (6.39)

𝑝𝜈 =
d𝜈

d𝜏
, (6.40)

𝑝𝜇 =
d𝜇

d𝜏
, (6.41)

with a scaled time

d𝑡 = 2�̃� d𝜏 =
(︀
𝜈2 + 𝜇2

)︀
d𝜏 , (6.42)

and the relations

�̃� = 𝜈𝜇, (6.43)
𝑧 = 1

2

(︀
𝜇2 − 𝜈2

)︀
, (6.44)

d�̃�

d𝑡
= 𝜇

d𝜈

d𝑡
+ 𝜈

d𝜇

d𝑡
, (6.45)

d𝑧

d𝑡
= 𝜇

d𝜇

d𝑡
− 𝜈

d𝜈

d𝑡
. (6.46)

The Hamiltonian (6.19) can then be rewritten as

ℎ =
𝑝2𝜈
2

+
𝑝2𝜇
2

− 𝜖
(︀
𝜈2 + 𝜇2

)︀
+

1

8
𝜈2𝜇2

(︀
𝜈2 + 𝜇2

)︀
+

�̃�
2
𝑧

2𝜇2
+
�̃�
2
𝑧

2𝜈2
= 2. (6.47)

Classical trajectories propagated using the above equation are completely equivalent to those
of Hamiltonian (6.19). The left hand side of Eq. (6.47) takes the form of the Hamiltonian
of two identical harmonic oscillators with frequency 𝜔 =

√
−2𝜖 (𝜖 < 0 for bound states),

coupled by a term ∼𝜈2𝜇2
(︀
𝜈2 + 𝜇2

)︀ plus the two terms ∼𝜇−2 and ∼𝜈−2. The energy of this
system is then fixed at 2.
It is important to keep in mind that the last two terms in the Hamiltonian (6.47) diverge
to +∞ as 𝜇, 𝜈 → 0. This corresponds to the barrier at �̃� = 0, caused by the term ∼ �̃�−2
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in Eq. (6.19). For this reason, these terms cannot be simply neglected by setting �̃�𝑧 = 0.
The barrier forces trajectories to remain within their quadrant in semiparabolic coordinates
and in cylindrical coordinates trajectories are forced to remain within �̃� ≥ 0. Hence, the
semiparabolic coordinates are confined to one quadrant and we will choose 𝜇, 𝜈 ≥ 0. Note
that these positive singularities do not cause problems when propagating trajectories like
the Coulomb singularity does, as they lead to decrease of momenta, whereas negative sin-
gularities cause extremely large momenta.

6.3 Classical dynamics

The classical dynamics of the hydrogen atom in a homogeneous magnetic field has been
extensively studied in the literature. [109] As shown in the previous section, the classical
dynamics of system (6.19) is dependent on two parameters only, namely the scaled energy,
𝜖, and the scaled angular momentum, �̃�𝑧. Ref. [116] qualitatively explored the classical
dynamics of the system for the full parameter region.
For our purposes, classical trajectories are propagated using the leap frog integrationmethod,
Eqs. (5.21) – (5.23). Fig. 6.1 shows the three types of emerging trajectories using the Hamil-
tonians (6.19) in the top row and (6.47) in the bottom row. Each trajectory in the top row
is completely equivalent to its respective bottom one. The left and middle trajectories show
regular, quasiperiodic behavior, while the right one is irregular. The left trajectory exhibits
the same symmetry as the Hamiltonian (6.19), i.e., 𝑧 ↔ −𝑧. In semiparabolic coordinates
this symmetry is given by 𝜇 ↔ 𝜈. The middle trajectory does not have this symmetry and
therefore comes in degenerate pairs, which are mirror images of each other with respect to
the symmetry axis along 𝑧 = 0. Comparing Hamiltonian (6.47) to (5.24) of the previous
chapter, one can conclude that the middle type of trajectories represents a quasiperiodic
resonance, likely a 1 : 1 resonance according to its shape. Similarly to the system of two
identical coupled Morse oscillators, these 1 : 1 resonances appear in pairs and arise for two
perturbed oscillators with frequencies 𝜔1 ≃ 𝜔2.
While both coordinate systems are equivalent, the Hamiltonian in semiparabolic coordinates
has the major advantage of having no negative singularity. This allows for numerically stable
integration of trajectories. Propagation of trajectories in cylindrical coordinates requires
very small time steps whenever the trajectory comes close to the singularity. Especially for
angular momenta of �̃�𝑧 < 0.1 numerical integration becomes unfeasible. For this reason,
sample trajectories are shown for �̃�𝑧 = 0.1. In semiparabolic coordinates trajectories can be
easily evolved for arbitrary values of �̃�𝑧 and 𝜖. However, we will restrict our investigations
in this chapter to the case of �̃�𝑧 = 0.1 In this case, the terms �̃�2

𝑧/(2𝜇
2) and �̃�2

𝑧/(2𝜈
2) in

Eq. (6.47) become singular hard walls located along 𝜇 = 0 and 𝜈 = 0, respectively, on
which a trajectory is reflected.
In Fig. 6.2 the classical dynamics is explored for �̃�𝑧 = 0 for increasing values of 𝜖 below
zero. Above 𝜖 = 0 the states are no longer necessarily bound, but trapped trajectories exist
for �̃�𝑧 > 0 and are referred to as “resonant”, which should not be confused with the kind
of resonances we are discussing in this work. For the purpose of simplified treatment the
hard boundaries at 𝜇 = 0 and 𝜈 = 0 were omitted and the Poincaré SOS was aligned along
1Vanishing angular momentum of �̃�𝑧 = 0 satisfies the semiclassical EBK quantization condition since the
angular motion corresponds to a rotation, which does not encounter any caustics and the Maslov index is
therefore zero, i.e., �̃�𝑧 = 2𝜋ℏ ·𝑚, 𝑚 = 0, 1, 2, . . . .
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Figure 6.1: The top row depicts three types of bound trajectories for the electronic Hamil-
tonian of hydrogen in a homogeneous magnetic field in cylindrical coordinates, Eq. (6.19).
The left trajectory represents “rotating” motion, the middle one “librating”, and the
right one shows irregular behavior. The effective potentials are shown as green contour
lines. The bottom row shows the corresponding trajectories in semiparabolic coordinates,
Eqs. (6.38) – (6.41), using Hamiltonian (6.47). The scaled energy and angular momen-
tum were set to 𝜖 = −0.4 and �̃�𝑧 = 0.1, respectively, for all trajectories.

the axis of symmetry of the system, i.e., 𝜇 = 𝜈. Under neglection of the boundaries the
regular trajectories then have box-like shape in position space, such as the one depicted in
Fig. 4.2. Fig. 6.2 shows purely regular motion up to about 𝜖 = −0.5. The two types of
regular quasiperiodic trajectories are represented as loops around the stable fixed points
centered in the three visible islands. The middle island as well as the outer loops around
the center fixed point correspond to the type of trajectory depicted in the left column in
Fig. 6.1. Comparing to Figs. 5.3 and 5.4, these trajectories resemble the characteristics of
non-resonant motion of the coupled Morse oscillators from the previous chapter. The two
islands above and below the center one correspond to pairs of the middle type of trajectories
of Fig. 6.1. These trajectories resemble the characteristics of the 1 : 1 resonances of the
coupled Morse oscillators. Irregular motion appears near the separatrices around 𝜖 ≈ −0.5
and spreads through phase space with increasing 𝜖, swallowing the two resonant islands
completely until 𝜖 ≈ −0.2. The non-resonant regular trajectories disappear slightly later
between−0.2 < 𝜖 < −0.1. The order of disappearance of regular motion matches that of the
system of the coupled Morse oscillators, i.e., first the resonances, and finally non-resonant
motion.
The two types of regular trajectories, non-resonant and 1 : 1 resonant, have been labeled
“rotating” and “librating” (or “vibrating”) trajectories, respectively. [117] These terms arise
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when representing the dynamics in the new coordinates 𝑅2 = 𝑝2𝜇−2𝜖𝜇2, which corresponds
to the pseudoenergy of one oscillator, and the angle 𝜑 = arctan

(︀
𝑝𝜇/(

√
−2𝜖𝜇)

)︀. Such a
representation yields the same two regular modes as those of a pendulum, i.e., libration and
rotation.
The neglection of the boundaries at 𝜇 = 0 and 𝜈 = 0 needs to be considered when evaluating
the actions. For librational trajectories, whose SOS can be chosen to lie on the coordinate
axes, 𝜇, 𝜈 = 0, the two action variables are simply one half of those of a box-like trajectory
moving without the limitations 𝜇, 𝜈 ≥ 0. For rotational trajectories, whose SOS can be cho-
sen to lie along 𝜇 = 𝜈 and perpendicular, the action corresponding to the latter remains
unchanged, while the former action variable, corresponding to the SOS reaching across the
regions 𝜇, 𝜈 > 0 to 𝜇, 𝜈 < 0, needs to be taken as one half of the value of a box-like trajectory
also. The Maslov indices for both types of regular trajectories can be obtained by close exam-
ination of the top row of Fig. 6.1. Ref. [118] demonstrates that the Maslov indices for both
types of trajectories are 𝜈1 = 2 and 𝜈2 = 4, according to the number of encounters of caustics
along their respective torus paths. Hence, the EBK quantization condition, Eq. (6.21), for
this system then becomes

�̃�1

�̃�2

=
𝑛1 +

1
2

𝑛2 + 1
, 𝑛1, 𝑛2 = 0, 1, . . . . (6.48)

Ref. [118] has related the denominator, 𝑛2 + 1, to the principal quantum number of the
system, which takes positive integer values.
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Figure 6.2: Poincaré SOS for the Hamiltonian (6.47) are depicted for various scaled en-
ergies, 𝜖, and �̃�𝑧 = 0. The SOS was chosen along 𝜇 = 𝜈. The values �̃� denote the positions
along the section plane and �̃� denote the projections of the momenta tangential to the
plane. The hard barriers at 𝜇 = 0 and 𝜈 = 0 were ignored for the computed trajectories.
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6.4 EBK quantization via GPR

