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Abstract

Theoretical and experimental studies on intense laser atom interaction have drawn many

interests over the past few decades. In this thesis, we consider strong-field tunnel ioniza-

tion to explore two different problems dealing with the ionized-electron dynamics in the

presence of an infrared, high-intensity, elliptically-polarized laser pulse. In the first part,

we discover the electron dynamics from a static potential, this describes the complicated

field-driven dynamics by a simple time-independent problem. In the second part, we set

up an analytical expression for the attoclock offset angle. We use the time-dependent

Kramers-Henneberger (KH) potential, and show how some approximations within the

KH potential lead to the static potential and the analytical offset angle. We elucidate

good agreement of our theory with the numerical results obtained from classical equations

of motion. Finally, the comparison with the available experimental data has led to an

interestingly new tunnel exit-radius different from the conventional models.
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Abbreviations

SFA strong field approximation

KH Kramers-Henneberger

ADK Ammosov, Delone and Krainov

CTMC Classical-trajectory Monte Carlo

CW continuous wave

FWHM full width at half maximum

PMD photo-electron momentum distribution

COLTRIMS cold target recoil ion momentum spectroscopy

REMI resonance microscope

SAE single active electron

SMM Simple-man’s model

GSD ground state depletion

OBI over barrier ionization

CP circularly polarized
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RLV Runge-Lenz vector

FDM field direction model

KR Keldysh-Rutherford

CCSFA coulomb corrected strong field approximation

AKP accelerated Kepler problem





Chapter 1

Introduction

In the year 2018, Gerald Mourau and Donna Strickland shared the Nobel prize in physics

“for their method of generating high-intensity, ultra-short optical pulses” [1]. In recent

years, availability of this ultra-short and high-intensity laser pulses has opened up an

opportunity to measure the time duration of ultrafast processes in microscopic systems

with a time-resolution of attosecond order ∼ 10−18 seconds [2]. This short time-interval

can be clocked by means of the so called pump-probe experiment — a pump pulse starts

the clock by triggering the microscopic motion; followed by a time delay, a probe pulse

stops the clock when the process is captured. However, due to the high intensity, it is

challenging to create two attosecond pulses for pump-probe spectroscopy. One way to

avoid this attosecond double-pulses is the attosecond streaking [3] process.

In the attosecond streaking process, an extreme ultraviolet (XUV) attosecond laser

pulse is used as a pump which ionizes a target atomic gas. The ionized electrons, after

a time lapse, are streaked by using a femtosecond infrared (IR) laser pulse which acts

as a probe [4, 5]. Here, the high energy XUV pulse is created from the low energy IR

pulse by means of high-harmonic-generations (HHG). As a consequence, both pump and

probe pulses are locked to each other. The streaking laser field changes the momentum

of the ionized electrons by the vector-potential associated with it. The electron’s final

momentum/energy distribution as a function of pump-probe delay is used to extract

various time-interval information such as, the attosecond pulse-duration [4], and also the

time-delay of emitting an electron from an atom [2, 6].

9



Introduction 10

Attosecond resolution can alternatively be achieved by the angular-streaking [7, 8],

also known as attoclock. Unlike the streaking method, the attosecond pump pulse is not

required here, instead a few-cycle nearly circularly-polarized IR pulse acts as a pump to

create a non-linear tunnelling burst of electrons. On the other hand, the same pulse is

used as the probe. In the presence of such low-frequency IR pulse, the atomic potential

barrier does not oscillate fast, and in this quasi-static situation the bound electron can

tunnel through the barrier — known as strong-field tunnel-ionization [9]. Due to the near-

circular polarization of the applied field, electrons are emitted in different angular spatial

directions, however, preferentially along the major axis of the pulse since the ionization

probability is highest at the field-maximum. The distribution of final momenta of these

electrons is measured at the detector which is in the pulse’s polarization plane. It has a

near-circular shape. Since the final momenta depend explicitly on the vector potential

at the time of ionization, the angle of the measured momentum is usually mapped to

the ionization time. Thus, the momentum vector plays the role of a clock-hand which

performs a complete rotation over the clock-shaped detector in one optical cycle of the IR

pulse (∼ 3 fs for a wavelength of 800 nm), thereby, one-degree in the clock corresponds

to ten attoseconds resolution.

After the tunnel ionization, far from the parent atom, the influence of the atomic

potential is usually neglected which is known as strong-field approximation (SFA) [10–

13]. Within this assumption, the final momentum of an electron is aligned along the vector

potential at the ionization time. However, in reality, due to the long-range nature of the

Coulomb potential, its effect on the electron dynamics might be relevant [14–20], e. g., in

the attoclock setup, the final momentum vector makes an additional angel with respect

to its direction predicted from strong-field approximation [7, 8]. This additional angle,

corresponding to the most-probable electron at the field maximum, is sometimes called

attoclock offset angle [21–23]. In addition to the Coulomb effect, a finite tunnelling time-

delay — the time-lapse of an electron while tunnelling through the classically forbidden

atomic potential barrier — is believed to have an impact on this offset angle [23, 24].

However, the existence of a finite tunnelling time is highly controversial [25–29], since it

is inconsistent with the instantaneous quantum tunnelling [30].

In this thesis, we study the dynamics of the electrons after tunneling for which we do
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not need to consider the debated tunnelling-time issue. Instead, we focus on the effect of

Coulomb interaction on the ionized electron’s dynamics. To analyse this effect, various

theoretical models have been proposed, among them the Coulomb corrected strong field

approximation (CCSFA) is one approach. This is a perturbative theory, where the final

momentum is obtained by adding an impulse from the Coulomb potential to the SFA

momentum, calculated with the SFA trajectory [15]. Adopting a similar perturbative

approach, our goal is to find an analytical expression for the attoclock offset angle and

to analyse the underlying effect of the Coulomb potential.

The laser-atom interaction Hamiltonian which governs the emitted electron’s dynamics

including the effect of Coulomb potential, can be described exactly by the length or

velocity gauges. Alternatively, this laser-Coulomb interaction can be studied exactly in

the Kramers-Henneberger (KH) frame [31, 32]. In this framework, the reference frame

is fixed to the electron, therefore, the potential itself oscillates back and forth in the

same way as the electron would oscillate in the laboratory frame. Generally, this fast

oscillatory movement of the potential is averaged over one optical cycle, which results

in a time-averaged static potential [33, 34]. A recent article in 2018 has shown that

the time-averaged KH potential can be reduced to a pure Coulomb potential, and the

electron dynamics driven by an elliptically-polarized pulse can be reproduced by this

effective potential [35, 36]. Another work in the same year has revealed that a Rutherford

scattering problem could predict the attoclock offset angle [37]. However, both theories

are valid for low-intensity fields only, and in this thesis, we aim at constructing a static

potential, so that the field-driven electron dynamics can be simply described by a time-

independent problem in the strong field regime.

The thesis is organized as follows.

In chapter 2, the theoretical background of strong-field ionization is introduced ne-

cessary to understand the results in the following chapters. Chapter 3 focuses on the

post-tunnelling ionization dynamics in the Kramers-Henneberger (KH) frame. We pro-

pose a static potential which simplifies the dynamics in the presence of an elliptically-

polarized laser pulse. This static potential has an unconventional form, namely it has

a ring-shaped singularity. In chapter 4, we will analyse the attoclock problem. It will

be shown how using some new approximations motivated by the KH potential into the
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Coulomb corrected strong field approximated method gives rise to an analytical attoclock

angle, which agrees with the classical-trajectory Monte Carlo simulation (CTMC) [38–40]

results. The tunnel exit points determine the initial conditions for the classical propaga-

tion, and have a sensitive impact on the final momentum vector. These exit points can

not be directly measured in the experiment but can be modelled by different theoretical

assumptions [21, 41, 42] which are, however, not unique. Therefore, it is important to

obtain a realistic exit point. This is done in a new way by extracting the exit point via

the analytical attoclock angle from experimental data. Finally, in chapter 5, the main

results are summarized and an outlook is given.



Chapter 2

Intense laser-atom interaction

2.1 Introduction to strong-field physics

Interaction of atoms and molecules with the high-intense laser pulses leads to interesting

multiphoton processes, where the energy of the incident laser pulse is so large that the tar-

get atoms or molecules absorb more than one photon. This may cause several interesting

non-linear optical phenomena such as multiphoton excitation or ionization processes.

Strong-field ionization [9] is one of the distinct fundamental processes in strong-field

physics, where the electrons in the atomic bound-state are ionized into the energy con-

tinuum triggered by the high-intense laser pulse. The intensities are so large that the

force exerted by the laser pulse becomes comparable with the Coulomb force within the

atomic systems, encoding information of microscopic processes. Typically, strong-field

ionization processes occur at intensities of the order of atomic units (see appendix A for

the details of atomic units).

Various ground-breaking physical phenomena have been discovered in the past years in

this branch of physics. Namely, high harmonic generations (HHG) [43], above-threshold

ionization (ATI) [44], frustrated tunnelling ionization (FTI) [16], and many other fascin-

ating processes like coulomb focusing [14, 45, 46], formation of the low-energy structure

(LES) [47–50], the zero-energy structure (ZES) [51–53], etc.

13



Intense laser-atom interaction 14

The interest of the thesis lies in the post-ionization dynamics of the electrons in the

strong-field tunnelling-ionization process with a focus on the ‘attoclock’ experimental

setup [7, 8, 21, 22]. Here in this chapter, all the required theoretical backgrounds are

presented.

2.2 Definition of the laser pulses

A laser field is an electromagnetic wave which is radiated during stimulated emission of

photons due to transition between different energy levels of an atom. The corresponding

electric field which is of interest here, therefore, satisfies the Maxwell’s equation,

∇2 ~F (~r, t)− 1

c2
∂2 ~F (~r, t)

∂t2
= 0. (2.1)

A plane-wave solution for ~F (~r, t) satisfying Eq.(2.1), is given by,

~F (~r, t) = ~Fmax cos(~k · ~r − ωt). (2.2)

This is a continuous wave (CW) laser field with Fmax, ~k and ω being the maximum field-

strength, propagation vector and the central frequency of the laser, respectively. The

corresponding peak intensity of the laser pulse is calculated as I = |~Fmax|
2.

Within the dipole approximation (see Sec. 2.3.2 for details), one can consider the electric

field to be homogeneous. This translates to dropping the space dependence which yields

the following simple form of the electric field,

~F (t) = ~Fmax cos(ωt). (2.3)

Generalizing the above equation for an elliptically-polarized laser in the xy plane, the

corresponding electric field can be written as,

~F (t) = −Fε(ε sin(ωt)~ex + cos(ωt)~ey), (2.4)
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with Fε =
Fmax√
1 + ε2

. ε is the ellipticity of the field which lies between 0 (linear-polarization)

and 1 (circular-polarization). Here, the choice of the ellipticity-dependent prefactor Fε

makes the average field intensity, <I(t)> =<|~F (t)|2>, independent of ε.

A laser pulse is obtained as a superposition of plane waves using the principle of mode-

locking [54, 55] with controllable peak-intensity and pulse-duration. To fulfil the conser-

vation of energy and not to burn the systems, the larger peak-intensity can be procured

with a shorter duration [56, 57]. This is achieved by increasing the number of consisting

plane-waves required to be superimposed. Now, the finite duration of the pulse can be

incorporated by using a suitable envelope function f(t) into the electric field, resulting in

~F (t) = −Fε f(t)(ε sin(ωt)~ex + cos(ωt)~ey). (2.5)

Alternatively, we have defined the electric field through the vector potential ~A(t) as

~F (t) = −∂ ~A(t)

∂t
, (2.6)

where

~A(t) =
−Fε f(t)

ω
(ε cos(ωt)~ex − sin(ωt)~ey), (2.7)

The electric field must satisfy
∫ ∞

−∞
dt~F (t) = 0. (2.8)

In this thesis, we will consider the following two types of the envelopes

Gaussian :

f(t) = exp

(

− ω2t2

4N 2π2

)

, (2.9)

Cos4 :

f(t) =











cos4
(

ωt
2N

)

if |t| ≤ Nπ
ω

0 otherwise,

(2.10)

where N is the number of optical cycles within the pulse.
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Figure 2.1: The electric field ~F (t) from Eq. (2.6) (with the vector potential ~A(t) from
Eq. (2.7)) as a function of time t in units of laser period T . The x and y component of
~F (t) i. e. Fx(t) and Fy(t), and the field-amplitude F (t) = |~F (t)| =

√

Fx(t)2 + Fy(t)2 are
shown for two ellipticities (a) ε = 1.0 (circular-polarization) and (b) ε = 0.5. Here, the
pulse envelope f(t) is used as the Cos4 envelope, cf. Eq. (2.10) with number of optical
cycles N = 6. Here, frequency ω = 0.058 au (which corresponds to a wavelength

λ = 800 nm), and the intensity I = 5× 1014 Wcm−2.

A typical picture of the electric field as defined by Eq. (2.6) with ~A(t) from Eq. (2.7)

are shown for two ellipticities in Fig. 2.1.

2.3 Approximation schemes

To understand the fundamentals of intense laser-atom interaction a number of approx-

imation schemes have been developed along with necessary transformation rules. This

section is devoted for the discussion on those approximations which will be regularly used

in later chapters.

2.3.1 Single-active-electron approximation

The single-active-electron (SAE) approximation is one of the popularly used approxima-

tion in strong-field physics. SAE considers that only one electron in the outer-most orbit



Intense laser-atom interaction 17

of the atom is active for ionization. Later we see that the probability of strong-field ion-

ization is an exponentially decreasing function of the ionization potential Ip, cf. Eq. (4.9).

Therefore SAE becomes a valid approximation as the probability of ionizing the inner

electrons becomes negligible.

The minimal-coupling interaction Hamiltonian (also known as velocity gauge) within

such SAE approximation is given by

H(~r, ~p, t) =
(~p− ~A(~r, t))2

2
+ V (~r), (2.11)

with V (~r) = − 1

|~r |
is the potential energy representing Coulomb interaction between

the single-active electron and the singly-charged parent ion. Atomic units (appendix A)

have been used here. The vector potential ~A(~r, t) can be obtained within the dipole

approximation as described below.