The same procedure as in the previous chapter is used to generate the semiclassical EBK
spectra, with the difference of the reduced input dimension by one due to the scaling of the
coordinates by the magnetic field, Eqs. (6.17) – (6.20). Hence, a GP is trained by regular tra-
jectories whose ratios of actions and scaled energies serve as input variables, x = (𝑆1/𝑆2, 𝜖),
and one action serves as output variable, 𝑓(x) = 𝑆1. With this choice of input one can easily
read off the points where the action ratios fulfill the EBK condition (6.21) or (6.48). Since
the numbering of actions is arbitrary as long as it is consistent, we choose the numbering
such that 𝑆1 < 𝑆2. This leads to action ratios approaching zero as 𝑆1 → 0, which is pre-
ferred over approaching infinity as 𝑆2 → 0. As a consequence, the regression manifold,
𝑆1(𝑆1/𝑆2, 𝜖), is zero at 𝑆1/𝑆2 = 0. This prior knowledge can be implemented into the GPR
by choosing a prior covariance function with the included boundary condition. Following
the description in Sec. 2.3.1 and Eqs. (2.17) – (2.19), we apply the non-stationary function
𝐵(x) = 𝑆1/𝑆2 to the simple RBF covariance function, yielding the desired behavior along
𝑆1/𝑆2 = 0. The resulting values for the energies and magnetic field strengths are obtained
via Eqs. (6.36) and (6.37).
Fig. 6.3 shows the two GPRs for the librating and rotating motions. 500 quasiperiodic tra-
jectories of each type whose phase space torus is properly densely filled have been used
as training data. These training trajectories were chosen from a larger batch of computed
trajectories in an AL manner, exploiting the boundary behavior at 𝑆1/𝑆2 = 0. Higher-order
quasiperiodic resonances that arise around regular islands due to the Poincaré-Birkhoff sce-
nario are not included into the investigation, as their Poincaré sections are difficult to place
and consequently their action variables cannot be easily extracted. Such resonances corre-
spond to the small island chains in Fig. 6.2, such as in the panel for 𝜖 = −0.3. The optimal
length-scales for both GPs suggest that moderate extrapolation to higher scaled energies
is justified, since 𝑙2 ≈ 1.0 and 0.9 are large compared to the increments in 𝜖. However,
since no more quasiperiodic trajectories are found in the region of large 𝜖 and 𝑆1/𝑆2-values,
the extrapolated values in that region do suffer from larger uncertainties. The two types
of trajectories ought to be treated separately and no extrapolation beyond their respective
𝑆1/𝑆2-boundaries is conducted. The two black lines, dashed and solid, mark the values of
first appearance of irregularity and completely chaotic behavior, respectively, according to
Ref. [115]. The very low noise hyperparameter implies that all training points lie precisely
on the regression surface.
The resulting semiclassical energy spectra are depicted in Fig. 6.4 for selected symmetric
states, while Fig. C.1 in Appendix C shows all states. The full quantum spectra are shown in
gray for comparison. Fig. 6.4 shows only symmetric states, having even azimuthal quantum
numbers, 𝑙, as well as the semiclassical EBK energies for quantum numbers 𝑛2 = 9 and 11,
corresponding to the principal quantum numbers 10 and 12. The blue energies correspond
to librational trajectories and the orange energies to rotational ones. Both constitute the
full spectra and follow diabatic patterns with increasing magnetic field strength, 𝐵2, i.e., all
avoided crossings are traversed. The blue and orange colored circles represent EBK energies
resulting from interpolation between computed trajectories within the regular phase space,
whereas crosses represent extrapolated energies. For both groups of 𝑛2-quantum numbers
the uppermost states with steepest slopes correspond to rotational trajectories with small
action ratios, whose regular islands persist up to scaled energies of 𝜖 ≈ −0.15, as seen
in Fig. 6.3. Rotational states with smaller slopes correspond to larger action ratios and
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Figure 6.3: The GPRs for the actions 𝑆1 (colormap) as functions of the action ratios and
scaled energies, 𝜖, trained by various quasiperiodic trajectories (dots). The left panel cor-
responds to librating and the right panel to rotating trajectories. The optimized hyper-
parameters are (𝜎𝑓 , 𝑙1, 𝑙2, 𝜎𝑛) ≈

(︀
32, 0.04, 1.0, 10−5

)︀ for the left GP and (︀7, 0.87, 0.9, 10−4
)︀

for the right GP. The black dashed and solid lines mark the region in which both regular
and irregular dynamics coexist, −0.5 ≤ 𝜖 ≤ −0.13. [115]

extrapolate into the irregular regime earlier. On the contrary, blue librational states with
smaller slopes correspond to smaller action ratios, which persist up to larger scaled energies.
Comparing to the system of two coupledMorse oscillators from the previous chapter, we have
again computed the full diabatic energy spectrum, this time with two two-dimensional GPRs
instead of one three-dimensional GPR, each using merely 500 regular trajectories. Again,
the system is treated as an integrable approximation, since regular dynamics is extrapolated.
One can observe a strong connection between irregular classical dynamics and the repelling
strength at avoided energy level crossings. [119,120] Each semiclassical diabat corresponds
to a set of EBK quantum numbers, (𝑛1, 𝑛2), and thus to a ratio of actions, 𝑆1/𝑆2. Those
diabats that correspond to trajectories with low action ratio, such as the uppermost states
of the two bunches in Fig. 6.4, are more easily revealed by the naked eye since they jump
only weakly avoided crossings up to large values of 𝜖. Diabats corresponding to larger action
ratios jump over much stronger avoided crossings, such as the lowest rotational and high-
est librational states of the two bunches in Fig. 6.4. These states exhibit chaotic classical
dynamics already at low scaled energies, 𝜖 ≈ −0.5. Regarding the full spectra, as irregular
motion takes over with increasing magnetic field strength or scaled energy, diabatic patterns
are less easily revealed due to the increasing strength of avoided crossings. These observa-
tions relate to the known Poisson or Wigner distributions of nearest neighbor level spacings
of systems with classically regular or ergodic dynamics, respectively. [109,121]
As it was noticed in the previous chapter, the energy landscape as function of the classical
action variables shows rather flat and smooth characteristics that allow for controlled extrap-
olation into the classically irregular regime. This extrapolation works better the larger the
length-scales of the trained GPs are. Otherwise, higher uncertainties will occur. In Fig. 6.4
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the 3�̂�-uncertainties of the posterior GPs are shown as errorbars. These are aligned with
lines of constant 𝜖.
When looking at the full spectra in Fig. C.1 in Appendix C, one can see that not all semiclas-
sical EBK energies correctly describe the true quantum results, apart from the disagreements
at the avoided crossings. This is especially the case for rotational and librational states at
higher action ratios due to their early vanishing into the irregular regime. The predictive ac-
curacies of the two extrapolating GPs are weaker than that of the GP in the previous chapter.
The smaller length-scales do not permit extrapolation far beyond the training data, suggest-
ing that the GPs fall short of discovering a long-ranging trend of the latent function, which
seems to strongly increase with larger 𝑆1/𝑆2 and 𝜖-values. This problem could be solved by
considering alternative covariance functions to the simple RBF covariance used here for the
prior GP, such as the more sophisticated SM covariance function discussed in Sec. 2.3. Fur-
ther shall be noted that even at very low scaled energies not all eigenstates are found using
the semiclassical EBK method. These missing states lie very close to the separatrix between
rotational and librational motion. Same states, however, appear if the angular momentum,
�̃�𝑧, is increased, causing librational motion to disappear. [116] This effect is discussed in
Ref. [122].

6.4.1 Scaling to large data sets in higher dimensions

Finally, we would like to address the task of upscaling our presented method to problems of
higher dimensions. As was extensively discussed in Sec. 2.5, the number of training points
states a bottleneck for GP inference and data sets containing more than roughly 1000 points
become prohibitive. Hence, scaling methods, such as the ones discussed in Sec. 2.5, ought
to be employed.
The exact scaling methods presented in Sec. 2.5.1, i.e., methods exploiting Toeplitz and
Kronecker structure, are the most desirable methods for upscaling. Though in numerical ex-
periments training data can often be generated on grids, the extracted actions necessary for
the EBK quantizationwill not exhibit lattice structure, and hence, suchmethods cannot be di-
rectly employed. Consequently, approximate inference methods, described in Sec. 2.5.2, are
the sensible choice for the objective of upscaling. However, it was demonstrated in Sec. 2.5.3
that length-scales larger than average distances between training points can lead to very
slow convergence of the CG method, which is employed in all highly scalable inducing point
methods.
For this reason we suggest a simple “thinning” of any dense data set, i.e., removing surplus
data points from the training set, with the goal of generating a smaller, more dilute data set
without losing information about the latent input-output relationship. Dilute data sets can
be efficiently gathered using an AL method (see Sec. 2.6), especially when non-stationary
features, such as the boundary behavior used for the GPs in this chapter, are incorporated.
Such thinning should be justifiedwhenever a posterior GP observes length-scalesmuch larger
than the average distances between training points, while having a very low noise hyperpa-
rameter. This leads to faster inference and allows for the use of upscaling methods in higher
dimensions. In fact, we have performed such thinning on both training data sets used for
both systems, the coupled Morse oscillators (Chap. 5) and the hydrogen atom in a magnetic
field (this chapter). We experienced that due to the smoothness and flatness of the regres-
sion landscapes, diluted training data sets suffice and allow for larger length-scales without
the need of adding diagonal noise for numerical stability.
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Figure 6.4: The energy spectra of symmetric states (even azimuthal quantum number, 𝑙)
of hydrogen in a homogeneous magnetic field are shown. The exact quantum spectra are
depicted as gray lines. The semiclassical EBK spectra are partly illustrated as blue markers
for librational and orange for rotational trajectories. The EBK quantum numbers, (𝑛1, 𝑛2),
for the lower bunch of states are given. Circles depict energies which are interpolated
between computed trajectories within regular phase space, while crosses depict extrapo-
lated energy values. The 3�̂�-uncertainty range is shown as errorbars. The black dashed
and solid lines show scaled energy values of 𝜖 = −0.5 and −0.13, respectively, marking
the region of mixed phase space. Both 𝐸 and 𝐵 are given in atomic units. In SI units 𝐵 is
given in units of 𝐵0 = 2.35 · 105𝑇 .