2.3.2 Dipole approximation

The dipole approximation consists in neglecting the atomic dimension ~r in the vector

potential ~A(~r, t), i. e.

~A(~r, t) = ~A(0, t). (2.12)

This approximation is valid when ~k · ~r ≪ 1, which is readily satisfied because the atomic

dimension ~r (of the order of angstrom) is much smaller than the wavelength λ (of the

order of several hundreds of nanometer) of the laser pulse. Within such approximation,

the vector potential ~A(t) for an elliptically-polarized laser pulse can be given by Eq. (2.7).

At this point, one should note that the Lorentz force originating from the magnetic

field ~B can be neglected within the dipole approximation because ~B = ~∇ × ~A(t) = 0.

This also means that the relativistic effect can be neglected, in other words, the velocity

of the electron v is much smaller than the speed of light c. For the intensities I and

wavelength λ used in this thesis (I lies between 1013 and 1015 Wcm−2, and λ lies between

400 and 800 nm), v ≪ c is fulfilled [58, 59]. Hence the relativistic effect can be neglected

safely.
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2.3.3 Length gauge interaction

Let us now describe, within the dipole approximation, the following Gauge transformation

[60] used in classical electromagnetic theory with the scalar and the vector potential φ,

and ~A, respectively

φ′ = φ− ∂χ

∂t
, (2.13a)

~A′ = ~A+∇χ. (2.13b)

Using the above transformation with the scalar field

χ(~r, t) = −~r · ~A(t), (2.14)

the minimal coupling Hamiltonian in Eq. (2.11) is reduced to

Hl(~r, ~p, t) =
~p 2

2
+ V(~r) + ~r · ~F (t). (2.15)

Here, ~r · ~F (t) represents the interaction energy between the E-field and the field-induced

dipole moment created between the ionized electron and the parent ion. Coulomb gauge

(φ = 0) is used here [61].

Because the electric field is coupled with the position vector, such an interaction picture

is known as length-gauge. This picture provides us an understanding of the strong-field

tunnelling-ionization process in the presence of a low-frequency and intense laser pulse,

which is schematically shown in Fig. 2.2, and discussed in the next section.

2.4 Strong-field ionization - overview and classifica-

tion

When the external laser field is strong enough, instead of being excited from energetically

lower to higher bound-state, the electron, enters the continuum, and ionized from the

atomic system. Depending on the pulse parameters and the atomic potential, the strong-

field ionization processes can be described by different scenarios. There are mainly two
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different ionization channels, which are — the tunnelling ionization and the multiphoton

ionization [62, 63].

The above mentioned two regimes can be differentiated by a distinguishing parameter

γ as introduced by Keldysh [10] — known as Keldysh parameter — which depends on the

intensity I, frequency ω of the laser pulse, and the ionization potential Ip of the atom.

The definition reads,

γ =

√

Ip
2Up

, (2.16)

where Up = I/4ω2 is the cycle-averaged kinetic energy of a free electron in the presence

of a quivering laser field. Up is known as the ponderomotive energy.

γ can be interpreted as the barrier traversal phase i. e. the phase corresponding to the

tunnelling time. Now, for an electron to tunnel before the electric field has turned around,

γ ≪ 2π should be satisfied. Therefore, to be on the safe side, if γ ≪ 1 is fulfilled, which

is valid for low frequencies, the tunnelling ionization is the dominant process in this limit.

Whereas, in the opposite limit, for high frequencies i. e. for γ ≫ 1, multiphoton ionization

— ionization by absorbing multiple photons, is the dominant process. The interest of this

thesis rests on — tunnelling ionization, which is discussed below.

2.4.1 Tunnelling ionization

For a low-frequency laser pulse, the characteristic time of an electron in the atomic bound-

state is much smaller than the pulse period. For example, the time required for an electron

to orbit around the nucleus in a hydrogen atom is about 150 attoseconds (1 as = 10−18 s)

[64], whereas, for an infrared pulse with a typical wavelength of 800 nm, the pulse period

is 2600 as (≫ 150 as). In this low-frequency limit, time can be treated as a parameter, and

the electron can tunnel through a time-independent potential barrier (Fig. 2.2) formed

by the instantaneous laser field and the atomic Coulomb potential. This quasi-static

(adiabatic) ionization process is known as the tunnelling ionization. The above scenario

is depicted in Fig. 2.2.

The effective potential is modulated as a function of time due to the oscillation of the

pulse. In the presence of a linearly-polarized pulse, cf. Eq. (2.3), the effective potential
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Figure 2.2: The strong-field tunnelling ionization. The effective Coulomb poten-
tial V (~r, t), cf. Eq. (2.17), is bent down (black solid curve) within the length-gauge
(Eq. (2.15)) interaction between the atom and the instantaneous field-maximum (which
corresponds to t = 0, here), as given by ~Fmax · ~r (brown solid line). This interaction
makes the barrier width low enough and therefore the bounded electron (blue dotted
circle), which is sitting at the ionization potential Ip (black dotted line) of the atom, can
tunnel through the barrier (blue dashed path). The electron comes out of the potential

at the tunnel-exit located at r = re (blue solid circle).

from Eq. (2.15) can be written as

V (~r, t) = V (~r) + ~r · ~Fmax cos(ωt). (2.17)

At an instant t = 0, this effective potential has been shown in Fig. 2.2. We can see that

the Coulomb potential V (~r) bends down in the presence of the interaction term ~r · ~Fmax,

making the barrier-width lower especially with higher Fmax. The electron can easily

tunnel through this low barrier. If the field-strength is too high, the barrier is suppressed

so much that the electron is released over the top of the barrier, which is known as ‘over

barrier ionization (OBI)’ [65].

Now, the dynamics of tunnelling is classically forbidden which requires to incorporate

quantum effect, and therefore, this is beyond the scope of simple Newtonian mechanics.

However, we are interested to study and explore the classical electron dynamics after it

has tunnelled out. Therefore it is crucial to know the initial coordinates of the electron

at the end of such a tunnelling process. Although the initial position and momentum can

not be measured directly in an experiment, different theoretical models can predict them

depending on different tunnelling geometry. We will discuss about those related to initial
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Figure 2.3: Total probability distribution function corresponding to the tunnelling
ionization within the ADK model, cf. Eq. (2.20), as a function of the initial time t0,
and the initial momentum p0, for the laser pulse in Fig. 2.1. It can be noticed that the
distribution follows the field amplitude F (t) =

√

Fx(t)2 + Fy(t)2, which is shown by
the black solid-line in Fig. 2.1, for the two different ellipticities of this figure in (a) and
(b). Since the distribution function falls exponentially with the field-amplitude F (t0),
the relevant ionization events are occurring only near the maxima of the field, and the

distribution is Gaussian in p0, cf. Eq. (2.18).

position later in appendix E. The probability of the initial momentum follows a Gaussian

distribution, peaked around zero-momentum in the quasi-static situation, which is given

by

R1(~p0, t0) =
(2Ip)

1/4

√

πF (t0)
exp

(

−
√

(2Ip)~p
2
0

F (t0)

)

(2.18)

where F (t) = |~F (t)| is the instantaneous field amplitude of the electric field. t0 and

~p0 are the initial time and momentum, respectively. One should also incorporate the

tunnelling-ionization rate in determining the initial conditions. For a 3D Hydrogen atom

with F (t0) ≪ 1, it is given by [66]

Γ(F (t0)) =
4

F (t0)
exp

[

− 2

3F (t0)

]

. (2.19)

Ammosov, Delone, and Kranov (ADK) [10, 67, 68] have generalized the above relation

for any atom, and incorporating this rate, initially the electron trajectory can be weighted

by
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RADK(~p0, t0) = C2
l

2l + 1

2

(

4Ip
F (t0)

)
2√
2Ip

−1

exp

(

−2(2Ip)
3/2

3F (t0)

)

R1(~p0, t0). (2.20)

l is the angular-momentum quantum number of the initial bound state of atom. The val-

ues of l and the normalization constant Cl are taken from Ref. [69]. The ADK distribution

of initial coordinates (p0, and t0) is depicted in Fig. 2.3 for the laser in Fig. 2.1.

It is important to note that the ADK theory is justified far into the tunnelling regime,

i. e. the potential barrier does not move during the ionization process. On the contrary,

when the frequency is higher, the adiabatic scenario does not valid any more. One has

to consider the time-dependent motion of the potential (Eq. (2.17)), and then the system

can just be described by the superposition of several adiabatic states. The electrons gain

energy from such a time-dependent potential barrier, and as a result the effective barrier

becomes thinner. This is known as non-adiabatic tunnelling ionization [70, 71]. The γ

value in the non-adiabatic regime, lies between the multiphoton and the tunnelling regime

i. e. γ ≈ 1 (See Perelomov, Popov, Terent’ev (PPT) model [72, 73]).

2.5 Electron trajectory in strong-field physics

Within strong-field approximation, after tunnelling out from the atom, the electron moves

almost freely in the presence of an oscillatory laser field. Depending on its initial coordin-

ates at the tunnel exit, the almost-free electron — either scatter back with the parent ion,

or can fly off forever — exhibit many interesting phenomena in strong-field physics. For

example, re-scattering with the parent ion with a very high-energy exchange can cause

high-energy-photon production known as high-harmonic generation (HHG). Whereas, re-

scattering with low energies, which is known as soft re-scattering, has nice applications

like capturing into the atomic excited state with high quantum-number — a phenomena

called Rydberg state formation, also known as frustrated tunnelling ionization (FTI).

Such soft re-scattering can also explain the mechanism of forming the well-known low-

energy structure (LES) [47], very low-energy structure (VLES), zero-energy structure

(ZES) [51–53] in the photo-electron spectra.
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However, on the other hand, the emitted electron can also reach the detector (which is

asymptotically far away from the system) without any re-scattering, — these are naturally

termed as direct electrons. The ionization of these direct electrons with a near circularly-

polarized laser pulse are applied to study the ‘attoclock’ problem where the final angle of

the momentum in the photo-electron momentum plane is usually mapped to the electron’s

released time. Remarkably, this allows to study interesting temporal behaviour of various

microscopic processes within attosecond precision.

In the next section, we will analyse an electron’s trajectory in the presence of a pure

oscillatory laser pulse classically through the lens of a simple theory, commonly known

as Simple-man’s model (SMM) [74–76]. Surprisingly, SMM can explain the strong-field

ionization and various re-collision process reasonably well, of course with certain but

acceptable limitations.

2.5.1 Simple-man’s model

Within strong-field approximation (SFA) [10–12], the electron’s trajectory can be de-

scribed by the Simple-man’s model, where a zero-range potential is considered i.e. V (r) =

0 everywhere except at r = 0.

The initial coordinates at the release time t0 are chosen to be

~r(t0) = ~̇r(t0) = 0. (2.21)

For all time t > t0, the electron trajectory is driven by the oscillatory laser and follows

the Newton’s equations of motion

~̈r(t) = ~F (t). (2.22)

This is obtained using atomic unit within the Lorentz-force e~F (t), with the contribution

due to magnetic-field ~B(t) being neglected within dipole-approximation. Equation (2.22),

with the initial conditions given in Eq. (2.21), is integrated to result in the following
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Figure 2.4: The Simple-man’s trajectory, cf. Eq. (2.24b) for three values of the release
time t0: t0 = −T/8 (blue curve), t0 = 0 (black curve), and t0 = T/8 (red curve). The

dashed curve is the scaled electric field of Eq. (2.3), linearly-polarized along ẑ.

solutions for the electron’s velocity ~̇r(t), and the electron’s trajectory ~r(t)

~̇r(t) = ~A(t0)− ~A(t) (2.23a)

~r(t) = ~A(t0)(t− t0)−
∫ t

t0

dt′ ~A(t′), (2.23b)

For the co-sinusoidal pulse in Eq. (2.3), the above Eqs. (2.23) reduce to

~̇r(t) =
−~Fmax

ω
(sin(ωt0)− sin(ωt)) (2.24a)

~r(t) =
−~Fmax

ω

(

sin(ωt0)(t− t0) +
cos(ωt)− cos(ωt0)

ω

)

. (2.24b)

The first term being constant and linear in time, respectively, for the velocity and the

position, is known as the drift term, and the second term is the quiver term.

The above trajectories are plotted for different t0 in Fig. 2.4 for a linearly-polarized

laser pulse along the z axis. We can see that depending on different t0, the asymptotic

velocities of the released electrons are very different, which are obtained as the following

~̇r(t → ∞) = ~A(t0)− ~A(t → ∞), (2.25)

The final velocity depends only on the initial coordinates at the released time t0 for a
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finite-duration pulse when ~A(t → ∞) becomes 0. The electron trajectory released at

the field-maximum (t0 = 0, cf. Eq. (2.3)) obtain a zero drift momentum. However, the

trajectories released a little before and after the field-maximum acquire a positive and

negative drift momentum, respectively, as shown in Fig. 2.4.

If the electron comes back to the ion, which is assumed to be placed at ~r = 0, after it

has ionized, it can re-collide with the ion as discussed previously. Depending on the values

of the momentum at return, different phenomena such as HHG, FTI, or the formation of

the LES takes place. HHG occurs when the electron returns and recombines with high

momentum. On the contrary, chances of FTI or the LES events become high when the

momentum of the returning electron is comparatively low. The returning energy/mo-

mentum, calculated within the simple man’s model, sometimes beautifully predicts the

features of the corresponding spectrum [77].

However, in this thesis we are interested in the final momentum of the direct electrons,

particularly applied to an attoclock setup, as will be introduced below, where the final

momentum can not be given just by Eq. (2.25), rather it is shifted by an offset.

2.5.2 Attoclock offset

The attoclock [7], also known as attosecond-angular-streaking, is based on the principle

of streaking-camera [78], where a light is incident on a rotating mirror and the photons

arrived at different times get deflected to different positions measured at the detector.

Hence, one can estimate the intensity of the incoming light as a function of time. Similarly,

in the attoclock experiment, the tunnel-ionized electrons from atoms at different instances

of the incident laser pulse, which is a low-frequency, intense, and near circularly-polarized

(CP) pulse, get deflected to different asymptotic momentum measured at the detector.