7 Conclusion

In this work we have employed the state of the art supervised ML technique of GPR to ef-
ficiently extract diabatic energy manifolds from spectra whose underlying physical systems
possess classical phase spaces with both regular and chaotic dynamics. For this, GPs have
been extensively introduced. Their particular strengths were thoroughly discussed, which
include most of all the interpretability of the complete model with its few hyperparameters.
They can be tuned in a principled manner using the maximum likelihood estimation method
and adjusted tomeet specific demands. Their optimal values indicate precisely the properties
of the regression manifold and to what extend it can be extrapolated into unknown regions.
A unique feature of GPs are the naturally provided reliable uncertainty measures for all pre-
dictions, which are essential for extrapolation. We claim that extrapolations should always
be provided with predictive probabilities, otherwise they would be meaningless. Hence, GPs
are uniquely suited for the task.
The interpretability of GPs facilitates implementations of non-stationary features into the
models, such as boundary behaviors. We have constructed modifications to a commonly used
covariance function to match non-stationary properties in order to enhance predictions as
well as active learning procedures. The effects were illustrated on simple physical systems.
For the purpose of tackling higher-dimensional problems procedures for upscaling have been
discussed. It was shown that upscaling methods involving the CG method can suffer from
large length-scales in the covariance functions. This has to be accounted for when training
data sets are generated for extrapolation purposes.
GPs have previously been used for pattern discovery and extrapolation. [8, 9] Inspired by
this finding, we used GPR for the isolation of diabatic energy manifolds, which emerge as
patterns in generic energy spectra when a parameter of the Hamiltonian is varied. Such
diabatic manifolds are continuations of energy levels which pass through avoided crossings
and their correspondingly constructed wave functions conserve their characteristics. While
this procedure has shown to be capable of extracting diabatic patterns, a collection of fully
transformed diabatic spectra ought to be generated in a semiclassical way using the EBK
quantization condition.
The EBK method of isolating regular trajectories whose phase space torus fulfills certain
conditions in order to find semiclassical eigenenergies of a given Hamiltonian system serves
as an approximate tool to generate energy spectra. This semiclassical treatment ignores
coupling effects between individual states which lead to avoided crossings, e.g., due to tun-
neling, and hence yields diabatic manifolds. Instead of root finding individual trajectories
which fulfill the quantization conditions, we took up the idea of Ref. [84] and applied GPR
for the inter- and extrapolation of classical action variables, as well as other parameters of
the Hamiltonian, using training data from arbitrary regular trajectories. This allows for the
extraction of all energies satisfying the EBK conditions with one single regression. The opti-
mal length-scales along the directions of the action variables suggest smooth and flat energy
surfaces with long-ranged correlations and therefore allow for controlled extrapolation be-
yond the region of regular dynamics. Hence, we produced extended diabatic spectra for two
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systems, namely two coupled Morse oscillators and the hydrogen atom in a magnetic field.
The first of these two systems has been classically explored throughout the whole range of
mass ratios of the outer two identical atoms and the center atom. Analogously to its har-
monic equivalent the system exhibits various resonances at different regions of the mass
ratio parameter. It was shown that these resonances appear most prominently where the
true eigenspectra undergo strongly avoided crossings. Their contributions to the semiclas-
sical spectra yield “corrections” for the repelled energy levels, i.e., their energies lie along
those states which are most strongly repelled. This phenomenon has already been investi-
gated in Ref. [106]. Ignoring the resonant trajectories, bound diabatic spectra have been
generated using only a few hundred non-resonant trajectories. These spectra range far into
the classically irregular regime of the system, where they still succeed in producing precise
diabatic manifolds.
For the system of hydrogen in a magnetic field the scaling of coordinates by the magnetic
field strength allows for the consideration of ratios of action variables, canceling out the
direct dependence on the magnetic field strength while providing a series of EBK energies
for each single trajectory that fulfills the quantization condition. This reduces the number
of classical parameters effectively by one. The two regular types of trajectories, which can
be identified to be non-resonant and 1 : 1 resonant, produce complement parts of the full
diabatic spectra with increasing magnetic field strength. Extrapolation into irregular regions
reveal continuations of diabats where they are no longer well-defined.
The presented procedure for extrapolation bypasses the shortcomings of the EBK method
to some extend, namely the limitation to regular dynamics, while exploiting the advantage
that regular, quasiperiodic trajectories are easily found and can be efficiently and parallely
propagated. Earlier methods have been brought forward to extend the EBK method into
moderately irregular regions. [64, 123] On the other hand, semiclassical methods relying
on summation over periodic orbits [65, 66] are extendable to fully chaotic regions, though
the isolation of periodic orbits is a demanding task and the method does not assign quantum
numbers to individual states, since it computes densities of states. A sophisticated method is
presented in Ref. [102], which constructs approximate integrable Hamiltonians for generic
systems with mixed phase spaces. The combination with our method promises improve-
ments in convergence and accessibility to higher dimensions.
Our extrapolation method enables the generation of diabatic spectra in irregular regions of
non-integrable systems. Hence, one may consider the diabatic spectra constructed from our
GPR method as an integrable approximation to the system with implicit additional constants
of motion.

7.1 Outlook

Looking forward, the application of GPR for the computation of semiclassical EBK energy
spectra as functions of one or more variable parameters of the Hamiltonian can be further
improved. In this work the Poincaré SOS method for the extraction of action variables is
used, which is limited to low-dimensional systems with two to three degrees of freedom.
Additionally, the treatment of resonant trajectories with this method demands considerable
effort. To alleviate both limitations, other methods, such as the Fourier transform approach
from Refs. [64,83,124], ought to be employed. While allowing for more degrees of freedom,
the treatment of resonant trajectories becomes straightforward. [124] Further, the extracted
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approximate action variables coming from irregular “vague tori” from Ref. [64] can be added
to the training data set with increased individual variable noise, which GPR allows for. Us-
ing the Fourier transform approach the Gaussian noise assumption on the training data,
Eq. (2.26), becomes much more suited, whereas for the Poincaré SOS method the action
variables always converge from below.
Regarding resonant trajectories, it was shown that their contributions to the EBK spectra lie
on the strongly repelled energy surfaces. Although those trajectories only fulfill the quan-
tization condition in a small, confined area, their extrapolation could allow for completely
corrected spectra, exhibiting more avoided crossings. In fact, the resonant character can still
be seen for many periods in close-lying non-resonant trajectories.
When applying upscaling methods, GPR can be used for high-dimensional regression. Since
the time for convergence of trajectories grows exponentially with the degrees of freedom of
the system, the propagation of trajectories can become a bottleneck for semiclassical meth-
ods. As a consequence, fewer trajectories may need to suffice, which is one of the strong
points of GPR. In addition to the action variables of the trajectories, more than one parame-
ter of the Hamiltonian can be added to the input space of the GP, resulting in energy surfaces
as functions of all parameters.





A Derivations

A.1 The arithmetic mean as a maximum likelihood estimator

One well-knownmaximum likelihood estimator is the one for the mean of a univariate Gaus-
sian PDF, Eq. (2.6). The logarithm of the likelihood, Eq. (2.42), is given as

ℒ(𝜇; 𝑦1, . . . , 𝑦𝐾) ≡ log𝐿(𝜇; 𝑦1, . . . , 𝑦𝐾) = − 1
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yielding for the maximum likelihood estimator

�̂� =
1

𝐾

𝐾∑︁
𝑖=1

𝑦𝑖 ≡ 𝑦, (A.3)

which is the arithmetic mean.

A.2 Matrix-vector product for Kronecker matrices

The product of a Kronecker matrix, Eq. (2.47), and a vector can be efficiently computed in
𝒪
(︀
𝐷𝑁

𝐷+1
𝐷

)︀ operations instead of 𝒪(𝑁2) for the generic case. [27,28] Using the property

(A⊗B) vec(V) = vec
(︁
BVA⊤

)︁
, (A.4)

where vec(V) is the column-wise concatenation that reshapes the matrix V into a vector,
one can rewrite the matrix-vector product. The product of a Kronecker matrix, K ∈ R𝑁×𝑁
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and a vector, b ∈ R𝑁 , is then given by

Kb =
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= . . . (A.10)
= vec
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[A1 . . . [A𝐷−1[A𝐷B]⊤]⊤]⊤

)︁
, (A.11)

where B is the matrix of dimensions 𝑁 1
𝐷 ×𝑁

𝐷−1
𝐷 formed from b, and vec−1(vec(A)) = A.

In lines (A.6) and (A.9) we used property (A.4). Repeating at line (A.9) over all 𝐷 dimen-
sions and noting that (⨂︀𝐷

𝑑=1 I)b = b yields above simplified expression, where the bracket
notation denotes transpose and reshape, i.e. [AB]⊤ = reshape((AB)⊤). This reshaping
occurs due to the generation of matrix [AB]⊤ out of vec([AB]⊤) to serve equation (A.4),
where the matrix AB⊤ lost its original shape.

A.3 No degenerate bound eigenstates in one dimension

Considering a regular (or non-singular) [48] one-dimensional bound system, we start with
the assumption that there are two linearly independent eigenstates of a one-dimensional
Hamiltonian with the same energy,[︂

− ℏ2

2𝑚

d2

d𝑥2
+ 𝑉 (𝑥)

]︂
𝜓1 = 𝐸𝜓1, (A.12)[︂

− ℏ2

2𝑚

d2

d𝑥2
+ 𝑉 (𝑥)

]︂
𝜓2 = 𝐸𝜓2. (A.13)

Multiplying the first equation by 𝜓2 and the second by 𝜓1 and subtracting one from the other
one gets

𝜓1
d2

d𝑥2
𝜓2 − 𝜓2

d2

d𝑥2
𝜓1 = 0. (A.14)
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Close observation reveals that one derivative can be factored out,
d

d𝑥

(︂
𝜓1

d

d𝑥
𝜓2 − 𝜓2

d

d𝑥
𝜓1

)︂
= 0. (A.15)

Integrating both sides of above equation yields

𝜓1
d

d𝑥
𝜓2 − 𝜓2

d

d𝑥
𝜓1 = 𝐶 (A.16)

for any value of 𝑥. For bound states, the boundary condition for 𝑥 → ±∞ is 𝜓1,2 → 0.
Therefore the constant on the right hand side must be zero, 𝐶 = 0. Consequently one gets

𝜓1
d

d𝑥
𝜓2 = 𝜓2

d

d𝑥
𝜓1 (A.17)

⇒
d
d𝑥𝜓2

𝜓1
=
𝜓2

d
d𝑥

𝜓2
(A.18)

⇒ d

d𝑥
log𝜓1 =

d

d𝑥
log𝜓2 (A.19)

⇒ log𝜓1 = log𝜓2 + �̃� (A.20)
⇒ 𝜓1 = 𝑒�̃�𝜓2, (A.21)

where 𝜓1, 𝜓2 ̸= 0. Evidently, since 𝜓1 ∼ 𝜓2, both eigenstates are not linearly independent,
which contradicts the assumption.

A.4 Von Neumann-Wigner theorem

The von Neumann-Wigner theorem [49] states that for general perturbations, described by a
Hermitian matrix depending on a number of parameters,𝑊 (𝜆1, . . . , 𝜆𝑁𝜆

), one needs at least
three parameters, 𝑁𝜆 = 3, to be able to locate a crossing of two eigenenergies. The effective
Hamiltonian matrix in the subspace of the two considered eigenstates can be written as the
sum of the unperturbed Hamiltonian plus the perturbation in the basis of the unperturbed
eigenstates,

𝐻0 +𝑊 (𝜆1, . . . , 𝜆𝑁𝜆
) =

(︂
𝐸1 0
0 𝐸2

)︂
+

(︂
𝑊11 𝑊12

𝑊 †
12 𝑊22

)︂
. (A.22)

Expressing the off-diagonal elements as𝑊12 = 𝑥+ 𝑖𝑦, the eigenenergies of above matrix are

𝐸± =
1

2

(︁
𝐸1 +𝑊11 + 𝐸2 +𝑊22 ±

√︀
(𝐸1 +𝑊11 − 𝐸2 −𝑊22)2 + 4(𝑥2 + 𝑦2)

)︁
. (A.23)

In order for both energies to be degenerate, the square root must vanish, i.e.,

𝐸1 +𝑊11(𝜆1, . . . , 𝜆𝑁𝜆
)

!
= 𝐸2 +𝑊22(𝜆1, . . . , 𝜆𝑁𝜆

), (A.24)
𝑥(𝜆1, . . . , 𝜆𝑁𝜆

)
!
= 0, (A.25)

𝑦(𝜆1, . . . , 𝜆𝑁𝜆
)

!
= 0. (A.26)
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For all three equations to hold, at least three independent parameters must be tuned. If
only three parameters exist, i.e., 𝑁𝜆 = 3, all three equations can be satisfied only at iso-
lated parameter sets. Such points in parameter space lead to conical intersections. If four
parameters are available, a one-dimensional manifold in parameter space will satisfy above
conditions.
For the special case of real-valued perturbations, i.e., 𝑊12 = 𝑥, the above conditional equa-
tions reduce to two. In this case, only two parameters are required to locate degeneracies.
Another special case appears for systems that possess symmetries. If the two considered
eigenenergies correspond to eigenstates of different symmetry, the off-diagonal matrix ele-
ments vanish identically,𝑊12 = 0. [125] In this case, only one conditional equation remains
and crossings can appear by varying a single parameter.

A.5 Poincaré surface of section method

We use a linear interpolation between two neighboring points, 𝑖 and 𝑖+ 1, if they cross the
chosen SOS. For SOS along 𝑞2 ≡ 𝑦 = 𝑦0, 𝑝2 > 0 and 𝑞1 ≡ 𝑥 = 𝑥0, 𝑝1 > 0 we find the �̃�1 and
�̃�2 locations to be

�̃�1 = 𝑥𝑖 + (𝑦0 − 𝑦𝑖)
𝑥𝑖+1 − 𝑥𝑖
𝑦𝑖+1 − 𝑦𝑖

, (A.27)

�̃�2 = 𝑦𝑖 + (𝑥0 − 𝑥𝑖)
𝑦𝑖+1 − 𝑦𝑖
𝑥𝑖+1 − 𝑥𝑖

. (A.28)

For the momenta tangential to the SOS we assume 𝑝(𝑡) = 𝑚𝑡+𝑛, where 𝑝(𝑡𝑖) = 𝑝𝑖, to yield

𝑝(𝑡) = 𝑝𝑖 + (𝑝𝑖+1 − 𝑝𝑖)
𝑡− 𝑡𝑖
𝑡𝑖+1 − 𝑡𝑖

, (A.29)

and for the values in the SOS

�̃�1 = 𝑝𝑖 + (𝑝𝑖+1 − 𝑝𝑖)
�̃�1 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

= 𝑝𝑖 + (𝑝𝑖+1 − 𝑝𝑖)
𝑦0 − 𝑦𝑖
𝑦𝑖+1 − 𝑦𝑖

, (A.30)

�̃�2 = 𝑝𝑖 + (𝑝𝑖+1 − 𝑝𝑖)
�̃�2 − 𝑦𝑖
𝑦𝑖+1 − 𝑦𝑖

= 𝑝𝑖 + (𝑝𝑖+1 − 𝑝𝑖)
𝑥0 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

. (A.31)

For a general linear section planes of the form 𝑦 = 𝑚𝑥+𝑛we find the values for the positions
of the SOS points to be

�̃� =

√︁
�̃�2 + 𝑦2, (A.32)

�̃� =
𝑥𝑖

𝑦𝑖+1−𝑦𝑖
𝑥𝑖+1−𝑥𝑖 − 𝑦𝑖 + 𝑛

𝑦𝑖+1−𝑦𝑖
𝑥𝑖+1−𝑥𝑖 −𝑚

, (A.33)

𝑦 = 𝑚�̃�+ 𝑛, (A.34)

and the momenta

�̃� =
1√

1 +𝑚2

(︂
𝑝�̃�
𝑝𝑦

)︂
·
(︂
1
𝑚

)︂
=
𝑝�̃� +𝑚𝑝𝑦√

1 +𝑚2
. (A.35)



B Two kinetically coupled Morse oscillators

The Morse oscillator

A linearly aligned, triatomic molecule possesses two vibrational degrees of freedom, namely
the two distances between the center atom and the outer two atoms, 𝑥1,2. The two corre-
sponding potentials can be approximated via the anharmonic Morse potential,

𝑉Mor(𝑥) = 𝐷𝑒

(︀
1− 𝑒−𝑎𝑥

)︀2
, (B.1)

where 𝐷𝑒 is the dissociation energy and 𝑎 the stiffness parameter of the potential. The
eigenfunctions of the single Morse oscillator with Hamiltonian

𝐻 =
𝑝2

2𝜇
+ 𝑉Mor(𝑥) (B.2)

are known to be [92]

𝜓𝑛(𝑥) = 𝑁𝑛𝑧
𝑘−𝑛− 1

2 𝑒−
1
2
𝑧𝐿(2𝑘−2𝑛−1)

𝑛 (𝑧), (B.3)

where

𝑛 = 0, 1, . . . ,

[︂
𝑘 − 1

2

]︂
, (B.4)

with [𝜉] denoting the maximum integer ≤ 𝜉, 𝑘 =
√
2𝜇𝑟𝐷𝑒/𝑎, 𝑧(𝑥) = 2𝑘𝑒−𝑎𝑥 (0 < 𝑧 <

∞), and 𝐿(𝛼)
𝑛 are associated/generalized Laguerre polynomials. To show orthogonality we

compute the overlap

Ω𝑚,𝑛 ≡
∫︁ ∞

−∞
d𝑥𝜓𝑚(𝑥)𝜓𝑛(𝑥) (B.5)

= 𝑁𝑚𝑁𝑛

∫︁ ∞

−∞
d𝑥 𝑧2𝑘−𝑚−𝑛−1𝑒−𝑧𝐿(2𝑘−2𝑚−1)

𝑚 (𝑧)𝐿(2𝑘−2𝑛−1)
𝑛 (𝑧) (B.6)

=
𝑁𝑚𝑁𝑛

𝑎

∫︁ ∞

0
d𝑧 𝑧2𝑘−𝑚−𝑛−2𝑒−𝑧𝐿(2𝑘−2𝑚−1)

𝑚 (𝑧)𝐿(2𝑘−2𝑛−1)
𝑛 (𝑧). (B.7)

Using the property of the associated Laguerre polynomials,

𝐿(𝛽)
𝑛 (𝑧) =

𝑛∑︁
𝑗=0

(︂
𝛽 − 𝛼+ 𝑗 − 1

𝑗

)︂
𝐿
(𝛼)
𝑛−𝑗(𝑧), (B.8)
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one can express

𝐿(2𝑘−2𝑚−1)
𝑚 (𝑧) =

𝑚∑︁
𝑖=0

(︂−𝑚+ 𝑛+ 𝑖

𝑖

)︂
𝐿
(2𝑘−𝑚−𝑛−2)
𝑚−𝑖 (𝑧), (B.9)

𝐿(2𝑘−2𝑛−1)
𝑛 (𝑧) =

𝑛∑︁
𝑗=0

(︂
𝑚− 𝑛+ 𝑗

𝑗

)︂
𝐿
(2𝑘−𝑚−𝑛−2)
𝑛−𝑗 (𝑧). (B.10)

Here, the only terms that do not vanish are those whose binomial coefficients are non-zero.
(Note that binomial coefficients, (︀𝑛𝑘)︀, are also non-zero for negative 𝑛 and positive 𝑘.) Then,
the overlap simplifies:

Ω𝑚,𝑛 =
𝑁𝑚𝑁𝑛

𝑎

𝑚∑︁
𝑖=0

(︂−𝑚+ 𝑛+ 𝑖

𝑖

)︂ 𝑛∑︁
𝑗=0

(︂
𝑚− 𝑛+ 𝑗

𝑗

)︂
×
∫︁ ∞

0
d𝑧 𝑧2𝑘−𝑚−𝑛−2𝑒−𝑧𝐿(2𝑘−𝑚−𝑛−2)

𝑚−𝑖 (𝑧)𝐿
(2𝑘−𝑚−𝑛−2)
𝑛−𝑗 (𝑧) (B.11)

=
𝑁𝑚𝑁𝑛

𝑎

𝑚∑︁
𝑖=0

(︂−𝑚+ 𝑛+ 𝑖

𝑖

)︂ 𝑛∑︁
𝑗=0

(︂
𝑚− 𝑛+ 𝑗

𝑗

)︂
Γ(2𝑘 −𝑚− 1− 𝑗)

(𝑛− 𝑗)!
𝛿𝑚−𝑖,𝑛−𝑗

(B.12)

=
𝑁𝑚𝑁𝑛

𝑎

𝑚∑︁
𝑖=0

(︂−𝑚+ 𝑛+ 𝑖

𝑖

)︂ 𝑛∑︁
�̃�=0

(︂
𝑚− �̃�

𝑛− �̃�

)︂
Γ(2𝑘 −𝑚− 𝑛− 1 + �̃�)

�̃�!
𝛿𝑚−𝑖,�̃� (B.13)

=
𝑁𝑚𝑁𝑛

𝑎

𝑚∑︁
𝑖=0

(︂
𝑛−𝑚+ 𝑖

𝑖

)︂(︂
𝑖

𝑛−𝑚+ 𝑖

)︂
Γ(2𝑘 − 𝑛− 1− 𝑖)

(𝑚− 𝑖)!
. (B.14)

Here we used the orthogonality of the associated Laguerre polynomials, [126]∫︁ ∞

0
d𝑧 𝑧𝛼𝑒−𝑧𝐿(𝛼)

𝑛 (𝑧)𝐿(𝛼)
𝑚 (𝑧) =

Γ(𝑛+ 𝛼+ 1)

𝑛!
𝛿𝑛,𝑚. (B.15)

For 𝑚 ̸= 𝑛 all of the above terms vanish, yielding 0. For 𝑚 = 𝑛 we get

Ω𝑛,𝑛 =

∫︁ ∞

−∞
d𝑥𝜓2

𝑛(𝑥) (B.16)

=
𝑁2
𝑛

𝑎

𝑛∑︁
𝑖=0

Γ(2𝑘 − 𝑛− 1− 𝑖)

(𝑛− 𝑖)!
(B.17)

=
𝑁2
𝑛

𝑎

𝑛∑︁
�̃�=0

Γ(2𝑘 − 2𝑛− 1 + �̃�)

�̃�!
(B.18)

=
𝑁2
𝑛

𝑎
Γ(2𝑘 − 2𝑛− 1)

𝑛∑︁
𝑖=0

(︂
2(𝑘 − 𝑛− 1) + 𝑖

𝑖

)︂
(B.19)

=
𝑁2
𝑛

𝑎

Γ(2𝑘 − 𝑛)

𝑛!(2𝑘 − 2𝑛− 1)

!
= 1, (B.20)
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where the two last steps follow Ref. [90]. Hence, we find

𝑁𝑛 =

√︃
𝑎(2𝑘 − 2𝑛− 1)𝑛!

Γ(2𝑘 − 𝑛)
. (B.21)

Two kinetically coupled Morse oscillators

The potential energies of the two vibrational degrees of freedom of a symmetric, linearly
aligned, triatomic molecule, as shown in Fig. 5.1, left, can be described by two Morse oscil-
lators, Eq. (B.1), where the arguments, 𝑥, correspond to the dispositions from the equilib-
rium distances between two neighboring atoms. If the positions of the three atoms are 𝑥1,
𝑥2 and 𝑥3 in a laboratory frame of reference, then the arguments of the Morse potentials are
𝑞1 = 𝑥2 − 𝑥1 and 𝑞2 = 𝑥3 − 𝑥2. The kinetic energy of the molecule is

𝑇 =
𝑚1

2
�̇�21 +

𝑚2

2
�̇�22 +

𝑚3

2
�̇�23, (B.22)

where 𝑚1 = 𝑚3 = 𝑚 is the mass of the outer atoms and 𝑚2 =𝑀 is the mass of the central
atom. In order to express the kinetic energy in terms of the internal dispositions, we employ

�̇�1 = �̇�2 − �̇�1, (B.23)
�̇�2 = �̇�3 − �̇�2. (B.24)

For further convenience, we transform into a coordinate system in which the total momen-
tum vanishes, i.e.,

0 = 𝑚�̇�1 +𝑀�̇�2 +𝑚�̇�3. (B.25)

Combined we have⎛⎝�̇�1�̇�2
0

⎞⎠ =

⎛⎝−1 1 0
0 −1 1
𝑚 𝑀 𝑚

⎞⎠
⏟  ⏞  

𝑈

⎛⎝�̇�1�̇�2
�̇�3

⎞⎠ , (B.26)

⎛⎝�̇�1�̇�2
�̇�3

⎞⎠ = 𝑈−1

⎛⎝�̇�1�̇�2
0

⎞⎠ . (B.27)

Inserting these expressions into Eq. (B.22) we get [127]