The angle of the asymptotic momentum in the momentum plane (basically the near-

circular polarization-plane) is usually connected to the ionization time, and thus time

is mapped to the dial of a near-circular clock, which has different applications, e. g.,

in estimating the photo-ionization delay time, photo-emission or photo-absorption time,

etc. with attosecond accuracy. The CP pulse in the attoclock plays the role of a rotating

mirror in the streaking camera.
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Within SFA, the final momentum is perpendicular to the initial electric field (see

Eq. (2.25)), however, in the real experiment, the final momentum makes an additional

angle with this perpendicular direction. For the most-probable electron, this additional

angle is referred to as the attoclock offset angle. This offset value originates from the

laser-Coulomb interaction, which is ignored in the SFA. However, it is also sometimes

inferred that a finite tunnelling-time contributes to this offset value, which has been

studied in several recent experimental and theoretical works [23, 24, 79, 80]. The ex-

traction of finite tunnelling-time is highly debated since tunnelling-time does not exist as

such [22, 37, 41, 42, 81].

Therefore, the final momentum can be modified as the following

~̇r(t → ∞) = ~A(t0) + ~pc,t0 , (2.26)

~pc,t0 is the shift in the final momentum due to the Coulomb interaction. The derivation

of getting ~pc,t0 is not straightforward, as the dynamics, in the combined effect of the

laser pulse and the Coulomb attraction force from the parent ion, is complicated. Several

theoretical approaches have been adapted to obtain the ~pc,t0 , thereby the corresponding

attoclock offset angle [20, 82, 83]. The Coulomb corrected SFA calculations have been

discussed in ref. [82], where the momentum shift is obtained as the impulse from the

Coulomb potential using the SFA trajectory. This is a kind of perturbative approach.

A similar approach with the Kramers-Henneberger (KH) potential has been used in ref.

[20], where the momentum shift is obtained as an impulse from the KH potential using

the KH-potential-free trajectory. We will be dealing with the latter approach [20] and

discuss some approximation leading to an analytical expression for the offset angle. The

approximations are based on dividing the whole intensity area of a typical experimental

offset angle vs. intensity graph (see Fig. 2.5) into two zones — the low-intensity and

high-intensity zones, which will be discussed in chapter 4 of this thesis.
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Figure 2.5: The offset angle as a function of intensity I in an attoclock experiment.
The data of this figure is extracted from Boge et al [84].

2.6 Summary

The focus of this thesis is the analysis of the electron’s trajectory applied to an attoclock

setup. The prerequisite theory to understand the primary observable in the attoclock ex-

periment is presented in this chapter. Attoclock typically deals with elliptically-polarized

laser pulses. In the presence of such an elliptically-polarized pulse, the final momentum

along the minor axis of the polarization ellipse can be obtained by a Simple-man’s model

[18]. However, for ellipticities ε > 0.3, the loss of Coulomb focusing effect [85] and the

emergent of Coulomb asymmetry [18] lead to a deviation in the final momentum along

the major axis of the polarization ellipse from the Simple-man’s model. This deviation is

also encountered in the polar angle of the final photoelectron momentum plane, thereby

in the offset angle, which is defined as the inclination of the most-probable electron’s ac-

tual momentum with respect to the SFA momentum. However, obtaining the deviation

analytically, is difficult, since the dynamics has to be considered in the combined pres-

ence of the oscillatory laser pulse and the Coulomb interaction with the parent ion. The

Coulomb corrected SFA (CCSFA) theory in this context was introduced by Goreslavski
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et al [15], which has been later extended in refs. [18, 20].

In the next chapter, we will study the electron’s field-driven dynamics from a static

potential, where the field dependence only comes through the parameters within the

potential and the initial conditions of the electrons. The chapter following the next

will discuss different approximations within the CCSFA approach to obtain the above

momentum deviation analytically.



Chapter 3

Strong-field trajectory from a static

potential

3.1 Introduction

Interaction of atoms with intense low-frequency laser fields leads to tunnel ionization of

an electron from an atom. We study the ionized electron’s dynamics in the combined

presence of the Coulomb potential and the external oscillatory laser field classically. The

trajectories of the ionized electrons are complicated. In recent publications [35]-[36], this

complicated dynamics has been reduced with a “guiding-center framework” simplifying

the electron trajectory within an effective static potential description. However, this

framework is limited to the laser pulses with low-intensity and shows a deviation in the

interesting high-intensity regime.

This chapter focuses on formulating a static potential that can describe the tunnel-

ionized electron’s full dynamics driven by a laser field. To obtain this simplified descrip-

tion with a static potential, we use the Kramers-Henneberger (KH) Hamiltonian, in which

the electron dynamics becomes easier to analyse, as discussed in section 3.2.

The exact time-dependent KH trajectory is dominated by the time-independent zeroth-

order term in a series-expansion of the KH potential. Moreover, the total energy is almost

29
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constant as a function of time for the KH trajectory (section 3.3). Both of these facts

serve as a clue for the existence of a static potential.

We will show that the electron experiences the time-dependent KH potential for a short

initial time after it gets ionized. Within this short time, it flies away very quickly from the

parent ion. For a nearly circularly-polarized laser pulse, a short-time expansion of the KH

potential leads to a static ring potential, which is discussed in section 3.4.1. Surprisingly,

this static ring potential reproduces the ionized electron’s field-driven trajectory very well

for high-intensity and nearly circularly-polarized laser pulses.

Another simplified description for the tunnel-ionized electron dynamics can be achieved

by setting up a rotated Kepler problem (section 3.4.2). The electron trajectory follows a

Kepler hyperbola for low-intensity laser pulses. For high-intensities, the latter deviates

from the real trajectory but can capture it when introducing a rotation.

3.2 Kramers-Henneberger frame

In the Kramers-Henneberger (KH) frame [31, 32], also known as the acceleration formu-

lation of light-matter interaction, the potential becomes time-dependent and the corres-

ponding laser-atom interaction problem is described by the following Hamiltonian

Hkh(~r, ~p, t) =
~p2

2
+ V (~r − ~rq(t)), (3.1)

where V (~r) = −1/ | ~r | is the Coulomb potential. ~rq(t) is the quiver position co-ordinate

and it is related to the acceleration ~̈rq(t) = ~F (t) (see Eq. (2.22)) of the electron,

~rq(t) =

∫ t

t0

dt′′
∫ t′′

t0

dt′ ~F (t′), (3.2)

where ~F (t) is the electric field of an elliptically-polarized laser, calculated using Eq. (2.6)

with the corresponding vector potential is taken from Eq. (2.7). The pulse envelope f(t)

is chosen as the following.
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f(t) = 1, for a continuous wave (CW) laser.

f(t → ±∞) = 0, for a finite laser pulse.

It is clear from Eq. (3.1) that in the KH potential, the Coulomb singularity moves with

time t and is located at ~r = ~rq(t). Now for a CW laser pulse, ~rq(t) is expressed as

~rq,CW(t) = rq (cos(ωt)~ey + ε sin(ωt)~ex), (3.3)

where rq = Fε/ω
2 is the quiver amplitude. Therefore, the singularity ~rq(t) moves on

an ellipse with ellipticity ε in the plane of polarization (xy plane). The motion of the

singularity maximally extends to rq = |~rq,CW(0)|, which also defines the major axis of the

polarization ellipse (as shown by a blue arrow in Fig. 3.1). Naturally, the quiver amplitude

rq increases with decreasing ellipticity, as can be seen also from Fig. 3.1.

Whereas in case of a finite laser pulse, ~rq(t) shrinks with time and ends up at the origin

at the end of the pulse, on the contrary, for a CW pulse, it continues to move along the

edge of the polarization ellipse. Figure 3.1 shows the movement of the KH potential for

three different ellipticities.

Figure 3.1: The motion of the Coulomb singularity in the KH frame, for a circularly-
polarized (ellipticity ε = 1.0), an elliptically-polarized (ellipticity ε = 0.5), and a
linearly-polarized (ellipticity ε = 0) laser pulse. The singularity of the KH poten-
tial lies at r = ~rq(t), therefore the blue arrow represents ~rq(t = 0), whose magnitude is

given by rq =
Fε

ω2
(cf. Eq. (3.3)).
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In the presence of a low-frequency and high-intensity laser pulse, the electron in the

atomic bound state undergoes tunnel-ionization, which is discussed in chapter 2. In the

subsequent sections, we will discuss the strong-field-driven trajectory in the KH frame

after tunnelling out from the atom. We will see that the dynamics of the electrons become

easier to analyse as compared to that in the length-gauge. Interestingly, such a framework

allows us to obtain an effective static potential that governs the tunnel-ionized electron’s

real trajectory as we will discover later.

3.2.1 From quivering to no-quivering trajectory

Here we discuss the coordinate transformation which is necessary to go from laser-atom

interaction in length gauge to the KH frame. For this purpose, let us examine the two

interaction gauges, i. e. the length gauge and the velocity gauge. The length gauge

formulation of light-matter interaction is defined by the following Hamiltonian

Hl(~r, ~p, t) =
~p 2

2
+ V(~r ) + ~r · ~F (t), (3.4)

whereas the velocity gauge formulation, also known as minimally coupled interaction, is

defined by

Hv(~r, ~p, t) =
(~p− ~A(t))2

2
+ V (~r ). (3.5)

The electron dynamics in these two Hamiltonian in Eq. (3.4) and Eq. (3.5) are identical

to each other, as the corresponding Lagrangian differs from each other by a total time

derivative of a function. This results in the same equations of motion for both gauges.

The quiver momentum ~pq(t) is defined by

~pq(t) = ~̇rq(t) =

∫ t

t0

dt~F (t) = − ~A(t). (3.6)

Using the ~pq(t) from Eq. (3.6) and the following coordinate transformation,

~r(t) = ~r(t) + ~rq(t) ~p(t) = ~p(t) + ~pq(t), (3.7)
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Figure 3.2: Electron trajectory in the plane of polarization. The blue trajectory
is the one obtained by solving the equations of motion, numerically, in the length-
gauge Hamiltonian Hl (Eq. (3.4)) with initial phase space coordinates (re, pe) and the
red trajectory is the corresponding trajectory in the KH interaction picture (Eq. (3.8))
with initial phase space coordinates (r0, p0) (cf. Eq. (3.9)). The corresponding initial
points for these two interaction picture are shown by the circles. Laser parameters
used at wavelength λ = 800 nm, ellipticity ε = 0.8, intensity I = 8 × 1014 W/cm2. A
Gaussian envelope function Eq. (2.9) has been used here, with N = 5 and an ionization

potential Ip = 0.9 au is used corresponding to helium.

the KH Hamiltonian is obtained as

Hkh(~r, ~p, t) =
~p 2

2
+ V (~r − ~rq(t)). (3.8)

We solve Hamilton’s equations of motion for the KH Hamiltonian with the following

initial position and momentum

~r0 = ~re + ~rq(t0) ~p0 = ~pe + ~pq(t0). (3.9)

(~re, ~pe) are the phase-space coordinates defining the tunnel exit. re defines the barrier

width, which can be calculated in the length-gauge using the energy conservation at the

tunnel-exit. This is discussed in chapter 4 in section E. In this chapter, we use the field-

direction model for re, taken from Eq. (E.2). The exit momentum pe is assumed to be

zero: at the tunnel-exit point the kinetic energy of the electron is zero since the total

energy equals the potential energy [14, 77, 86].
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Figure (3.2) shows two trajectories. One is the trajectory obtained by solving Hamilton’s

equations of motion for Hl with initial phase-space coordinates (~re, ~pe) (blue line), and

the other is obtained from Hkh with initial phase-space coordinates (~r0, ~p0) (red line). We

see that for the electron trajectory in the KH frame, the wiggles from the time-dependent

oscillatory field are not visible, as they show up for the length-gauge case. This already

simplifies the dynamics in the KH Hamiltonian. However, this is still a time-dependent

problem, whereas we search for a possible static potential governing the electron’s dy-

namics in the remaining sections, using this easy description of motion within this KH

frame.

Next, we analyse various terms in a series expansion of the KH potential. The zeroth-

order terms of this series correspond to the cycle-averaged KH potential, and this is

time-independent. The limits of describing the ionized electron’s trajectory within such

a time-independent description will be discussed.

3.2.2 Analysis of a series-expansion of the KH potential

The discussion is sometimes easier when one neglects the envelope. For sufficiently long

pulse the envelope is approximately constant for the relevant part of the pulse. Therefore,

~rq(t) can be given by ~rq,CW(t), cf. Eq. (3.3). Whereas, for a finite laser, one can approx-

imate that the envelope f(t) changes slowly with time compared to the fast-oscillatory

sinusoidal terms with frequency ω in Eq. (2.7). Within this approximation, we can take

out f(t) outside of the integration Eq. (3.2), resulting in the following expression for ~rq(t)

~rq(t) ≈ f(t)~rq,CW(t).

With this, the KH potential V (~r − ~rq(t)) can be written as the following [87],

V∗(~r,~rq, t) = V (~r − f(t)~rq,CW(t)). (3.10)

Without any loss of generality, the RHS of Eq. (3.10) can be expanded as
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Figure 3.3: The first six terms of the series-expansion of potential in the RHS of
Eq. (3.13) at time t = 0 as a function of x and y coordinate. The laser parameters
at work are, ellipticity ε = 1.0, wavelength λ = 800 nm and intensity I = 3 × 1014

Wcm−2. The radius of the circle is at r = rq =
Fε

ω2
, for the laser parameter used here

rq is evaluated as 19.43 au. The white area represents singularity in the potential.

V∗(~r,~rq, t) =

∫ ∞

−∞
dt′V (~r − f(t)~rq,CW(t′))δ(t− t′), (3.11)

where the pulse-envelope f(t) is kept independent from the integration variable t′.

Now, because of its periodicity of the potential, the above integration in Eq. (3.11)

yields the same result if performed only in the interval between −π/ω to π/ω i.e. within

one optical cycle duration. Using the properties of the Dirac-delta function,

δ(t− t′) =
ω

2π
+

ω

π

∞
∑

m=1

cos(mω(t− t′)), (3.12)

in Eq. (3.11), one obtain the following series-expansion

V∗(~r,~rq, t) = V0(~r, t) +
∞
∑

m=1

Vm(~r, t) (3.13)



Strong-field trajectory from a static potential 36

where

V0(~r, t) =
ω

2π

∫ π/ω

−π/ω

dt′V (~r − f(t)~rq,CW(t′)), (3.14a)

Vm(~r, t) =
ω

π

∫ π/ω

−π/ω

dt′V (~r − f(t)~rq,CW(t′)) cos(mω(t− t′)). (3.14b)

The terms Vm(~r, t) are plotted for t = 0 and m = 0, ..5 at Fig. 3.3, having m-fold singu-

larity at a radius r = rq, as can be seen therein.

The total force exerted on the ionized electron is calculated by taking the radial deriv-

ative of the potential, i.e.,

fr = −∂V∗

∂r
, (3.15)

and Newton’s equations of motion for the force fr are solved to get the electron trajectories

in Fig. 3.4. Although the exact KH trajectory is reproduced in the combination of just

the first two terms (m = 0,1), it already agrees reasonably with the trajectory in the

zeroth-order term (m = 0).

The zeroth-order term V0(~r, t) is almost time-independent. The time-dependence only

comes through the slowly varying f(t). That the trajectory in V0(~r, t) is close to the

exact one, motivates us to explore the problem from a time-independent perspective. In

the following, we study the complete cycle-average of the KH potential and discuss its

validity for different laser intensities.

3.2.3 Trajectory in the cycle-averaged KH potential

In this section, we consider the total KH potential averaged over a full optical cycle, and

therefore analyse the electron dynamics in such a complete time-independent problem.

In the following, we derive an analytical expression for the cycle-averaged KH potential

in the presence of a circularly-polarized (CP), CW laser pulse.
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Figure 3.4: Electron trajectory in the exact KH potential (red solid curve), for the
zeroth-order term V0(~r, t) of the series-expansion in Eq. (3.13) (green dashed curve),
in the combination of the first two terms in that expansion i.e.V0(~r, t) + V1(~r, t) (blue
dashed curve), and in the first eleven terms i.e.V0(~r, t) +

∑10
m=1 Vm(~r, t)(yellow dashed

curve). The trajectory in the potential up to the 10th-order term and up to 1st-order
term in the series-expansion Eq. (3.13) are indistinguishable in the figure. The intensity
is I = 1014 Wcm−2. Other parameters are the same as in Fig. 3.2. The initial point is

represented by the circle.

The KH potential reads

V (~r,φ) = − 1

| ~r − ~rq,CW(φ) |

= − 1
√

(x− rq sin(φ))2 + (y − rq cos(φ))2
, (3.16)

with ~rq,CW(φ) from Eq. (3.3) for ellipticity ε = 1.0 and phase φ = ωt.

The cycle-averaged KH potential, in this case, is expressed as

V0(~r, rq) = − 1

2π

∫ 2π

0

dφ
1

√

(x− rq sin(φ))2 + (y − rq cos(φ))2

= − 1

2π

∫ 2π

0

dφ
1

√

r2 + r2q − 2rrq cos(φ− θ)
,

= − 2

πr̃
K(a). (3.17)
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Figure 3.5: The cycle-averaged KH potential (dashed orange curve) V0(~r, rq)
Eq. (3.17) as a function of r. The laser parameters are intensity I = 3× 1014 Wcm−2,
ellipticity ε = 1.0, and wavelength λ = 800 nm for He atom. V0 has a singularity at
r = rq, for the current parameters, which is equal to 19.43 au. The Coulomb potential

is shown as a solid black curve.

Here θ is the polar angle corresponding to the electron trajectory. This is nothing but

V0(~r, t) in Eq. (3.13) for a CW pulse with f(t) = 1. Here,

r̃ = r + rq, (3.18)

a =
4rrq
r̃2

. (3.19)

K is the elliptic integral of the first-kind. The above potential has a singularity at r = rq

since K diverges for a = 1, this can be also seen from Fig. 3.5 (see also [33, 34, 88]).

In Fig. 3.6, the most-probable electron trajectory, i. e., the trajectory at the field-

maximum, which occurs at t = 0, cf. Eqs. (2.6)-(2.7), is compared within the exact KH

problem and in V0 (Eq. (3.17)) for intensities I = 8×1013 Wcm−2 and I = 8×1014 Wcm−2.

We can see that the electron trajectory in V0 follows the real KH trajectory for the lower

intensity. However, for the higher intensity, the former deviates from the latter. The

reason behind this is discussed in the following.

The quiver amplitude rq, which also represents the maximum extension of the KH po-

tential, is proportional to the field-amplitude Fmax, whereas the exit-radius re is inversely

proportional to it (Eq. (E.2)). Therefore, for the low-intensity pulse, rq ≪ re, which can

be also seen from Fig. 3.6(a). As a result, the electron’s initial position is much larger
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Figure 3.6: The most-probable trajectory of the electron, for two different laser in-
tensities. The solid red curve is the real time-dependent KH trajectory whereas the
orange dashed curve corresponds to the electron trajectory in the time-independent
cycle-averaged KH potential Eq.(3.17). The parameters at work are ellipticity ε = 1.0
and wavelength λ = 800 nm for He atom. The initial point is represented by the circle.

than rq, i. e., r0 = re + rq ≫ rq, cf. Eq. (3.9). This means that the electron trajectory is

far away from the singularity, so the real dynamics is indistinguishable from the corres-

ponding cycle-averaged motion. On the other hand, for the high intensity, rq becomes

much larger than re (see Fig. 3.6(b)), resulting in r0 ≈ rq. Since the electron is released

very close to the KH potential, the cycle-averaged approximation does not hold anymore,

leading to the deviation, as observed in Fig. 3.6(b).

In the following sections, we will analyse the deviation and discuss the new static

potential to compensate for the deviation.

3.3 Conserved quantities in the KH problem

To investigate the possible static potential, we need a suitable reference to start with.

For that, in the first place, one can think of a Kepler problem. The following field-free

Hamiltonian drives the corresponding electron trajectory

H(~r, ~p, t) =
~p 2

2
+ V (~r ). (3.20)
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At distances r ≫ rq, the KH problem cf. Eq. (3.8) becomes a Kepler’s problem. Therefore,

it is interesting to see how the quantities known to be conserved in the latter are actually

behaving for the former.

The conserved quantities in a Kepler problem are the energy E, angular momentum l,

and the Runge-Lenz vector (RLV) ~a,

E =
~p 2

2
+ V (~r ), (3.21a)

lz = (~r × ~p )z, (3.21b)

~a = ~p×~l − ~r/r. (3.21c)

The angular momentum ~l points along the z-axis, perpendicular to the plane of polariz-

ation (xy-plane). The RLV ~a lies in the plane of polarization with the angle α = tan−1(ax
ay
)

relative to the major axis. The absolute value of ~a is given by the eccentricity of the Kepler

hyperbola, which reads |a| =
√
1 + 2El2.

At the end of the laser pulse, these three quantities are conserved. Starting from the

phase-space coordinates when the pulse is gone, which are obtained by forward propagat-

ing the KH trajectory, we back-propagate in time in the KH Hamiltonian until the release

time t0. E, l, and ~a as a function of time are shown in Fig. 3.7.

One can observe an interesting behaviour in these quantities for different laser-intensities.

E and l hardly change as a function of time for all the intensities Fig. 3.7(a)-(b). In

contrast, the RLV angle α remains almost constant for lower intensity and changes signi-

ficantly for the higher intensity. The change in α occurs within a concise duration after

the release time t0 (here t0 = 0 for the most-probable trajectory). Then it gets saturated

within a time t ≪ T , as shown in Fig. 3.7(c). Later we will see, this change within such

a short time helps to formulate a static potential by performing a series-expansion.

For the low intensity, all the three quantities E, l, α, which are conserved in a Kepler

problem, are also approximately constant for a KH trajectory. We will see in section

3.4.2, the real trajectory is nicely captured within the Kepler problem. For the high
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Figure 3.7: Energy E, angular momentum l, and the RLV angle α as a function
of time for three different laser intensities I = 8 × 1014 Wcm−2 (black curve), I =
3 × 1014 Wcm−2 (red curve), and I = 8 × 1013 Wcm−2 (blue curve) for electron’s
trajectory in the KH Hamiltonian Eq. (3.1). The laser parameters other than intensity

at work are the ellipticity ε = 0.8, wavelength λ = 800 nm for He atom.

intensity, since α changes with time, keeping E, l almost constant, leading us to construct

a rotation in the Kepler trajectory. The rotated Kepler trajectory agrees with the present

observation, as will be discussed in section 3.4.2.

Most importantly, the energy E (Eq. (3.21c)) is almost constant in time for all the in-

tensities, motivating us to formulate a time-independent Hamiltonian, which is discussed

in the next section. Moreover, the angular momentum’s conservation indicates a spher-

ically symmetric potential, which will be taken into account for the new static potential.

3.4 Formalism of a time-independent problem

This section discusses the formalism of a time-independent problem that can capture the

post-tunnelling dynamics in the presence of an elliptically-polarized laser pulse Eq.(2.7).

3.4.1 Static ring potential

The RLV angle α changes very quickly and becomes constant as can be seen from Fig. 3.7,

indicating that the electron experiences the time-dependence of the KH potential for a

short duration after its release. It flies away quickly so that we can use a short-time
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expansion. Before going into that, we need the initial coordinates of the electron after

tunnelling in the KH potential.

To do so, we recall the initial angular momentum of the electron,

~l0 = ~r0 × ~p0. (3.22)

According to Eq. (3.9), the initial momentum for the laser pulse Eq. (2.7) with ~pe = 0 and

~pq from Eq. (3.6) is given by

~p0 = − ~A(t0 = 0)

=
Fεε

ω
~ex. (3.23)

The initial position is given by

~r0 = ~re + ~rq(t0 = 0)

≈ rq ~ey =
Fε

ω2
~ey. (3.24)

The last approximation can be made for high-intensity laser pulses i. e. |~re| ≪ |~rq|. Here,

~rq(0) = rq ~ey, as calculated for the easiest case of a CW pulse in Eq. (3.3). Using

Eqs. (3.23) and (3.24) in Eq. (3.22) we obtain,

l0 =
F 2
ε ε

ω3
. (3.25)

In polar coordinates l0 is given by

l0 = r20 θ̇0. (3.26)

Comparing this equation with Eq. (3.25) with r0 from Eq. (3.24), the following equality

is found

θ0 = εωt. (3.27)

Now, for a very short time after release, i. e., for t & t0, the above equation can be

approximated as

tan θ = ε tanφ, (3.28)
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where θ is the polar angle of the electron’s trajectory, and φ = ωt is the phase of the KH

potential. Next we will use this short time relation within the KH potential.

The KH potential with f(t) = 1 for a CW laser pulse is given by

V (~r,φ) = − 1
√

(x− rq ε sin(φ))2 + (y − rq cos(φ))2
. (3.29)

Using the following short-time relations, derived from Eq. (3.28)

sinφ =
x

√

x2 + y2ε2
, cosφ =

yε
√

x2 + y2ε2
(3.30)

in Eq. (3.29), the following static potential results

Vs(x, y, rq, ε) = − 1
√

x2 + y2

y2ε2 + x2

(

√

y2ε2 + x2 − rqε

)2
. (3.31)

For near circularly-polarized laser pulses, i. e., ε → 1, the above static potential reduces

to the following ring potential, which has a Coulomb singularity on a ring at |~r | =
√

x2 + y2 = rq, given by

Vring(~r, rq) = − 1

| ~r |− rq
. (3.32)

This ring potential is very similar to the cycle-averaged KH potential. Both have a

singularity at r = rq. However, the types of singularities are different.

The ring potential makes a smooth transition to the Coulomb potential V (~r ) = 1/| ~r |

for distances r ≫ rq i. e. for t ≫ t0, and this is also expected from the exact KH potential.

Therefore, the exact dynamics is reproduced within the ring potential nicely, as shown

in Fig. 3.8(a). The asymptotic angle θ(∞) as obtained from the static potential Vs cf.

Eq. (3.29), is compared within the KH problem which is shown in Fig. 3.8(b). For nearly

CP pulses, both angles agree well with each other. However, for ellipticities smaller

than 1, the final angle captured in the static potential deviates from the KH angle. The

deviation increases with decreasing ellipticity. The reason for the deviation for the low

ellipticities is the low initial velocity of the electron. Since it does not leave the the parent

ion quickly, the short-time expansion fails.
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Figure 3.8: Left panel (a): the most-probable trajectory of the electron, for the para-
meters as in Fig. 3.6(b). The real KH trajectory (red solid curve) is reproduced in the
ring potential (dark-green dashed curve), whereas the trajectory in the cycle-averaged
KH potential, cf. Eq. (3.17) deviates from the real trajectory. Right panel (b): the final
angle of the electrons as a function of ellipticities in all the three potentials namely
time-dependent KH (red circles), cycle-averaged KH potential V0 (orange points), and
the new static potential Vs (dark-green points), cf. Eq. (3.29). The wavelength and
intensity used here are respectively λ = 800 nm, and I = 8 × 1014 Wcm−2 for the He

atom.

The final angle of the electron is close to 90 degree for high ellipticities. Since the

field amplitude at the release time t0 is smaller for the higher ellipticities than for the

lower ones, the tunnel exit-radius becomes larger for the former, and consequently, the

Coulomb attraction force at the exit becomes smaller. This results in almost no deviation

from the 90-degree angle as expected from the SFA problem, i. e., ignoring the Coulomb

attraction force.

In the following a rotated Kepler problem is introduced, which shows that a time-

independent formalism can estimate the electron’s final angle for a larger range of ellipt-

icities.

3.4.2 A rotated Kepler problem

In a Kepler problem, the particle’s trajectory in the presence of a Coulomb attractive

force V (r) is defined by the energy E, the angular momentum l of the particle, and the
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position of the closest approach, which is given by the expression [89]

r(θ) =
l2

1 +
√
1 + 2El2 cos(θ)

, (3.33)

where r, θ are polar coordinates.