𝑇 =
1

2

(︀
𝑔�̇�21 + 2ℎ�̇�1�̇�2 + 𝑔�̇�22

)︀
, (B.28)

where

𝑔 =
𝑚(𝑚+𝑀)

2𝑚+𝑀
, (B.29)

ℎ =
𝑚2

2𝑚+𝑀
. (B.30)
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Finally, we would like to express the kinetic energy in terms of the momenta canonically
conjugate to the coordinates 𝑞1 and 𝑞2. They are defined by the partial derivatives of the
Lagrangian ℒ(𝑞1, 𝑞2, �̇�1, �̇�2),

𝑝𝑖 =
𝜕ℒ
𝜕�̇�𝑖

=
𝜕

𝜕�̇�𝑖
(𝑇 − 𝑉 ), (B.31)

yielding

𝑝1 = 𝑔�̇�1 + ℎ�̇�2, (B.32)
𝑝2 = 𝑔�̇�2 + ℎ�̇�1. (B.33)

Using these momenta the kinetic energy term takes the form

𝑇 =
1

2

(︂
𝑝21
𝜇𝑟

− 2

𝑀
𝑝1𝑝2 +

𝑝22
𝜇𝑟

)︂
, (B.34)

where 𝜇𝑟 = 𝑚𝑀
𝑚+𝑀 is the reduced mass of one oscillator. The full Hamiltonian then reads

𝐻 =
𝑝21
2𝜇𝑟

+ 𝑉Mor(𝑞1) +
𝑝22
2𝜇𝑟

+ 𝑉Mor(𝑞2)−
1

𝑀
𝑝1𝑝2. (B.35)

The corresponding Hamiltonian matrix elements can be analytically computed in the basis
of the Morse oscillator eigenfunctions. We choose 𝜇𝑟 = ℏ = 1, therefore the coupling
parameter corresponds to the mass ratio 𝜆 ≡ 1

𝑀 = 𝑚
𝑚+𝑀 , which is in the range 0 ≤ 𝜆 ≤

1. [91] The coupling term, 𝐻12 ∼ 𝑝1𝑝2, can be expressed analytically in a basis of the
eigenfunctions of the two one-dimensional Morse oscillators, |𝑛1, 𝑛2⟩, [90]

⟨𝑚1,𝑚2| 𝑝1𝑝2 |𝑛1, 𝑛2⟩ = ⟨𝑚1| 𝑝1 |𝑛1⟩ ⟨𝑚2| 𝑝2 |𝑛2⟩ (B.36)

= −
∫︁ ∞

−∞
d𝑥1 𝜓𝑚1(𝑥1)

d

d𝑥1
𝜓𝑛1(𝑥1)

∫︁ ∞

−∞
d𝑥2 𝜓𝑚2(𝑥2)

d

d𝑥2
𝜓𝑛2(𝑥2).

(B.37)

Here we use the relationship

d

d𝑥
𝐿(𝛼)
𝑛 (𝑥) =

{︃
−𝐿(𝛼+1)

𝑛−1 (𝑥) if 𝑛 > 0,

0 else. (B.38)

We insert
d

d𝑥
𝜓𝑛(𝑥) = −𝑎𝑁𝑛𝑒

− 1
2
𝑧

[︂ (︀
𝑘 − 𝑛− 1

2

)︀
𝑧𝑘−𝑛−

1
2𝐿(2𝑘−2𝑛−1)

𝑛 (𝑧)

− 1
2𝑧
𝑘−𝑛+ 1

2𝐿(2𝑘−2𝑛−1)
𝑛 (𝑧)− 𝑧𝑘−𝑛+

1
2𝐿

(2𝑘−2𝑛)
𝑛−1 (𝑧)

]︂
(B.39)
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to get

𝐼𝑚1,𝑛1 ≡
∫︁ ∞

−∞
d𝑥𝜓𝑚1(𝑥)

d

d𝑥
𝜓𝑛1(𝑥) (B.40)

=− 𝑎𝑁𝑚1𝑁𝑛1

∫︁
d𝑥 𝑒−𝑧𝑧𝑘−𝑚1− 1

2𝐿(2𝑘−2𝑚1−1)
𝑚1

(𝑧)

×
[︂ (︀
𝑘 − 𝑛1 − 1

2

)︀
𝑧𝑘−𝑛1− 1

2𝐿(2𝑘−2𝑛1−1)
𝑛1

(𝑧)− 1
2𝑧
𝑘−𝑛1+

1
2𝐿(2𝑘−2𝑛1−1)

𝑛1
(𝑧)

− 𝑧𝑘−𝑛1+
1
2𝐿

(2𝑘−2𝑛1)
𝑛1−1 (𝑧)

]︂
(B.41)

=− 𝑎𝑁𝑚1𝑁𝑛1

∫︁
d𝑥 𝑒−𝑧

[︂ (︀
𝑘 − 𝑛1 − 1

2

)︀
𝑧2𝑘−𝑚1−𝑛1−1𝐿(2𝑘−2𝑚1−1)

𝑚1
(𝑧)𝐿(2𝑘−2𝑛1−1)

𝑛1
(𝑧)

− 1
2𝑧

2𝑘−𝑚1−𝑛1𝐿(2𝑘−2𝑚1−1)
𝑚1

(𝑧)𝐿(2𝑘−2𝑛1−1)
𝑛1

(𝑧)

− 𝑧2𝑘−𝑚1−𝑛1𝐿(2𝑘−2𝑚1−1)
𝑚1

(𝑧)𝐿
(2𝑘−2𝑛1)
𝑛1−1 (𝑧)

]︂
. (B.42)

The first integral we have already computed when finding the normalization factor 𝑁𝑛,

𝐼1 ≡
∫︁

d𝑥 𝑒−𝑧𝑧2𝑘−𝑚1−𝑛1−1𝐿(2𝑘−2𝑚1−1)
𝑚1

(𝑧)𝐿(2𝑘−2𝑛1−1)
𝑛1

(𝑧) (B.43)

=
1

𝑎

Γ(2𝑘 − 𝑛1)

𝑛1!(2𝑘 − 2𝑛1 − 1)
𝛿𝑚1,𝑛1 . (B.44)
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The second integral yields

𝐼2 ≡
∫︁

d𝑥 𝑒−𝑧𝑧2𝑘−𝑚1−𝑛1𝐿(2𝑘−2𝑚1−1)
𝑚1

(𝑧)𝐿(2𝑘−2𝑛1−1)
𝑛1

(𝑧) (B.45)

=
1

𝑎

∫︁ ∞

0
d𝑧 𝑒−𝑧𝑧2𝑘−𝑚1−𝑛1−1𝐿(2𝑘−2𝑚1−1)

𝑚1
(𝑧)𝐿(2𝑘−2𝑛1−1)

𝑛1
(𝑧) (B.46)

=
1

𝑎

𝑚1∑︁
𝑖=0

(︂−𝑚1 + 𝑛1 + 𝑖− 1

𝑖

)︂ 𝑛1∑︁
𝑗=0

(︂
𝑚1 − 𝑛1 + 𝑗 − 1

𝑗

)︂
×
∫︁ ∞

0
d𝑧 𝑒−𝑧𝑧2𝑘−𝑚1−𝑛1−1𝐿

(2𝑘−𝑚1−𝑛1−1)
𝑚1−𝑖 (𝑧)𝐿

(2𝑘−𝑚1−𝑛1−1)
𝑛1−𝑗 (𝑧) (B.47)

=
1

𝑎

𝑚1∑︁
𝑖=0

(︂−𝑚1 + 𝑛1 + 𝑖− 1

𝑖

)︂ 𝑛1∑︁
𝑗=0

(︂
𝑚1 − 𝑛1 + 𝑗 − 1

𝑗

)︂
Γ(2𝑘 −𝑚1 − 𝑗)

(𝑛1 − 𝑗)!
𝛿𝑚1−𝑖,𝑛1−𝑗

(B.48)

=
1

𝑎

𝑚1∑︁
𝑖=0

(︂−𝑚1 + 𝑛1 + 𝑖− 1

𝑖

)︂ 𝑛1∑︁
�̃�=0

(︂
𝑚1 − �̃� − 1

𝑛1 − �̃�

)︂
Γ(2𝑘 −𝑚1 − 𝑛1 + �̃�)

�̃�!
𝛿𝑚1−𝑖,�̃�

(B.49)

=
1

𝑎

𝑚1∑︁
𝑖=0

(︂
𝑛1 −𝑚1 + 𝑖− 1

𝑖

)︂(︂
𝑖− 1

𝑛1 −𝑚1 + 𝑖

)︂
Γ(2𝑘 − 𝑛1 − 𝑖)

(𝑚1 − 𝑖)!
(B.50)

=
1

𝑎

𝑚1∑︁
�̃�=0

(︂
𝑛1 − �̃�− 1

𝑚1 − �̃�

)︂(︂
𝑚1 − �̃�− 1

𝑛1 − �̃�

)︂
Γ(2𝑘 −𝑚1 − 𝑛1 + �̃�)

�̃�!
, (B.51)

where we used the property in Eq. (B.8). Now we use the identity(︂
𝑛− 1

𝑘

)︂
=
𝑛− 𝑘

𝑘

(︂
𝑛

𝑘

)︂
(B.52)

to write

𝐼2 =
1

𝑎

𝑚1∑︁
𝑖=0

(︂
𝑛1 − 𝑖− 1

𝑚1 − 𝑖

)︂(︂
𝑚1 − 𝑖− 1

𝑛1 − 𝑖

)︂
Γ(2𝑘 −𝑚1 − 𝑛1 + 𝑖)

𝑖!
(B.53)

=
1

𝑎

𝑚1∑︁
𝑖=0

𝑛1 −𝑚1

𝑚1 − 𝑖

𝑚1 − 𝑛1
𝑛1 − 𝑖

(︂
𝑛1 − 𝑖

𝑚1 − 𝑖

)︂(︂
𝑚1 − 𝑖

𝑛1 − 𝑖

)︂
Γ(2𝑘 −𝑚1 − 𝑛1 + 𝑖)

𝑖!
. (B.54)

For 𝑚1 ̸= 𝑛1, all binomial coefficients vanish, except for the terms 𝑖 = 𝑚1 if 𝑚1 < 𝑛1, or
𝑖 = 𝑛1 if 𝑚1 > 𝑛1, giving

𝐼2 =
1

𝑎
(−1)𝑚1−𝑛1

Γ(2𝑘 −𝑚1)

𝑛1!
for 𝑚1 > 𝑛1 and reversed otherwise. (B.55)

For 𝑚1 = 𝑛1, all terms but one vanish as well due to the fractions. However, in this case the
initial integral simply satisfies the orthogonality relation and yields

𝐼2 =
1

𝑎

Γ(2𝑘 − 𝑛1)

𝑛1!
for 𝑚1 = 𝑛1. (B.56)
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The remaining third integral gives

𝐼3 ≡
∫︁

d𝑥 𝑒−𝑧𝑧2𝑘−𝑚1−𝑛1𝐿(2𝑘−2𝑚1−1)
𝑚1

(𝑧)𝐿
(2𝑘−2𝑛1)
𝑛1−1 (𝑧) (B.57)

=
1

𝑎

∫︁ ∞

0
d𝑧 𝑒−𝑧𝑧2𝑘−𝑚1−𝑛1−1𝐿(2𝑘−2𝑚1−1)