The Kepler trajectory Eq. (3.33) is plotted in Fig. 3.9. Figure 3.9(a) shows that the

electron trajectory in the real KH problem does not deviate much from the Kepler tra-

jectory, for intensity I = 8× 1013 Wcm−2. This is expected for such a low intensity, since

the energy E, angular momentum l, and RLV angle α are approximately conserved, as

discussed in section 3.3. Here, we have used E and l, as the initial values (at time t = t0)

E0, and l0 respectively, since they are approximately constant (see Fig. 3.7(a)-(b)).

However, from Fig. 3.9(b) for intensity I = 8 × 1014 Wcm−2, we can see the KH tra-

jectory deviates from the Kepler trajectory. This deviation is expected since the RLV

angle α changes significantly for such high intensity (Fig. 3.7(c)). Since the RLV angle is

directed along the major axis of any Kepler trajectory, to account for the change in α for

the real KH trajectory, we consider a rotation around the major axis by αs, where αs is

the saturation value of α as denoted in Fig. 3.7(c). This rotation is consistent with the

observation that E and l are approximately conserved. The rotated Kepler trajectory

therefore takes the form

r(θ) =
l2

1 +
√
1 + 2El2 cos(θ − αs)

. (3.34)

For a CP pulse with ε = 1, wavelength λ = 800 nm, and intensity I = 8×1014 Wcm−2,

αs = 7.56◦

which is also denoted in Fig. 3.7(c). Using this value of αs with E = E0, l = l0 calculated

at time t = t0 = 0, the rotated Kepler trajectory, cf. Eq. (3.34), as plotted in Fig. 3.9(b),

lies very close to the real KH trajectory.
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Figure 3.9: The most-probable trajectory of the electron, for two different laser in-
tensities — (a) I = 8 × 1013 Wcm−2, and (b) I = 8 × 1014 Wcm−2 . The red curve
is the real time-dependent KH trajectory whereas the orange curve corresponds to the
electron trajectory in the time-independent cycle-averaged KH potential Eq.(3.17). The
black dashed and solid curve in these figures correspond to the Kepler trajectory, cf.
Eq. (3.33) and the rotated Kepler trajectory, cf. Eq. (3.34), respectively. The paramet-
ers are ellipticity ε = 0.8 and wavelength λ = 800 nm for He atom. The initial point is
represented by the circle. See the text for the other details. The rectangular segment

within (b), is shown in Fig. 3.10.

In Fig. 3.10, this slight change in the direction of the closest approach can be noticed

very clearly. So we can see from this figure that the Kepler trajectory, cf. Eq. (3.33), which

is the same as αs = 0 in Eq. (3.34), deviates from the real trajectory. However, by making

a slight change in the closest approach of the Kepler trajectory, i. e., changing αs = 0 to

αs = 7.56◦ in Eq. (3.34), takes the trajectory very close to the real time-dependent KH

trajectory.

In Fig. 3.11, the αs, which are obtained as the RLV angles at the end of the laser

pulse from a KH problem, are plotted as a function of ellipticity ε. For all intensities, αs

decreases with increasing ε. Since the field maximum at the tunnel exit becomes smaller

as we increase ε, hence the exit radius re becomes larger, which makes the rotation angle

smaller for the higher ellipticities. αs has been fitted with the function

αs(ε) = b/ε, (3.35)

with b being the fitting parameter.
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Figure 3.10: The zoomed segment from Fig. 3.9(b). The arrows represent the direction
of the final RLV angle αs, which is also the closest approach of the corresponding Kepler
trajectory. αs = 0◦ for the Kepler trajectory, cf. Eq. (3.33), and αs 6= 0 for the rotated

Kepler, cf. Eq. (3.34) with the value αs = 7.56◦.

  

Figure 3.11: Final RLV angle αs as a function of ellipticty ε for three different laser
intensities. The wavelength λ used here is 800 nm for He atom. The points are the RLV
angle α obtained in a KH problem at the end of the laser pulse and the solid curves are
the corresponding fitting functions, cf. Eq. (3.35) with the fitting parameter b = 5.7◦

for intensity I = 8× 1014 Wcm−2 in (a), b = 4.3◦ for intensity I = 3× 1014 Wcm−2 in
(b), and b = 1.4◦ for intensity I = 8× 1013 Wcm−2 in (c).
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  

Figure 3.12: The asymptotic angle as a function of ellipticity for three different laser
intensities. The angle obtained from the KH problem is plotted with points, the solid
curve corresponds to the rotated Kepler problem as described in the text, and the

dashed curves are the angle from a pure Kepler problem.

We notice that the values of b decrease with intensity, and for the lowest value of

intensity here, i. e., for I = 8 × 1013 Wcm−2, this value is close to zero (the numerical

values are given in the figure caption. For this intensity, b = 1.4◦). This is expected

from our observation of the zero rotation-angle needed to reproduce the KH problem by

a Kepler problem for such low-intensity.

Figure 3.12 compares the electron’s final angle in the KH problem and a rotated Kepler

problem. For the latter, we have propagated the electron trajectory in a Kepler problem,

but not with the KH initial conditions ~r0, ~p0, but with ~r0
′, ~p0

′ translated into the rotated

coordinate system. If the coordinate system is rotated by αs, the coordinate values in

the new frame are obtained by a rotational transformation with the angle -αs,

~r0
′ = R−αs

~r0 ~p0
′ = R−αs

~p0. (3.36)

This transformation is illustrated in Fig. 3.10. The final angle is reproduced within such

a rotated Kepler problem with αs from Eq. (3.35) for all the ellipticities and intensities,

as shown in Fig. 3.12.
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3.5 Summary

In this chapter we formulated a time-independent formalism that can reproduce the exact

field-driven electron dynamics. The classical electron trajectory is separately solvable

in the presence of an oscillatory laser (Simple-man’s model) or in the presence of the

Coulomb interaction (Kepler problem). However, in the combined presence of both it is

difficult to solve. Usually, the strong-field driven dynamics is approximated by the SMM

only, considering that the Coulomb force can be neglected as compared to the strong

laser force. This is not adequate in an attoclock setup. For near CP pulses, the Coulomb

asymmetry plays a crucial role that can not be ignored [18]. Alternatively, separating the

fast laser oscillations from the Coulomb scattering has led to interesting recent theories

[35, 36, 90]. In [35, 36], e. g., the motion-averaged effective potential turned out to be a

pure Coulomb potential which can approximate the real electron dynamics. However, the

theory is only valid for low intensities in the weak-tunnelling regime. This is consistent

with the Keldysh-Rutherford model, which has found the final attoclock offset angle using

only a Rutherford scattering problem showing agreement in the weak-tunnelling regime

only [37]. In the framework of the KH potential, the electron trajectory can be described

exactly. Since for large distances the KH potential becomes a Coulomb potential, and

since in the weak-tunnelling regime, the electron is always far away from the nucleus,

both of the above theories [35, 37] are plausible. However, for the strong-tunnelling

regime, the electron initially stays close to the moving KH potential and then quickly

moves away after release. Therefore a short-time expansion within the KH potential

leading to an unconventional static ring potential, with Coulomb singularity at a ring

of radius equated to the quiver amplitude, reproduces the real dynamics. Moreover, the

short-time behaviour of the conserved quantities of a Kepler problem associated with the

KH trajectory leads to a change in the RLV. This change has been encountered in a

rotated Kepler problem providing the time-independent formalism of electron dynamics

for a broader parameter region.





Chapter 4

Analytical prediction of the

attoclock angle

4.1 Introduction to attoclock

Attosecond angular streaking [7] or the“attoclock” is a new and compelling technique to

probe the microscopic time-resolved dynamics of electrons. When atoms and molecules

are subjected to intense, nearly circularly-polarized laser pulses, the electrons that are

ionized at different times of the corresponding electric field reach the detector at different

deflection angles in the photo electron-momentum plane. This angle can be mapped to

time. Such a method can elucidate various temporal properties of the electrons such as

photo-emission and photo-absorption time delay, tunnelling time of an electron through

an atomic potential barrier, and may also resolve the reaction time of various chemical

and optoelectronic processes with attosecond time resolution.

An attoclock experiment was performed for the first time by Eckle et al in the year

2008 [8]. A Titanium:Sapphire-based laser system is used to produce an elliptically, in

particular nearly circularly-polarized laser pulse characterized by a center wavelength

of 725 nm with a duration of 2 optical cycles. Such a short and intense laser pulse is

focused onto helium atoms and with the cold target recoil ion momentum spectroscopy

(COLTRIMS) apparatus, the photo electron-momentum distribution (PMD) of the ions

generated during the laser-atom interaction is measured [91]. Due to the conservation

51
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of momentum, the PMD of the electrons is essentially a reflection of the corresponding

PMD of the ions (Fig. 4.1), from which the electrons were ionized.

To gain further insight into the dynamics of the ejected electron from the atom and

to study the relevant observables, we illustrate the underlying principles and discuss the

elementary measurement procedures in a typical attoclock experimental setup below.

Figure 4.1: First attoclock experimental results from Eckle et al [8]. This experiment
uses a nearly circularly-polarized laser which is polarized in the xy plane. Top panel:
Photo-electron momentum distribution (PMD). Two symmetric lobes are observed in
the PMD. The attoclock offset angle is defined as the polar angle θ in the photo-electron
momentum plane at which the PMD shows maximum. Bottom panel: The angular
spectra is obtained as the yield as a function of θ. The observed peaks correspond
to the two symmetrically placed maximums of the PMD, and therefore are separated
by an angle 180◦. Typically the angle corresponding to one of these maximums is the

measure of the offset angle. Figure is taken from Eckle et al [8].

4.2 State-of-the-art measurement and attoclock angle

Within the strong-field approximation (SFA), the vector potential corresponding to the

laser field is imprinted on the momentum of the photoelectron, cf. Eq. (2.23). For the

context of the attoclock, the vector potential ~A(t) for an elliptically-polarized laser pulse
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Figure 4.2: Clockwise-rotating electric field vector of an elliptically-polarized laser
(Eq. (2.6)) (a), its projection in the xy plane with the maximum of the field vector
pointing along the negative y axis (b) and the tunnel ionization of an electron in an
atomic potential at the instantaneous electric field maximum Fmax (brown solid line)
(c). Ip is the ionization potential and re is the radial coordinate of electron at the
ionization time. The bottom row shows the schematic of the final PMD without (d)
and with (e) Coulomb interaction. The highest probability of tunnelling is reached
at the peak of the electric field and this corresponds to the most-probable electron

trajectory which is shown in (f).

with a clockwise-rotating electric field is defined by Eq. (2.7). The asymptotic momentum

of the electron which is measured at the detector can be obtained within the SFA by using

Eq.(2.25) at t → ∞, and for a finite-duration laser pulse this yields

~p(t → ∞) = ~A(t0), (4.1)

where, the final momentum depends only on the vector potential at the time of electron

release t0. This means that the electrons ionized at different ionization times reach the

detector with different asymptotic momentum.

Equation (4.1) does not take care of the Coulomb interaction of the ionized electron with

the parent-ion. However, in a realistic scenario, the presence of the Coulomb interaction

can give rise to an interesting shift of the final momentum of the electron given by

Eq. (2.26). The corresponding deflection angle in the photo electron-momentum plane
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depends on the ionization time t0

θ(t0) = tan−1

(

py(t → ∞)

px(t → ∞)

)

, (4.2)

with py and px are the y and x component of the momentum in Eq. (2.26), respectively.

The schematic in Fig. 4.2 illustrates the above mentioned basic principles and meas-

urement procedures. Figure. 4.2(a) shows the electric field of the elliptically-polarized

laser pulse in Eq.(2.7), propagating along the z-axis. The projection of this laser pulse in

the xy plane of polarization is depicted in Fig. 4.2(b). The major-axis of polarization is

along the y-axis, as also can be seen from Eqs.(2.6)-(2.7). The bound electron is released

from the atom by tunnel ionization within a quasi-static scenario, and the most-probable

electron trajectory is generated by the instantaneous field-maximum Fmax. The corres-

ponding effective potential is sketched in Fig. 4.2(c). It can be seen from Fig. 4.2(d) that

the PMD is distributed at a perpendicular direction with respect to the applied electric

field vector Fig. 4.2(b) without including the Coulomb interaction, which follows also im-

mediately from Eq. (4.1). Including the Coulomb interaction, leads to a PMD, tilted by

an angle (see Fig. 4.2(e)). This deflection angle can be calculated by using Eq. (4.2).

The angle at the maximum of the PMD corresponding to the most-probable trajectory

(t0 = 0) is also sometimes called the offset angle, which is then given by

θ0 = θ(t0 = 0). (4.3)

Therefore, θ0 is the angle by which the maximum of the PMD is tilted with respect to

the polarization ellipse’s major axis as shown in Fig. 4.2(e). However, for a circularly-

polarized laser pulse, there is no preferred direction, rather the electrons are distributed

uniformly on a circle for a CW laser or a long laser pulse. To obtain θ0, one requires a laser

pulse with a short duration (few optical cycles, say one or two) in this case. Since the pulse

is short, the ionization amplitude is relevant at the peak of the electric field-amplitude

corresponding to the first optical cycle only and falls rapidly with time. Therefore, the

uniformity is destroyed, and a preferred direction is obtained from which the offset angle is

calculated. However, a real experiment deals with near circularly-polarized laser without

the requirement of such short pulses.
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In [92, 93], the offset angle θ0 is mapped to the tunnelling time , i. e., the time-span an

electron spends under an atomic potential barrier, which is a classical forbidden region.

The time-delay can be obtained by using the following formula [81]

∆τ(t0) =
θ0

ω
. (4.4)

However, finite tunnelling times and their determination through the attoclock is one of

the most discussed controversial topics in strong-field physics [22, 25–28, 37, 41, 42].

Here, we study the post-ionization dynamics of electron starting from the tunnel exit.

The dynamics in this region can be described classically. The electrons can not come

close to the parent-ion in the presence of the near circularly-polarized laser pulse in the

attoclock experimental setup. Therefore, they can not re-scatter or re-collide with the

parent-ion. Rather they are directly ionized and reach the photo electron-momentum

plane with a finite asymptotic angle. In the subsequent sections, we will focus on the

calculations of θ0, cf. Eq. (4.3). Intriguingly, we have found an approximated analytical

expression for this angle, as discussed in section 4.4. It should be noted that there have

been attempts to achieve the goal using different approaches, which can be found in

[20, 37, 83].

We will discuss the derivation of our analytical angle and show its nice agreement with

the numerical results obtained from the classical-trajectory Monte Carlo simulations as

well as with the available experimental data [21, 23, 94].

4.3 Classical-trajectory Monte Carlo simulations

To understand the tunnel-ionized electron dynamics, we adopt the classical-trajectory

Monte Carlo (CTMC) [17, 39, 95] simulation procedure. In this method, electron traject-

ories are simulated by solving classical equations of motion with a selective distribution

of initial phase-space coordinates.
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4.3.1 Classical propagation

We describe the dynamics of the tunnel-ionized electrons in the combined effect of the

laser force and Coulomb attraction in the length-gauge. Within single-active-electron

(SAE) approximation and dipole approximation, the corresponding Hamiltonian is given

by Eq. (2.15).

We solve Hamilton’s equations of motion for this Hamiltonian. The numerical in-

tegration is performed using the leap-frog algorithm [96]. The electron trajectories are

propagated until the end of the laser pulse, where the problem becomes a Kepler prob-

lem. In such a problem, there are three constants of motion, which are respectively, the

angular momentum ~l = ~r × ~p, the Runge-Lenz vector (RLV) ~a = ~p × ~l − ~r/r, and the

energy E = ~p 2/2 − 1/r. Here, ~r and ~p, respectively, are the position and momentum at

the end of the pulse.

The asymptotic momentum ~P , which is typically measured at the detector, is given by

~P = P
P (~l × ~a)− ~a

1 + P 2~l2
. (4.5)

The magnitude P can be evaluated using the conservation of energy, i. e.,

P 2/2 = ~p 2/2− 1/r. (4.6)

The details of the derivation of Eq. (4.5) is given in appendix B.

The details of the initial conditions and the calculations of the relevant observable

measured in an attoclock setup are provided below.

4.3.2 Initial conditions

The initial conditions for the classical propagation can be obtained from the probability

distribution of tunnelling ionization events. Within the adiabatic (quasi-static) tunnelling

scenario, the corresponding ionization rate by Ammosov, Delone, and Krainov (ADK) [67]
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Figure 4.3: PMD and the angular spectra of the ionized electrons obtained from
CTMC calculations are shown in (a) and (b), respectively. The parameters chosen for
this plot are intensity I = 2× 1014 W/cm2, wavelength λ = 800 nm, number of optical
cycles N = 7, ellipticity ε = 0.85 and ionization potential Ip = 0.58 au for an Ar atom.

is given by

R0(t0) = C2
l

2l + 1

2

(

4Ip
F (t0)

)2/
√

2Ip−1

exp

(

−2(2Ip)
3/2

3F (t0)

)

. (4.7)

l is the angular-momentum quantum number of the initial bound state of atom, F (t) =

|~F (t)| is the instantaneous field amplitude of the electric field in Eq. (2.6) at the time

t. In our simulations, we have taken the values of l and the normalization constant Cl

from Ref. [69]. The initial longitudinal momentum is typically assumed to be zero and

the probability of the initial transverse momentum p0,⊥ is distributed by the function

R1(p0,⊥, t0) =
(2Ip)

1/4

√

πF (t0)
exp

(

−
√

(2Ip)p
2
0,⊥

F (t0)

)

(4.8)

according to the ADK model (see [68]). Therefore, each trajectory is weighted by

Rtot(p0,⊥, t0) = R0(t0)R1(p0,⊥, t0). (4.9)
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Including the ground state depletion effect ( GSD [81, 83], see also the appendix C), each

trajectory is weighted by

Rtot,G(p0,⊥, t0) = Rtot(p0,⊥, t0)ρ(t0). (4.10)

Here, ρ(t) is the survival probability of the ground state, defined by

ρ(t) = exp

(

−
∫ t

−∞
R0(t

′)dt′
)

. (4.11)

For the 2-dimensional problem with an elliptically-polarized field (Eq. (2.6)) with po-

larization in the xy plane, the initial positions and momenta are given by

r0,y = −Fy(t0)

F (t0)
re, p0,⊥y =

Fx(t0)

F (t0)
p0,⊥p, (4.12a)

r0,x = −Fx(t0)

F (t0)
re, p0,⊥x = −Fy(t0)

F (t0)
p0,⊥p. (4.12b)

Here, re is the tunnelling exit-radius. The transverse momentum p0,⊥ can be divided into

two components i. e.

p20,⊥ = p20,⊥p + p20,⊥z. (4.13)

p0,⊥p is orthogonal to the instantaneous field direction but lies in the plane of polarization,

and p0,⊥z is along the z axis which is typically assumed as zero [97].

The final angle depends sensitively on the assumption we make on re and p0,⊥p. Dif-

ferent existing theoretical assumptions on re will be discussed in appendix E. The theory

discussed therein is based on adiabatic tunnel ionization, where the electron’s energy

during tunnelling is conserved and given by the ionization potential Ip. In the case of

non-adiabatic tunnel ionization, the electron’s energy is not conserved and depends on

the instantaneous field amplitude resulting in the modification of re. Various theoretical

models have been proposed in the non-adiabatic regime [41, 72, 84]. In section 4.7, we

will propose a new way to determine re that is different from the conventional ones. Using

the available experimental data our analytical formula is presented in section 4.7. This

newly proposed exit radius is consistent with the non-adiabatic results in [41].
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4.3.3 PMD and the offset angle

The photo electron-momentum distribution (PMD) (Eq. (4.5)) is calculated here with the

CTMC simulation method in this section. For this purpose, 25000 trajectories have been

launched while the ionization time t0 and the transverse momentum p0,⊥p are sampled

according to the distribution in Eq. (4.10) in the parameter space
[

-NT
2
, NT

2

]

and [-3 σ, 3

σ], respectively. Here, σ =

√

F (t0)

(2Ip)
1/4

is the width of the Gaussian probability distribution

function for the transverse momentum in Eq. (4.8), and N is the number of optical cycles

within a Cos4 envelope, cf. Eq. (2.10). The sampling of the initial conditions has been

performed according to the method described in [17]. This method is way more efficient

than to propagate a uniform distribution of initial conditions and then to weight the ob-

servable by the total tunnelling-ionization probability. The tunnel exit-radius re is chosen

within the adiabatic tunnelling-ionization scenario with parabolic coordinates ([21],[98]),

cf. Eq. (E.4).

After setting up the initial conditions, the trajectories are propagated until the end of

the pulse with Hamiltonian equations of motion for the Hamiltonian in Eq. (2.15). Then

the asymptotic momentum ~P is calculated for each of the trajectories using Eq. (4.5).

The PMD is shown in figure 4.3 with a laser pulse of wavelength λ = 800 nm, ellipticity

ε = 0.85, N = 7 optical cycles, and intensity I = 2 × 1014 W/cm2 for an Ar atom with

ionization potential Ip = 0.58 au. The spectra of the asymptotic momentum is calculated

from

YP =
n

∑

i=1

Kδp(pxi − Px) Kδp(pyi − Py), (4.14)

with

Kδp(a) =
1√
πδp

exp
(

− a2

δp2
)

. (4.15)

Here, δp is chosen such that the above Kernel K satisfies the following relation

∫ ∞

−∞
da Kδp(a) = 1. (4.16)

The summation in Eq. (4.14) has been performed numerically by constructing a 2D grid

of dimension n = 25000 on the x and y component of the asymptotic momentum P ,
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which are Px and Py respectively. Here, (pyi, pxi) implies the ith point on this grid. The

PMD YP is plotted as a function of Px and Py in Fig. 4.3(a).

Now, to find θ0, the angular-spectra Yθ have been calculated with

Yθ =
n

∑

i=1

Kδθ(ηi − θ), (4.17)

where ηi = tan−1
(

pyi
pxi

)

, and θ = tan−1
(

Py

Px

)

is the polar angle in the photo electron-

momentum plane. The kernel K is given by

Kδθ(ϑ) =
1√
πδθ

exp
(

− ϑ2

δθ 2

)

. (4.18)

Here, δθ is chosen in such a way that K satisfies the relation

∫ 2π

0

dϑ Kδθ(ϑ) = 1. (4.19)

The angular-spectrum Yθ in Eq. (4.17) has two maxima, as shown in Fig. 4.3(b). The

spectrum is fitted by Gaussian functions near the maxima, yielding the two peak positions

at θ1 = −10.32 and θ2 = 168.46 degrees. They are almost 180 degrees apart from each

other as they correspond to the two maxima of the PMD (Fig. 4.3(a)). Since the laser

pulse is finite with a short duration, the two peaks do not lie exactly opposite to each

other. If one would use a long pulse, peaks in exact opposition would be achieved. Here,

the offset angle θ0 is calculated as the absolute average of the above two peak-positions,

which gives

θ0 = 10.93◦. (4.20)

4.4 Analytical formula for the attoclock angle

In the previous chapter, we have seen that the dynamics of an ionized electron in the

presence of an external oscillatory laser field becomes much easier to analyse when the

laser-atom interaction is described in the Kramers-Henneberger (KH) frame. Using the
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KH frame description, we obtain an approximated analytical expression for the attoclock

offset angle.

4.4.1 Impulse from the KH potential

In the previous chapter we have seen that when an electron’s trajectory is described in

a KH potential, there are no wiggles visible, even in the presence of an oscillatory laser

field. The Hamiltonian describing the laser-driven dynamics of an electron in the KH

frame is given by Eq. (3.1). For the simplest case with CW laser, the initial conditions

Eq. (3.9) in the KH frame corresponding to the most-probable trajectory (the ionization

probability Eq. (4.7) is highest at the maximum of the field amplitude F (t0) which occurs

at t0 = 0 for the laser pulse defined in Eq. (2.6) and (2.7)) are given by

y(t0 = 0) = re + rq py(t0 = 0) = 0 (4.21a)

x(t0 = 0) = 0 px(t0 = 0) = εpq, (4.21b)

where, pq = ωrq is the quiver momentum.

The asymptotic momentum can be obtained by the impulse from the KH potential,

given by

~P = −
∫ ∞

t0

dt ∇V (~r(t)− ~rq(t)). (4.22)

When different approximations are taken into account, the above impulse integral will

lead to an analytical expression for ~P , as discussed in the next section.

4.4.2 Approximated analytical expression

A perturbation theory approach can be applied to calculate the impulse integral. In

this context, the free-particle solutions for the trajectory ~r(t) are obtained from the

Hamiltonian without any potential i. e. H = p2/2 and are given by

y[0](t) = re + rq x[0](t) = εpqt. (4.23)
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The above trajectory corresponds to the unperturbed free electron Hamiltonian. The first-

order asymptotic momentum is then given by the momentum in the unperturbed problem

to which an impulse is added from the KH potential evaluated with the unperturbed

trajectory. This gives

P [1]
y = P [0]

y −
∫ ∞

0

dt d[0](t) [y[0](t)− yq(t)] (4.24a)

P [1]
x = P [0]

x −
∫ ∞

0

dt d[0](t) [x[0](t)− xq(t)], (4.24b)

where

d[0](t) = |~r [0](t)− ~rq(t)|
−3. (4.25)

[0] always identifies the unperturbed quantity. From Eq. (4.23) we have

P [0]
y = 0 P [0]

x = εpq. (4.26)

Using P
[0]
y and P

[0]
x from the above equation into Eq. (4.24), one obtains

P [1]
y = −

∫ ∞

0

dt d [0](t) [y[0](t)− yq(t)] (4.27a)

P [1]
x = εpq −

∫ ∞

0

dt d[0](t) [x[0](t)− xq(t)]. (4.27b)

The above impulse integral has no analytical closed-form solution, it can only be solved

numerically. As such there is no advantage compared to Eq. (4.22). However, it is possible

to approximate it. To get approximated analytical expressions of this impulse, one should

consider that re ≫ rq for low-intensity, referred to as Case A below, and, re ≪ rq for

high-intensity, referred to as Case B in the following.

Case A (low-intensity): For low intensities I, the quiver amplitude rq is small. We

assume that rq ≈ 0 in the integral Eq. (4.27), allowing the following closed-form analytical
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expressions for the asymptotic momenta

P [1A]
y = −

∫ ∞

0

dt
y[0](t)

[

[y[0](t)]2 + [x[0](t)]2
]3/2

= −
∫ ∞

0

dt
[re + rq]

[

[re + rq]2 + [εpqt]2
]3/2

= − 1

[re + rq]εpq
, (4.28)

P [1A]
x = εpq −

∫ ∞

0

dt
x[0](t)

[

[y[0](t)]2 + [x[0](t)]2
]3/2

= εpq −
∫ ∞

0

dt
[εpqt]

[

[re + rq]2 + [εpqt]2
]3/2

= εpq −
1

[re + rq]εpq
, (4.29)

here y[0](t) and x[0](t) are used from Eq. (4.23). Surprisingly, the above two integrals give

the same results, and the final momentum differs by the initial momentum only. The

corresponding asymptotic angle in the momentum plane is obtained as the absolute of

arctangent of the ratio between the y-component and x-component momentum.

θ0A =

∣

∣

∣

∣

∣

tan−1

(

P
[1A]
y

P
[1A]
x

)∣

∣

∣

∣

∣

. (4.30)

The dependence of the laser parameters within these equations are discussed below.