𝑚1
(𝑧)𝐿

(2𝑘−2𝑛1)
𝑛1−1 (𝑧) (B.58)

=
1

𝑎

𝑚1∑︁
𝑖=0

(︂−𝑚1 + 𝑛1 + 𝑖− 1

𝑖

)︂ 𝑛1−1∑︁
𝑗=0

(︂
𝑚1 − 𝑛1 + 𝑗

𝑗

)︂
×
∫︁ ∞

0
d𝑧 𝑒−𝑧𝑧2𝑘−𝑚1−𝑛1−1𝐿

(2𝑘−𝑚1−𝑛1−1)
𝑚1−𝑖 (𝑧)𝐿

(2𝑘−𝑚1−𝑛1−1)
𝑛1−1−𝑗 (𝑧) (B.59)

=
1

𝑎

𝑚1∑︁
𝑖=0

(︂−𝑚1 + 𝑛1 + 𝑖− 1

𝑖

)︂ 𝑛1−1∑︁
𝑗=0

(︂
𝑚1 − 𝑛1 + 𝑗

𝑗

)︂
Γ(2𝑘 −𝑚1 − 1− 𝑗)

(𝑛1 − 1− 𝑗)!
𝛿𝑚1−𝑖,𝑛1−1−𝑗

(B.60)

=
1

𝑎

𝑚1∑︁
𝑖=0

(︂−𝑚1 + 𝑛1 + 𝑖− 1

𝑖

)︂ 𝑛1−1∑︁
�̃�=0

(︂
𝑚1 − 1− �̃�

𝑛1 − 1− �̃�

)︂
Γ(2𝑘 −𝑚1 − 𝑛1 + �̃�)

�̃�!
𝛿𝑚1−𝑖,�̃�

(B.61)

=
1

𝑎

𝑚1∑︁
𝑖=0

(︂
𝑛1 −𝑚1 + 𝑖− 1

𝑖

)︂(︂
𝑖− 1

𝑛1 −𝑚1 + 𝑖− 1

)︂
Γ(2𝑘 − 𝑛1 − 𝑖)

(𝑚1 − 𝑖)!
(B.62)

=
1

𝑎

𝑚1∑︁
𝑖=0

𝑚1 − 𝑛1 + 1

𝑛1 −𝑚1 + 𝑖− 1

(︂
𝑛1 −𝑚1 + 𝑖− 1

𝑖

)︂(︂
𝑖

𝑛1 −𝑚1 + 𝑖− 1

)︂
Γ(2𝑘 − 𝑛1 − 𝑖)

(𝑚1 − 𝑖)!
.

(B.63)

The two last lines imply that not all binomial coefficients vanish. However, we could only
consider the case of𝑚1 ≥ 𝑛1, for which all terms of this non-symmetric integral vanish. The
two other integrals, 𝐼1 and 𝐼2, are invariant under exchange of 𝑚1 ↔ 𝑛1. For the opposite
case of 𝑚1 < 𝑛1 we can simply use the property ⟨𝑚| d

d𝑥 |𝑛⟩ = −⟨𝑛| d
d𝑥 |𝑚⟩.

Then, we get for 𝑚1 ≥ 𝑛1

𝐼𝑚1,𝑛1 =

∫︁ ∞

−∞
d𝑥𝜓𝑚1(𝑥)

d

d𝑥
𝜓𝑛1(𝑥) (B.64)

= −𝑁𝑚1𝑁𝑛1

[︂
1

2

Γ(2𝑘 − 𝑛1)

𝑛1!
𝛿𝑚1,𝑛1 − (−1)𝑚1−𝑛1

Γ(2𝑘 −𝑚1)

2(𝑛1!)

]︂
, (B.65)

and finally

𝐼𝑚1,𝑛1 =

⎧⎪⎪⎨⎪⎪⎩
𝑁𝑚1𝑁𝑛1(−1)𝑚1−𝑛1 Γ(2𝑘−𝑚1)

2(𝑛1!)
if 𝑚1 > 𝑛1,

−𝑁𝑚1𝑁𝑛1(−1)𝑛1−𝑚1 Γ(2𝑘−𝑛1)
2(𝑚1!)

if 𝑚1 < 𝑛1,

0 if 𝑚1 = 𝑛1,

(B.66)

and similar for ∫︀ d𝑥2 𝜓𝑚2
d

d𝑥2
𝜓𝑛2 .
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B.1 Kinetic decoupling

It is possible to represent the problem of two kinetically coupledMorse oscillators, Eqs. (B.35)
or (5.2), as a two-dimensional oscillator with potential coupling only. This can be done by
a proper rotation of coordinates, such that the term ∼ 𝑝1𝑝2 vanishes. To achieve this, we
rotate our coordinates by an angle 𝜃,(︂

𝑞′1
𝑞′2

)︂
=

(︂
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

)︂(︂
𝑞1
𝑞2

)︂
(B.67)

or (︂
𝑞1
𝑞2

)︂
=

(︂
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)︂(︂
𝑞′1
𝑞′2

)︂
, (B.68)

and the momenta, 𝑝1 and 𝑝2, accordingly. This change of variables is a valid symplectic
transformation and therefore leaves Hamilton’s equations of motion invariant. [128] Then,
we can rewrite the terms involving momenta,

𝑝21
2𝜇𝑟

+
𝑝22
2𝜇𝑟

− 𝜆𝑝1𝑝2 =
𝑝′1

2

2𝜇𝑟
(1− 2𝜆𝜇𝑟 cos 𝜃 sin 𝜃) +

𝑝′2
2

2𝜇𝑟
(1 + 2𝜆𝜇𝑟 cos 𝜃 sin 𝜃)

− 𝜆𝑝′1
2
𝑝′2

2 (︀
cos2 𝜃 − sin2 𝜃

)︀
. (B.69)

Now we choose 𝜃 = 𝜋
4 , which gives cos 𝜃 = sin 𝜃 = 1√

2
, for the coupling term to vanish,

𝑝21
2𝜇𝑟

+
𝑝22
2𝜇𝑟

− 𝜆𝑝1𝑝2 =
𝑝′1

2

2𝜇𝑟
(1− 𝜆𝜇𝑟) +

𝑝′2
2

2𝜇𝑟
(1 + 𝜆𝜇𝑟) . (B.70)

The potential part of Hamiltonian (B.35)/(5.2) then gives

𝑉Mor(𝑞1) + 𝑉Mor(𝑞2) = 𝐷
(︀
1− 𝑒−𝑎𝑞1

)︀2
+𝐷

(︀
1− 𝑒−𝑎𝑞2

)︀2 (B.71)

= 𝐷
(︁
1− 𝑒

− 𝑎√
2
(𝑞′1−𝑞′2)

)︁2
+𝐷

(︁
1− 𝑒

− 𝑎√
2
(𝑞′1+𝑞

′
2)
)︁2
. (B.72)

In this coordinate system the unperturbed Hamiltonian is no longer separate in its coordi-
nates.
For the case of two coupled harmonic oscillators, Eq. (5.24), the motion can be completely
decoupled, [104]

𝑉HO(𝑞1) + 𝑉HO(𝑞2) = 1
2𝜇𝑟𝜔

2𝑞21 +
1
2𝜇𝑟𝜔

2𝑞22 (B.73)
= 1

2𝜇𝑟𝜔
2𝑞′1

2
+ 1

2𝜇𝑟𝜔
2𝑞′1

2
. (B.74)



C Hydrogen in a homogeneous magnetic
field

C.1 Coordinate basis

The energy spectrum of a single hydrogen atom in an external homogeneous magnetic field,
aligned along the 𝑧-axis, is given as the solutions of the TISE. Coupling the hydrogen atom
to the external magnetic field, the system Hamiltonian in Cartesian coordinates writes

𝐻 =
1

2
(p+A(x, 𝑡))2 − 1

𝑟
(C.1)

=
p2

2
+
𝐵

2
(𝑥𝑝𝑦 − 𝑦𝑝𝑥)⏟  ⏞  

𝐿𝑧

+
𝐵2

8

(︀
𝑥2 + 𝑦2

)︀
− 1

𝑟
. (C.2)

Due to the cylindrical symmetry of the system, one can perform a coordinate transformation
to cylindrical coordinates (𝑥, 𝑦, 𝑧) → (𝜌, 𝜙, 𝑧), where 𝜌 =

√︀
𝑥2 + 𝑦2 and 𝜙 = arctan

(︀ 𝑦
𝑥

)︀,
yielding for the Laplace operator

Δ =
1

𝜌

𝜕

𝜕𝜌

(︂
𝜌
𝜕

𝜕𝜌

)︂
+

1

𝜌2
𝜕2

𝜕𝜙2
+

𝜕2

𝜕𝑧2
=

1

𝜌

𝜕

𝜕𝜌
+

𝜕2

𝜕𝜌2
+

1

𝜌2
𝜕2

𝜕𝜙2
+

𝜕2

𝜕𝑧2
. (C.3)

The magnetic quantum number,𝑚, as well as the 𝑧-parity, 𝜋𝑧, with respect to 𝑧 = 0 are good
quantum numbers of the system. The full single-electron wave function is separable in the
azimuth angle, 𝜙, [109]

𝜓(𝜌, 𝜙, 𝑧) = 𝜓(𝜌, 𝑧)
𝑒𝑖𝑚𝜙√
2𝜋
, (C.4)

where the 𝜙-dependence follows from the fact, that the eigenfunction of the 𝑧-component of
the orbital angular momentum operator, 𝐿𝑧, are the spherical harmonics, 𝑌𝑙𝑚(𝜗, 𝜙). What
is left is the non-separable part of the TISE for the coordinates (𝜌, 𝑧),[︃

1

2

(︂
−1

𝜌

𝜕

𝜕𝜌
− 𝜕2

𝜕𝜌2
− 𝜕2

𝜕𝑧2
+
𝑚2

𝜌2

)︂
+
𝐵2

8
𝜌2 − 1√︀

𝜌2 + 𝑧2

]︃
𝜓(𝜌, 𝑧) = 𝐸𝜓(𝜌, 𝑧), (C.5)

where we neglected the constant contribution from the linear Zeeman term, 1
2𝐵𝐿𝑧. This

system corresponds to that of a particle moving in an effective two-dimensional potential,

𝑉eff(𝜌, 𝑧) =
𝑚2

2𝜌2
+
𝐵2𝜌2

8
− 1√︀

𝜌2 + 𝑧2
. (C.6)

We could numerically solve above eigenvalue problem by discretizing the wave function on
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a two-dimensional grid in the coordinates (𝜌, 𝑧) and use the finite differences method for
representing the derivatives. For the boundary at 𝜌 = 0 we use the symmetric boundary
condition, 𝜕𝜓

𝜕𝜌

⃒⃒
𝜌=0

= 0. The singularity in the first term can then be resolved by using
L’Hôpital’s rule,

𝜕𝜓
𝜕𝜌

𝜌

⃒⃒⃒⃒
𝜌=0

=

𝜕2𝜓
𝜕𝜌2

𝜕𝜌
𝜕𝜌

⃒⃒⃒⃒
𝜌=0

=
𝜕2𝜓

𝜕𝜌2

⃒⃒⃒⃒
𝜌=0

, (C.7)

which yields the governing equation for the Laplace operator at the boundary,

1

𝜌

𝜕

𝜕𝜌
+

𝜕2

𝜕𝜌2
+

𝜕2

𝜕𝑧2
𝜌=0
= 2

𝜕2

𝜕𝜌2
+

𝜕2

𝜕𝑧2
. (C.8)