P
[1A]
y decreases with quiver amplitude rq, and the initial momentum εpq. This makes it

decrease as a function of field amplitude. The explicit dependence on the field amplitude

with re = re, SFA, cf. Eq. (E.3) can be seen from

P [1A]
y = − ω

ε(Ip + F 2
ε /ω

2)
. (4.31)
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Figure 4.4: (a) : The intensity dependence of the analytical offset angle for the low-
intensity branch θ0A in Eq. (4.30) (blue solid curve) and for the high-intensity-branch
θ0B in Eq. (4.37) (red solid curve). (b) : Intensity dependence of the analytical angle
θapp in Eq. (4.41) (red dashed curve) and the real offset angle as obtained in a KH
problem in Eq. (3.1) (black solid curve). The curves from (a) are represented by gray
solid lines. Intensity is given by I = F 2

max. Here N = 2 optical-cycles, wavelength
λ = 800 nm, ellipticity ε = 1.0, and Ip = 0.9 au for the He atom.

P
[1A]
x increases with the initial momentum, hence also with the field amplitude, as seen

from

P [1A]
x = εFε/ω. (4.32)

This results in the angle to follow the same qualitative behaviour as P
[1A]
y does as a

function of field amplitude, which is explicitly simplified in

θ0A =

∣

∣

∣

∣

tan−1

(

ω2

ε2Fε(Ip + F 2
ε /ω

2)

)
∣

∣

∣

∣

. (4.33)

From this equation it is clear that the angle decreases with the field amplitude viz.

intensity I (see Fig. 4.4(a) (blue solid curve)).

Clearly, two terms compete with each other. These are the electron’s kinetic energy

(KE) and potential energy (PE) due to the Coulomb attraction with the parent ion at

the release time. When I increases, the initial momentum increases, and re decreases,

increasing both the KE and PE. However, both of these energies have a different impact

on the final angle. The higher KE causes a smaller angle. On the contrary, higher PE
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causes a larger angle. Therefore, whether the angle decreases or increases as a function

of I is decided by the dominants of KE or PE. Within the present low-intensity regime,

the KE dominates over the PE because of the larger re. So, the angle decreases with

increasing I.

However, above some critical intensity where the quiver amplitude rq becomes compar-

able with the tunnel exit-radius re, such low-intensity approximation remains no longer

valid. The critical intensity I∗ is reached at rq = re, and for the SFA barrier exit Eq. (E.3)

it can be calculated as

Fε∗

ω2
=

Ip
Fε∗

or, F∗ = ω

√

Ip(1 + ε2), (4.34)

for a circularly-polarized laser pulse (ε = 1) of wavelength 800 nm, the critical intensity

I∗ = F 2
∗ for a Helium atom with Ip = 0.9 au equals 1.75× 1014 W/cm2 (as marked by ‘↑’

in Fig. 4.4). Next we investigate the impulse integral in Eq. (4.27) for high-intensity i. e.

I & I∗, and discuss the approximations required to obtain an analytical expression of the

attoclock angle in this regime.

Case B (high-intensity): For rq & re, we cannot neglect the terms containing rq as

we did for low intensity. Due to the high intensity, the initial momentum p0 = εωrq

(Eq. (4.21)) of the electron becomes large, and therefore the ionized electron flies very

quickly away from the parent-ion with a large momentum. From Fig. 4.5, we see that

the y-component of the KH force Fy(= ṗy) (the major-axis of the polarization-ellipse)

obtained from the Hamilton’s equations of motion corresponding to the KH Hamilto-

nian in Eq. (3.1) decreases faster to zero at high intensities within a very short time-

scale (t/T ≪ 1 ⇒ ωt ≪ 1) after the electron reaches the barrier at t = 0. Therefore,

we can Taylor-expand the sinusoidal-terms in Eq. (4.27) up to second-order in t, i. e.,

sin(ωt) ≈ ωt, cos(ωt) ≈ 1 − ω2t2/2 (Within such approximations, the elliptical motion

of the KH potential as depicted in Fig. 3.1 is approximated as a hyperbolic motion and

the corresponding KH trajectory can be described by an accelerated Kepler problem

(AKP) [99],[100], see appendix D). Thus in the high-intensity regime, as the electron is

released from the parent-ion within a very short time, its asymptotic momenta can be
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Figure 4.5: The component along the y-axis (the major-axis of the polarization-
ellipse) of the KH force Fy as function of t. The parameters are N = 4 optical-cycles,

wavelength λ = 800 nm, ellipticity ε = 1.0, and Ip = 0.9 au for the He atom.

approximated in the following simplified form with the analytical expression

P [1B]
y = −

∫ ∞

0

dt
y[0](t)− rq[1− ω2t2/2]

[

[

y[0](t)− rq[1− ω2t2/2]
]2

+
[

x[0](t)− εωrqt
]2
]3/2

= −
∫ ∞

0

dt
1

[re +
1
2
rqω2t2]2

= − π
√

Fε[2re]3
, (4.35)

P [1B]
x = εpq −

∫ ∞

0

dt
x[0](t)− εωrqt

[

[

y[0](t)− rq[1− ω2t2/2]
]2

+
[

x[0](t)− εωrqt
]2
]3/2

= εpq, (4.36)

where y[0](t), x[0](t) are from Eq. (4.23). The integral in P
[1B]
x is zero because the nu-

merator of the integrand becomes zero which certainly follows from Eq. (4.23). The

corresponding asymptotic angle in the momentum plane is

θ0B =

∣

∣

∣

∣

∣

tan−1

(

P
[1B]
y

P
[1B]
x

)∣

∣

∣

∣

∣

. (4.37)
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P
[1B]
y shows a different qualitative behaviour as a function of intensity than P

[1A]
y . By

using the SFA formula for re, cf. Eq. (E.3), P
[1B]
y is reduced to

P [1B]
y = − πFε

√

(2Ip)3
, (4.38)

therefore it is linearly proportional to the field-amplitude. P
[1B]
x is also linearly propor-

tional to the field amplitude, resulting in no intensity dependence on the final angle. The

momentum along the major axis of the polarization ellipse has also been obtained within

the CCSFA approach [15, 18, 20, 39, 101].

The final angle of Eq. (4.37) is plotted in Fig. 4.4(a) (red solid curve), for re = rPara,

cf. Eq. (E.4). One can see the weak dependence of the angle on I for this high-intensity

branch. It is understood that there are two facts responsible for the feature of the final

angle as a function of I, which are the KE, and the PE, respectively, and both of them

have opposite effects. In this intensity regime, they almost balance each other, resulting

in the weak dependence of θ0B on I.

This high-intensity approximation relies on the fact that the electrons fly away from the

parent-ion with a high initial momentum. Since the initial momentum follows the relation

p0 = εFε/ω (Eq. 4.21), i. e., it increases with ellipticity but decreases with frequency, the

approximation becomes more valid for the laser pulse with higher ellipticity but lower

frequency as discussed later in section 4.6.2.

We connect the above described two extreme cases by adapting the avoided crossing

method of a two-level system where we consider θ0A and θ0B, cf. Eq. (4.30) and (4.37)

respectively, as the two levels, leading us to construct the following matrix with a real

matching-factor δ,

Θ =





θ0A 0

0 θ0B



+





0 δ

δ 0



 . (4.39)

The two eigenvalues of Θ are given by

θ± =
(θ0A + θ0B)

2
±

√

(θ0A − θ0B)2

4
+ δ2, (4.40)
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out of which we choose θ+ as the analytical angle since asymptotically it approaches to

θ0A and θ0B, and therefore the approximated offset angle is given by

θapp =
(θ0A + θ0B)

2
+

√

(θ0A − θ0B)2

4
+ δ2. (4.41)

The matching factor is calculated as follows. From Eqs. (4.31) and (4.38), we can see

that Py, for the low-intensity branch, decreases with intensity and for the high-intensity

branch, increases with intensity i. e. Py behaves qualitatively the same as the angle. There-

fore, the Py from these two intensity branches, are connected as

Py,app =
(P

[1A]
y + P

[1B]
y )

2
+

√

(

P
[1A]
y − P

[1B]
y

)2

4
+ δ2, (4.42)

where

P [1A]
y = − ω

(Ip + F 2
ε /ω

2)
, and P [1B]

y = − πFε
√

(2Ip)3
. (4.43)

For the attoclock setup, ellipticities lie in the range 0.8 < ε < 1, therefore, here, to obtain

P
[1A]
y , we have used ω/ε → ω in Eq. (4.31). This two momenta P

[1A]
y and P

[1B]
y , as a

function of Fε, cross each other (P
[1A]
y decreases with Fε, and P

[1B]
y increases with Fε),

and from our previous discussion, we know that the crossing occurs approximately at

Fε = Fε∗, cf. Eq. (4.34). At this point, we use the observation that the actual offset angle

has a minimum near the crossing, therefore near Fε = Fε∗, which is also true for the total

momentum Py,app. Hence, to obtain the value of δ, we solve the following equation

dPy,app

dFε

= 0, (4.44)

at Fε = Fε∗ = ω
√

Ip. It is just an approximation based on observation. At the actual

crossing point δ equals zero, however, since the crossing is not exactly at Fε∗, this equation

gives a measure of the finite delta as a function of frequency ω, and ionization potential

Ip,

δ(ω, Ip) =
3ω

4Ip
. (4.45)

This qualitative behaviour of δ(ω, Ip) is understood as follows. For the atoms with lower

Ip, the electron experiences a stronger Coulomb attraction force at the tunnel exit because
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it is closer to the parent ion (re is small); this can also be seen from Eqs. (E.2)-(E.4). This

high Coulomb attraction prevents the electron from flying away quickly from the parent-

ion because of low initial KE, and hence the short-time Taylor-expansions that have been

used to obtain Eq. (4.37) are not valid. This deviation for lower Ip can be compensated

by tuning δ, and therefore as lower the Ip is larger is the δ. The ω-dependence of δ is also

explained by a similar logic, i. e., as larger the ω is, as lower is the initial momentum/KE.

The high-intensity approximation is accordingly less valid, requiring larger compensation

through δ. Therefore the proportionality with the frequency ω in δ(ω, Ip) is justified.

In Fig. 4.4(b), θapp from Eq. (4.41) is plotted (red dashed curve) as a function of intensity

I which agrees very well with the exact angle (black solid curve) obtained from the KH

problem. In the subsequent sections we will discuss how well this analytical formula

behaves as compared to other theories, and agrees with the numerical simulations and

available experimental results.

4.5 Other theoretical studies of the offset angle

A conclusive picture is shown in Fig. 4.6, where we compare our results with other estab-

lished works, which are briefly discussed below.

According to the Keldysh-Rutherford (KR) model, the final attoclock offset angle can

be obtained from a Rutherford scattering problem [102], which yields

θ0 =
ω2

Ip

1.0 + α

I0.5+β
. (4.46)

However, this is valid only for the CP pulse with ellipticity ε = 1.0. Moreover, we see

from Fig. 4.6 that it satisfies the numerically obtained angle for very low intensities and

deviates when the intensity is high. Another approach, namely Coulomb corrected SFA

(CCSFA), was first introduced by Goreslavski et al [15]. The final photo-electron mo-

mentum is corrected as an impulse from the Coulomb potential. The trajectory required

for calculating such an impulse is obtained using the SFA. Considering this theory, the



Analytical prediction of the attoclock angle 70

Figure 4.6: Final offset angle as a function of intensity for different models. see the
text for details.

offset angle is given by

θ0 = tan−1

(

π

(2re)3F (t0)A(t0)

)

(4.47)

F (t0) and A(t0) respectively are the amplitude of the electric-field and vector potential

at the ionization time. Although θ0 in Eq. (4.47) agrees with the numerically obtained

values for the higher intensity, a noticeable deviation can be seen from Fig. 4.6 for the low

intensities. Last but not least, Liu et al provided the following expression of the offset

angle for a CP pulse [83]

θ0 = tan−1

(

1

R− 1

)

, (4.48)

where R = Fmax/(2ωpc) with pc being the difference in the final momentum and the

corresponding SFA momentum along the minor axis of the polarization ellipse.

The offset angle variation with intensity obtained using the above theoretical models

is compared and summarized in Fig. 4.6 for a Ne atom. It can be clearly seen that our

predicted analytical angle provides the best agreement with the exact numerical result

compared to the existing theories.
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4.6 Connections with the CTMC results

In the following we obtain the attoclock offset angle (θ0) by performing CTMC simula-

tions, as discussed in section 4.3 and compare them with the analytical prediction for the

angle in Eq. (4.41) for different atomic ionization potentials and laser parameters.

4.6.1 Different ionization potentials

To study the intensity dependence of the attoclock angle for different atoms with different

ionization potentials Ip, the offset angles from the CTMC simulation are compared with

the corresponding analytical prediction. CTMC calculations are done with a CP laser

pulse of wavelength λ = 800 nm and a duration of N = 2 optical cycles for four different

atoms He, Ne, Ar, H with the ionization potentials listed in Table 4.1. Here, the exit-

radius re is chosen from the parabolic barrier, cf. Eq. (E.4) because alternatively such as

the FDM Model, cf. Eq. (E.2), reads OBI at much lower intensities, as discussed in the

appendix E, especially for atoms with lower Ip.

Surprisingly, the results obtained from the CTMC calculations, without ground-state

depletion, i. e., setting ρ(t0) = 1 in Eq. (4.10), are in good agreement with the analytically

predicted angle as shown in Fig. 4.7. The final angle increases with lowering Ip because

lower Ip implies larger Coulomb attraction energy at the exit, resulting in larger final offset

angles. This qualitative behaviour is captured by the analytical angle, decreasing with

increasing Ip. This can be understood by looking at the momentum Py,app from Eq. (4.42),

where it can be clearly seen that Py,app increases with decreasing Ip, as does the P
[1A]
y ,

P
[1B]
y , and δ (cf. Eq. (4.45)). Since Px ≈ εωrq does not depend on Ip, the offset angle

increases with decreasing Ip. Not only qualitative but reasonable quantitative agreement

with the CTMC results are also achieved.

Species He Ne Ar H
Ip [au] 0.9 0.79 0.58 0.5

Table 4.1: Values of ionization potentials Ip for different atomic species.
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Figure 4.7: Offset angle as a function of intensity I for different atoms. Triangles and
circles are the CTMC results with and without the ground state depletion (Eq. (4.10))
respectively, performed using the circularly-polarized pulse with N = 2, wavelength
λ = 800 nm. The dashed lines are the analytical angle obtained from Eq. (4.41) us-
ing parabolic exit-radius (Eq. (E.4)), within the CTMC calculations as well we have

considered re = re,Para.