The finite differences equation for the derivative 𝜕2𝜓
𝜕𝜌2

with the boundary condition 𝜕𝜓
𝜕𝜌 = 0 at

𝜌 = 0 are derived by Taylor expanding 𝜓(𝜌2) and 𝜓(𝜌3) around the boarder points 𝜌1 ≡ 0,
where 𝜌1, 𝜌2, 𝜌3 are the first three grid sites 𝜌𝑗 ≥ 0,

𝜓(𝜌2) = 𝜓(𝜌1) + Δ𝜌 𝜓′(𝜌1)⏟  ⏞  
=0

+
Δ𝜌2

2
𝜓′′(𝜌1) +

Δ𝜌3

6
𝜓′′′(𝜌1) +𝒪(Δ𝜌4), (C.9)

𝜓(𝜌3) = 𝜓(𝜌1) + 2Δ𝜌 𝜓′(𝜌1)⏟  ⏞  
=0

+
4Δ𝜌2

2
𝜓′′(𝜌1) +

8Δ𝜌3

6
𝜓′′′(𝜌1) +𝒪(Δ𝜌4), (C.10)

and subtracting 𝜓(𝜌3) by 𝜓(𝜌2), such that the terms ∼ 𝒪(Δ𝜌3) vanish,

𝜓(𝜌3)− 8𝜓(𝜌2) = −7𝜓(𝜌1)− 2Δ𝜌2𝜓′′(𝜌1) +𝒪(Δ𝜌4) (C.11)

−→ 𝜓′′(𝜌1) =
1

Δ𝜌2

(︂
−7

2
𝜓(𝜌1) + 4𝜓(𝜌2)−

1

2
𝜓(𝜌3)

)︂
+𝒪(Δ𝜌2). (C.12)

This expression is used in the governing equation for the Laplace operator above for all
boundary points at 𝜌 = 0.
Note that the corresponding Hamilton matrix is not symmetric. However, the Hamilton
operator is still Hermitian with respect to the inner product in cylindrical coordinates,∑︁

𝜌𝑖

Δ𝜌𝜌𝑖
∑︁
𝑧𝑗

Δ𝑧
⟨︀
𝜌′𝑖, 𝑧

′
𝑗

⃒⃒
�̂� |𝜌𝑖, 𝑧𝑗⟩𝜓(𝜌𝑖, 𝑧𝑗) = 𝐸𝜓(𝜌𝑖, 𝑧𝑗). (C.13)

To further simplify above Hamiltonian, we use the fact that the parity operator commutes
with the Hamiltonian of our system, [︀𝐻, �̂�𝑧]︀. Therefore we use an eigenbasis of �̂�𝑧 in our
finite differences method, namely⟨︀

𝑧
⃒⃒
𝑏±𝑖
⟩︀
= 𝑏±𝑖 (𝑧) =

1√
2
[𝛿(𝑧 − 𝑧𝑖)± 𝛿(𝑧 + 𝑧𝑖)] , 𝑧𝑖 > 0. (C.14)
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This then leads to the Hamiltonian matrix elements

⟨𝑏𝑖| �̂� |𝑏𝑗⟩ =
∫︁

d𝑥

∫︁
d𝑥′ ⟨𝑏𝑖|𝑥⟩ ⟨𝑥| �̂�

⃒⃒
𝑥′
⟩︀ ⟨︀
𝑥′
⃒⃒
𝑏𝑗
⟩︀ (C.15)

=
1

2

∫︁
d𝑥

∫︁
d𝑥′ [𝛿(𝑥− 𝑥𝑖)± 𝛿(𝑥+ 𝑥𝑖)] ⟨𝑥| �̂�

⃒⃒
𝑥′
⟩︀ [︀
𝛿(𝑥′ − 𝑥𝑗)± 𝛿(𝑥′ + 𝑥𝑗)

]︀
(C.16)

=
1

2

[︁
⟨𝑥𝑖| �̂� |𝑥𝑗⟩ ± ⟨−𝑥𝑖| �̂� |𝑥𝑗⟩ ± ⟨𝑥𝑖| �̂� |−𝑥𝑗⟩+ ⟨−𝑥𝑖| �̂� |−𝑥𝑗⟩

]︁
. (C.17)

In order to circumvent the singularity at the origin, r = 0, we chose our 𝑧-grid such that
points start at ±𝑧1 = ±Δ𝑧

2 . Otherwise we ought to use ⟨𝑧|𝑏0⟩ = 𝛿(𝑧) with symmetric/anti-
symmetric boundary conditions at 𝑧 = 0 for even/odd parity.

C.2 Orthogonal Sturmian basis

A suitable orthogonal basis for the Hydrogen atom in a magnetic field involves orthogonal-
ized Sturmian functions, [112–114]

𝑆
(𝜁)
𝑛𝑙 (𝑟) = 𝜁

3
2

√︃
(𝑛− 𝑙 − 1)!

(𝑛+ 𝑙 + 1)!
𝑒−

𝜁𝑟
2 (𝜁𝑟)𝑙𝐿

(2𝑙+2)
𝑛−𝑙−1(𝜁𝑟). (C.18)

The associated (or generalized) Laguerre polynomials, 𝐿(𝛼)
𝑛 (𝑥), satisfy the relation∫︁ ∞

0
d𝑥 𝑒−𝑥𝑥𝛼𝐿(𝛼)

𝑛 (𝑥)𝐿
(𝛼)
𝑛′ (𝑥) =

(𝛼+ 𝑛)!

𝑛!
𝛿𝑛′𝑛, (C.19)

from which the orthonormality of the Sturmian functions follows. Using the basis |𝑛, 𝑙,𝑚⟩ =
|𝑛, 𝑙⟩ |𝑙,𝑚⟩ ≡ 𝑆𝑛𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜙), where 𝑌𝑙𝑚 are the spherical harmonics, the matrix elements
of the Hamiltonian, given in spherical coordinates as

𝐻(𝑟, 𝜃, 𝜙) =
𝑝2

2
− 1

𝑟⏟  ⏞  
𝐻0

+𝜆
1

8
𝑟2 sin2 𝜃⏟  ⏞  
𝐻1

(C.20)

are ⟨︀
𝑛′, 𝑙′,𝑚′⃒⃒𝐻 |𝑛, 𝑙,𝑚⟩ =

⟨︀
𝑛′, 𝑙′,𝑚′⃒⃒𝐻0 |𝑛, 𝑙,𝑚⟩+ 𝜆

⟨︀
𝑛′, 𝑙′

⃒⃒
𝑟2 |𝑛, 𝑙⟩

⟨︀
𝑙′,𝑚′⃒⃒ sin2 𝜃

8
|𝑙,𝑚⟩ .
(C.21)

For nonzero but equal azimuthal quantum numbers, 𝑚′ = 𝑚 ≥ 0, the matrix elements in
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the basis of the spherical harmonics, 𝑌𝑙𝑚(𝜃, 𝜙), yield

⟨︀
𝑙′,𝑚

⃒⃒ sin2 𝜃
8

|𝑙,𝑚⟩ = 1

8

∫︁ 𝜋

−𝜋
d𝜙

∫︁ 𝜋

0
d𝜃 sin 𝜃 𝑌𝑙′𝑚 sin2 𝜃 𝑌𝑙𝑚 (C.22)

=
2𝜋

8

√︃
2𝑙′ + 1

4𝜋

(𝑙′ −𝑚)!

(𝑙′ +𝑚)!

√︃
2𝑙 + 1

4𝜋

(𝑙 −𝑚)!

(𝑙 +𝑚)!

×
∫︁ 𝜋

0
d𝜃 sin 𝜃 𝑃𝑚𝑙′ (cos 𝜃) sin

2 𝜃 𝑃𝑚𝑙 (cos 𝜃) (C.23)

=
1

16

√︃
(2𝑙′ + 1)(2𝑙 + 1)

(𝑙′ −𝑚)!

(𝑙′ +𝑚)!

(𝑙 −𝑚)!

(𝑙 +𝑚)!

×
∫︁ 1

−1
d𝑢𝑃𝑚𝑙′ (𝑢)

(︀
1− 𝑢2

)︀
𝑃𝑚𝑙 (𝑢). (C.24)

The integral can be evaluated using the properties of the associated Legendre polynomials,
𝑃𝑚𝑙 , ∫︁ 1

−1
d𝑢𝑃𝑚𝑙′ (𝑢)𝑃

𝑚
𝑙 (𝑢) =

2 (𝑙 +𝑚)!

(2𝑙 + 1) (𝑙 −𝑚)!
𝛿𝑙′𝑙 , (C.25)

(𝑙 −𝑚+ 1)𝑃𝑚𝑙+1(𝑢) + (𝑙 +𝑚)𝑃𝑚𝑙−1(𝑢) = (2𝑙 + 1)𝑢𝑃𝑚𝑙 (𝑢). (C.26)

Then, we arrive at the expression

⟨︀
𝑙′,𝑚

⃒⃒ sin2 𝜃
8

|𝑙,𝑚⟩ = 1

8

[︃
2
(︀
𝑙2 + 𝑙 +𝑚2 − 1

)︀
(2𝑙 + 3)(2𝑙 − 1)

𝛿𝑙′𝑙

−
√︀
(𝑙 +𝑚)(𝑙 +𝑚− 1)(𝑙 −𝑚)(𝑙 −𝑚− 1)√︀

(2𝑙 + 1)(2𝑙 − 3)(2𝑙 − 1)
𝛿𝑙′,𝑙−2

−
√︀
(𝑙 −𝑚+ 1)(𝑙 −𝑚+ 2)(𝑙 +𝑚+ 1)(𝑙 +𝑚+ 2)√︀

(2𝑙 + 1)(2𝑙 + 5)(2𝑙 + 3)
𝛿𝑙′,𝑙+2

]︃
.

(C.27)

The matrix elements ⟨𝑛′, 𝑙′| 𝑟2 |𝑛, 𝑙⟩ in the basis of the Sturmians can be calculated in closed
form using the property from Refs. [113,129],

∫︁ ∞

0
d𝑥𝑥𝑝𝑒−𝑥𝐿(𝛼)

𝑚 (𝑥)𝐿(𝛽)
𝑛 (𝑥) = (−1)𝑚+𝑛𝑝!

min(𝑚,𝑛)∑︁
𝜏=0

(︂
𝑝− 𝛼

𝑚− 𝜏

)︂(︂
𝑝− 𝛽

𝑛− 𝜏

)︂(︂
𝑝+ 𝜏

𝜏

)︂
,

(C.28)



99

yielding

𝐼𝑛
′𝑙′

𝑛𝑙 ≡
⟨︀
𝑛′, 𝑙′

⃒⃒
𝑟2 |𝑛, 𝑙⟩ (C.29)

= 𝜁3+𝑙
′+𝑙

√︃
(𝑛′ − 𝑙′ − 1)!

(𝑛′ + 𝑙′ + 1)!

(𝑛− 𝑙 − 1)!

(𝑛+ 𝑙 + 1)!

∫︁ ∞

0
d𝑟 𝑟4+𝑙

′+𝑙𝑒−𝜁𝑟𝐿(2𝑙′+2)
𝑛′−𝑙′−1(𝜁𝑟)𝐿

(2𝑙+2)
𝑛−𝑙−1(𝜁𝑟)

(C.30)

= 𝜁−2

√︃
(𝑛′ − 𝑙′ − 1)!

(𝑛′ + 𝑙′ + 1)!

(𝑛− 𝑙 − 1)!

(𝑛+ 𝑙 + 1)!
(4 + 𝑙 + 𝑙′)!

×
≤𝑛′−𝑙′−1
𝑛−𝑙−1∑︁
𝜏=0

(−1)𝑛
′+𝑙′+𝑛+𝑙+𝜏

(︂
2− 𝑙′ + 𝑙

𝑛′ − 𝑙′ − 1− 𝜏

)︂(︂
2 + 𝑙′ − 𝑙

𝑛− 𝑙 − 1− 𝜏

)︂(︂−5− 𝑙′ − 𝑙

𝜏

)︂
.

(C.31)

All non-vanishing terms for 𝑙′ = 𝑙, 𝑙′ = 𝑙+ 2 and 𝑙′ = 𝑙− 2 are listed explicitly in Refs. [113,
114].
The matrix elements for the unperturbed hydrogen atom,⟨︀

𝑛′, 𝑙′,𝑚′⃒⃒𝐻0 |𝑛, 𝑙,𝑚⟩ =
⟨︀
𝑛′, 𝑙′

⃒⃒
𝐻0 |𝑛, 𝑙⟩ 𝛿𝑙′𝑙𝛿𝑚′𝑚, (C.32)

where⟨︀
𝑛′, 𝑙′

⃒⃒
𝐻0 |𝑛, 𝑙⟩ =

∫︁ ∞

0
d𝑟 𝑟2𝑆𝑛′𝑙′(𝑟)𝐻0𝑆𝑛𝑙(𝑟) (C.33)

and

𝐻0(𝑟, 𝜃, 𝜙) =
𝑝2

2
− 1

𝑟
= −1

2

(︂
d2

d𝑟2
+

2

𝑟

d

d𝑟
− 𝑙(𝑙 + 1)

𝑟2

)︂
− 1

𝑟
, (C.34)

are found using the properties of the associated Laguerre polynomials,(︂
𝑟
d2

d𝑟2
+ (𝑘 + 1− 𝑟)

d

d𝑟
+ 𝑛

)︂
𝐿(𝑘)
𝑛 (𝑟) = 0, (C.35)

𝑟
d

d𝑟
𝐿(𝑘)
𝑛 (𝑟) = 𝑛𝐿(𝑘)

𝑛 (𝑟)− (𝑛+ 𝑘)𝐿
(𝑘)
𝑛−1(𝑟), (C.36)

and the chain-rule of differentiation giving(︂
𝑟
d2

d𝑟2
+ (2𝑙 + 3− 𝜁𝑟)

d

d𝑟
+ 𝜁 (𝑛− 𝑙 − 1)

)︂
𝐿
(2𝑙+2)
𝑛−𝑙−1(𝜁𝑟) = 0, (C.37)

𝑟
d

d𝑟
𝐿
(𝛼)
𝛽 (𝜁𝑟) = 𝛽𝐿

(𝛼)
𝛽 (𝜁𝑟)− (𝛽 + 𝛼)𝐿

(𝛼)
𝛽−1(𝜁𝑟). (C.38)
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We get, using above relations(︂
d2

d𝑟2
+

1

𝑟

d

d𝑟

)︂
𝑆𝑛𝑙(𝑟) = 𝜁

3
2
+𝑙

√︃
(𝑛− 𝑙 − 1)!

(𝑛+ 𝑙 + 1)!
𝑒−

𝜁𝑟
2 𝑟𝑙

×
[︂
𝑙2

𝑟2
+
𝜁2

4
− 𝜁

𝑟
(𝑛− 𝑙 − 1)− 𝜁

𝑟

(︂
𝑙 +

1

2

)︂
− 2

𝑟

d

d𝑟

]︂
𝐿
(2𝑙+2)
𝑛−𝑙−1(𝜁𝑟)

(C.39)
or (︂

d2

d𝑟2
+

2

𝑟

d

d𝑟

)︂
𝑆𝑛𝑙(𝑟) = 𝜁

3
2
+𝑙

√︃
(𝑛− 𝑙 − 1)!

(𝑛+ 𝑙 + 1)!
𝑒−

𝜁𝑟
2 𝑟𝑙

×
[︂
𝑙(𝑙 + 1)

𝑟2
+
𝜁2

4
− 𝜁𝑛

𝑟
− 1

𝑟

d

d𝑟

]︂
𝐿
(2𝑙+2)
𝑛−𝑙−1(𝜁𝑟) (C.40)

= 𝜁
3
2
+𝑙

√︃
(𝑛− 𝑙 − 1)!

(𝑛+ 𝑙 + 1)!
𝑒−

𝜁𝑟
2 𝑟𝑙 (C.41)

×
{︃[︂

𝑙(𝑙 + 1)

𝑟2
+
𝜁2

4
− 𝜁𝑛

𝑟
− 𝑛− 𝑙 − 1

𝑟2

]︂
𝐿
(2𝑙+2)
𝑛−𝑙−1(𝜁𝑟)

+
𝑛+ 𝑙 + 1

𝑟2
𝐿
(2𝑙+2)
𝑛−𝑙−2

}︃
(C.42)

=

[︂
𝑙(𝑙 + 1)

𝑟2
+
𝜁2

4
− 𝜁𝑛

𝑟
− 𝑛− 𝑙 − 1

𝑟2

]︂
𝑆𝑛𝑙(𝑟)

+

√︀
(𝑛− 𝑙 − 1)(𝑛+ 𝑙 + 1)

𝑟2
𝑆𝑛−1,𝑙(𝑟). (C.43)

Then,

𝐻0𝑆𝑛𝑙(𝑟) =

[︂
−1

2

(︂
d2

d𝑟2
+

2

𝑟

d

d𝑟
− 𝑙(𝑙 + 1)

𝑟2

)︂
− 1

𝑟

]︂
𝑆𝑛𝑙(𝑟) (C.44)

=

[︂
𝑛− 𝑙 − 1

2𝑟2
+
𝜁𝑛

2𝑟
− 𝜁2

8
− 1

𝑟

]︂
𝑆𝑛𝑙(𝑟)−

√︀
(𝑛− 𝑙 − 1)(𝑛+ 𝑙 + 1)

2𝑟2
𝑆𝑛−1,𝑙(𝑟).

(C.45)
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The matrix elements then become⟨︀
𝑛′, 𝑙′,𝑚′⃒⃒𝐻0 |𝑛, 𝑙,𝑚⟩ = 𝛿𝑙′𝑙𝛿𝑚′𝑚

∫︁ ∞

0
d𝑟 𝑟2𝑆𝑛′𝑙′(𝑟)𝐻0𝑆𝑛𝑙(𝑟) (C.46)

=
1

2
𝛿𝑙′𝑙𝛿𝑚′𝑚

{︃
(𝑛− 𝑙 − 1)

∫︁ ∞

0
d𝑟 𝑆𝑛′𝑙′(𝑟)𝑆𝑛𝑙(𝑟)

+ (𝜁𝑛− 2)

∫︁ ∞

0
d𝑟 𝑟𝑆𝑛′𝑙′(𝑟)𝑆𝑛𝑙(𝑟)

− 𝜁2

4

∫︁ ∞

0
𝑑𝑟 𝑟2𝑆𝑛′𝑙′(𝑟)𝑆𝑛𝑙(𝑟)⏟  ⏞  

=𝛿𝑛′𝑛

−
√︀

(𝑛− 𝑙 − 1)(𝑛+ 𝑙 + 1)

∫︁ ∞

0
d𝑟 𝑆𝑛′𝑙′(𝑟)𝑆𝑛−1,𝑙(𝑟)

}︃
. (C.47)

Using above integral relation we find∫︁ ∞

0
d𝑟 𝑆𝑛′𝑙′(𝑟)𝑆𝑛𝑙(𝑟) = 𝜁2

√︃
(𝑛′ − 𝑙′ − 1)!(𝑛− 𝑙 − 1)!

(𝑛′ + 𝑙′ + 1)!(𝑛+ 𝑙 + 1)!
(−1)𝑛

′+𝑛−𝑙′−𝑙(𝑙′ + 𝑙)!

×
≤𝑛′−𝑙′−1
𝑛−𝑙−1∑︁
𝜏=0

(︂
𝑙 − 𝑙′ − 2

𝑛′ − 𝑙′ − 1− 𝜏

)︂(︂
𝑙′ − 𝑙 − 2

𝑛− 𝑙 − 1− 𝜏

)︂(︂
𝑙′ + 𝑙 + 𝜏

𝜏

)︂
,

(C.48)∫︁ ∞

0
d𝑟 𝑟 𝑆𝑛′𝑙′(𝑟)𝑆𝑛𝑙(𝑟) = 𝜁

√︃
(𝑛′ − 𝑙′ − 1)!(𝑛− 𝑙 − 1)!

(𝑛′ + 𝑙′ + 1)!(𝑛+ 𝑙 + 1)!
(−1)𝑛

′+𝑛−𝑙′−𝑙(𝑙′ + 𝑙 + 1)!

×
≤𝑛′−𝑙′−1
𝑛−𝑙−1∑︁
𝜏=0

(︂
𝑙 − 𝑙′ − 1

𝑛′ − 𝑙′ − 1− 𝜏

)︂(︂
𝑙′ − 𝑙 − 1

𝑛− 𝑙 − 1− 𝜏

)︂(︂
𝑙′ + 𝑙 + 1 + 𝜏

𝜏

)︂
.

(C.49)

Substituting the integrals and simplifying the sums, we finally arrive at the expressions for
the matrix elements for the unperturbed hydrogen,

⟨︀
𝑛′, 𝑙′,𝑚′⃒⃒𝐻0 |𝑛, 𝑙,𝑚⟩ = − 𝜁2

8
𝛿𝑛′𝑛𝛿𝑙′𝑙𝛿𝑚′𝑚 +

𝜁2

2

√︃
(𝑛′ − 𝑙′ − 1)!

(𝑛′ + 𝑙′ + 1)!

√︃
(𝑛− 𝑙 − 1)!

(𝑛+ 𝑙 + 1)!

×
≤𝑛′−𝑙′−1
𝑛−𝑙−1∑︁
𝜏=0

(2𝑙 + 𝜏)!

𝜏 !

[︂
(𝑛− 𝑙 − 1)(𝑛− 𝑙 − 𝜏)(𝑛′ − 𝑙 − 𝜏)

− (𝑛+ 𝑙 + 1)(𝑛− 𝑙 − 1− 𝜏)(𝑛′ − 𝑙 − 𝜏)

+

(︂
𝑛− 2

𝜁

)︂
(2𝑙 + 𝜏 + 1)

]︂
𝛿𝑙′𝑙𝛿𝑚′𝑚. (C.50)
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Figure C.1: Corresponding to Fig. 6.4, the energy spectra of hydrogen in a homogeneous
magnetic field are shown. The exact quantum spectra are depicted as gray lines. The
semiclassical EBK spectra are illustrated as blue markers for librational and orange for
rotational trajectories. Circles depict energies which are interpolated between computed
trajectories within regular phase space, while crosses depict extrapolated energy values.
The black dashed and solid lines show scaled energy values of 𝜖 = −0.5 and −0.13, respec-
tively, marking the region of mixed phase space. The errorbars of the GP uncertainty are
omitted for the sake of visibility.
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