4.6.2 Different laser parameters

To access the validity of the analytical attoclock angle further, we study its ellipticity

and frequency dependence for three different atoms (He, Ar, and Kr) and compare them

with the offset angle obtained from CTMC calculations, as shown in Fig. 4.8.

We can see from Fig. 4.8(a) that the analytical angle agrees very well with the CTMC-

angle for the nearly circularly-polarized laser pulses (0.8<ε<1.0) as a function of ellipticity

for all three atoms. Only a small deviation is consistently observed for the lower ellipticit-

ies particularly for the atoms with a lower Ip (Ar and Kr), which originates from the low

initial momentum for lower ellipticities. This renders the high-intensity approximation

less valid, as also discussed before. The offset angle shows a slow decrease as a function of

ellipticity for the three atoms, and this behaviour is captured both, in the CTMC results
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and the analytical prediction. The increase in ellipticity implies a smaller the field amp-

litude at the exit, which makes the exit-radius larger. Therefore, the Coulomb attraction

of the electron at the release-time decreases, causing a reduction in the final offset angle.
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Figure 4.8: Offset angle as a function of ellipticity ε (a), and frequency ω (b) for three
atoms He, Ar and Kr with the other fixed laser parameters as mentioned at the top
of each figure. The points are obtained from CTMC simulation and the dashed lines

represent the analytical angle. Number of laser optical cycles used is N = 3.

On the other hand, the offset angle increases with frequency ω for both, the CTMC

results and the analytical prediction. This occurs because of the lower initial momentum

(Fε/ω, cf. Eq. (4.21)) of the ionized electron at the release-time at higher frequencies,

which keeps the escaping electron longer exposed to significant Coulomb attraction, res-

ulting in a higher offset angle. However, as a function of frequency, the analytical predic-

tion deviates from the CTMC results for the higher frequency regime, whereas it agrees

reasonably well for the low-frequency laser pulses (see Fig. 4.8(b)). This behaviour is the

same for all three atoms. We can identify the reasons for this deviation in the high-

frequency regime: firstly, the Taylor expansion used in the derivation of the analytical

expression for the angle is valid for ωt ≪ 1, which is not fulfilled when ω is high, secondly,

the ionized electron’s lower initial momentum due to the higher frequency ω renders the

high-intensity approximation in the analytical approximation of the angle less valid, which

has been also discussed before.
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The discussed deviations of the analytical prediction from the CTMC results appear for

Ar, and Kr. For He, however, the analytically derived angle is always in good agreement

with the CTMC simulations due to the high ionization potential Ip.

4.7 New exit-radius relating to the experiment

In this section, we will propose to define new tunnel exit conditions using the analytical

angle and the available experimental data. To this end, the analytical angle is re-written

as

θexp =
θ0A(re, ε, Fmax,ω) + θ0B(re, ε, Fmax,ω)

2

+

√

(θ0A(re, ε, Fmax,ω)− θ0B(re, ε, Fmax,ω))2

4
+ δ(ω, Ip). (4.49)

Here, θapp from Eq. (4.41) is replaced by θexp, which is the attoclock offset angle obtained

from the experiment. The formula for θ0A, and θ0B, are used, respectively, from Eq. (4.30),

and Eq. (4.37), as a function of re, ε, Fmax, and ω, whereas δ is used from Eq. (4.45) as a

function of ω, and Ip. Knowing the corresponding laser parameters and Ip of the atoms

from the respective experiment, the equation (4.49) is solved for the only unknown re by

a root-finding method. The solutions (denoted by re,ext) are plotted as a function of Fmax

in Fig. 4.9.

Figure 4.9(b) and (c) show the re,ext for the Ar and He atom, respectively, with the

experimental data taken from A. N. Pfeiffer et al [21] which uses an elliptically-polarized

laser pulse with ellipticity ε = 0.78, wavelength λ = 740 nm and 7 fs duration. There are

no experimental data available for the absolute offset angle of Kr atoms, but the angle

difference between Ar and Kr is provided by N. Camus et al [23] for the gas mixture of

Ar and Kr. This result is used here to extract the absolute angle for Kr by using the data

for Ar atom from [21] as a reference as shown in Fig. 4.9 (a). The experiment on the gas

mixture of Ar and Kr uses a laser pulse with ellipticity ε = 0.85, wavelength λ = 1300 nm

and 35 fs duration.
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Figure 4.9: Tunnel exit-radius re as a function of the field amplitude Fmax. Circles
represent re extracted from the experiment as described in the text and the dashed
lines are the corresponding adiabatic SFA exit barrier (Eq. (E.3)). The solid lines

are obtained from the fitting function rfit =
(Ip−a)

√
1+ε2

Fmax−Fs
. The values of the fitting

parameters a and Fs are listed in Table 4.2.

As described earlier, the exit-radius re can not be directly measured in experiment.

However, it can be predicted by different theoretical models, as discussed in appendix E,

with different implications. Let us now see how the extracted re,ext agrees and/or differs

from the conventional models. re,ext is plotted (filled circles) in Fig. 4.9. As a reference,

re from the SFA model (dashed lines) cf. Eq. (E.3) is also shown. Although re,SFA agrees

with the re,ext for He atom as shown in Fig. 4.9, this is not true for Ar and Kr. Therefore,

we introduce the fitting function

rfit =
(Ip − a)

√
1 + ε2

Fmax − Fs

. (4.50)

This is a new and unconventional exit-radius that differs from the re,SFA in the numerator

by subtracting a fitting parameter a from Ip, and in the denominator where the Fmax

is subtracted by a second fitting parameter Fs. The parameter a acknowledges non-

adiabatic tunnelling ionization which changes the energy at the tunnel exit with respect

to Ip. With Fs we take into account that ionization can happen before Fmax is reached.

The fitted values of a and Fs, are listed in Table 4.2 corresponding to Fig. 4.9(a), (b),

(c), respectively, for Kr, Ar, and He atoms. The new exit-radius (solid lines) agrees

reasonably well with the extracted exit-radius rext from the experiment. The physics

behind the monotonic behaviour (shown in Table 4.2) of a and Fs with Ip is discussed

below.
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species Ip[au] a[au] Fs[au]
Kr 0.51 0.0 0.017
Ar 0.58 0.0 0.008
He 0.9 0.04 0.0

Table 4.2: a, Fs values in rfit in Eq. (4.50).

It can be seen from Table 4.2 that the a 6= 0 for the He atom. This results from

the non-adiabatic tunnel ionization. The electrons reach the tunnel-exit with lower total

energy than the quasi-static energy Ip because the electron gains energy on the way to the

tunnel-exit due to the time-dependent electric field. It should be noted that this non-zero

value of a can be compared with the corresponding non-adiabatic energy as calculated

by the classical back-propagation method for the He atom obtained in [41]. The energy

therein lies on an average 0.1 au above −Ip. The fitted value for us is 0.04 au (Table

4.2). Note that a is zero for atoms with lower Ip. In the present high-intensity regime,

for those lower Ip, the barrier-width is so small that the electron reaches the exit too fast

to gain energy.

On the other hand, Fs is zero for He and monotonically increases going from high Ip

(Ar) to low Ip (Kr). This comes from the early ionization events occurring due to ground

state depletion, as discussed in appendix C. So far, in the analytical derivation of the offset

angle (Eq. (4.41)), we have not considered the ground state depletion, and therefore we

set ρ(t0) = 1 in Eq. (4.10). This implies that the ionization probability is highest at the

field-maximum, which occurs at t0 = 0 (Eqs. (2.6)-(2.7) and (4.7)). However, considering

the ground state depletion i. e. ρ(t0) 6= 1 (cf. Eq. (4.11)), the highest ionization probability

occurs earlier than the field’s peak at t0<0. Therefore, this early ionization effect is taken

care by subtracting a positive shift Fs from the field-maximum Fmax in rfit. Since the

ground state depletion effect increases with lowering Ip (see appendix C), the shift Fs

also increases.

4.8 Analytical shift for the bicircular attoclock

To get more insight from our theory, we apply it in this section, for an attoclock setup

with bicircularly-polarized laser pulses [103]. The vector potential of the bicircular field
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is given by

~A(t) = − Fmax/ω√
1 + ε2

(





cos(ωt)

sin(ωt)



+ ε/2





± cos(2ωt)

sin(2ωt)





)

, (4.51)

where a plus, and a minus sign represents a co-rotating and a counter rotating bi-circular

pulse, respectively.

Now, considering the low-intensity approximation (rq ≈ 0, Case A) and the high-

intensity approximation (Taylor-expansion of all the sinusoidal terms upto second order

in time t, Case B) within the impulse from the KH potential, cf. Eq. (4.22), with the

co-rotating bi-circular laser field, the asymptotic momentum Py assumes the form

P [1A]
y = − ω3

[Ipω2(1 + ε) + F 2
ε (1 + ε/4)](1− ε/2)

(4.52a)

P [1B]
y = −πFε(1 + ε)

√

(2Ip)3
. (4.52b)

It is clear from the above equations that P
[1A]
y and P

[1B]
y , respectively, fall and increase

with the field-amplitude Fε. They cross near re = rq, which correspond to the critical

field-amplitude

Fε∗ =
ω
√

Ip

(1 + ε) (1 + ε/4)
. (4.53)

Using the same process as adopted for the CP pulses, the two branches are connected by

the matching factor δ, which is determined here for the bicircular pulse with ε = 1/2 as

a function of ω, and Ip to be

δ =
0.51ω

Ip
. (4.54)

The final momentum is calculated as

Py,app =
(P

[1A]
y + P

[1B]
y )

2
+

√

(

P
[1A]
y − P

[1B]
y

)2

4
+ δ2, (4.55)

where P
[1A]
y , P

[1B]
y , and δ are obtained from Eqs. (4.52)(a)-(b), and (4.54), respectively.

For ε = 1/2, the respective field is known as quasi-linear field as described in [103],

and for the laser parameters used in that article, i. e., intensity I = 7× 1014 Wcm−2 and
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wavelength λ = 800 nm for He atom, the momentum in Eq. (4.55) gives

Py,app = 0.1878 au. (4.56)

This agrees well with the shift in momentum Py in Fig. 1(c) of [103], which is around

0.2 au.

4.9 Summary

Attoclock or attosecond angular streaking is a powerful technique to probe the microscopic

dynamics of tunnel-ionized electrons by an intense, elliptically-polarized laser pulses. The

asymptotic angle with which the ionized electrons reach the detector is measured in the

two-dimensional photo electron-momentum plane. In this chapter we have studied such

microscopic dynamics of electrons classically. In this context, we have derived an ana-

lytical expression for the attoclock angle corresponding to the most-probable electron

trajectory. The derivation is based on the impulse approximated from the Kramers-

Henneberger potential; the separation of the impulse integral into the low-intensity (exit-

radius is much larger than the quiver amplitude) and high-intensity (quiver amplitude

is much larger than the exit-radius) allowed us to obtain an approximate analytical for-

mula in these two intensity regimes, separately, which is then combined by introducing

a matching-factor δ using the concept of avoided-crossings of two-state systems, which

determines the continuation from the two intensity regimes for each intensity.

Surprisingly, the analytical formula agrees very well with the one obtained from the

classical-trajectory Monte Carlo (CTMC) simulations for atoms with high Ip and nearly

circularly-polarized, low-frequency laser pulses for a large range of laser intensities. Moreover,

this formula shows both, qualitative and quantitative agreement with the CTMC results

with various models for the tunnel exit-radius re.

Furthermore, we have verified the validity of the analytical angle by comparing with the

available experimental data for He, Ar, and Kr atoms. In particular, we have proposed

an unconventional and experimentally relevant exit-radius re. The tunneling exit-radius
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enters our approximate determination of the attoclock angle and can therefore be de-

termined experimentally within our approach through measured attoclock angles. On

the other hand, we can fit the exit-radius obtained in this way to properties of the laser

pulse and the target atom (Ip) only, which provides reasonable insight, consistent with

the tunnelling ionization scenario. The simulation can be further extended to quantum

mechanical ones to check the validity and consistency of this proposed exit criteria.





Chapter 5

Summary and conclusions

This thesis has investigated the post-tunnelling ionization dynamics of electrons in the

presence of intense laser-atom interaction classically. An elliptically-polarized laser pulse

polarized in a two-dimensional plane has been considered throughout the work, which

allows the electron to reach the detector without any re-scattering. We studied the

dynamics of such ‘direct electrons’ and focussed particularly on two problems in this

thesis.

Chapter 3 finds that the ionized electron dynamics can be governed by an emergent

static ring potential, albeit an oscillatory laser is present. The ring potential has been

formed by making a short-time Taylor-series expansion of the time-dependent Kramers

Henneberger (KH) potential, which describes the dynamics exactly. The validity of the

theory relies on the large initial momentum of the electron, which drives it quickly away

from the moving KH potential. The time-dependent motion thereby only affects the

dynamics immediately after its release from the parent-ion, but it does not have impact

when the electron is far away. Therefore, the short-time expansion holds, and this leads

to the formation of a static potential. Practically, such a large momentum can be gained

with larger ellipticities and/or intensities of the laser pulses.

For smaller ellipticities and/or intensities, the short-time expansion no longer holds,

and a general theory has been provided in terms of a Kepler problem, with a rotation of

the axes in the laser polarization plane. When the electron is far away from the parent-

ion, the KH potential reduces to a Coulomb potential. Therefore the dynamics can be

81



Summary and conclusions 82

described simply by a Kepler problem. Hence, it is relevant to see how the conserved

quantities of a Kepler problem behave for the KH trajectory, especially directly after

the electron’s release due to the impact from the KH potential. We observed that the

energy E and the angular momentum l remain approximately constant, whereas the

Runge-Lenz vector (RLV) significantly changes its direction. Taking advantage of this

observation, we constructed a rotated Kepler trajectory, where the change in the RLV

angle provided a quantitative measure for the rotation angle. Interestingly, the constant

behaviour of E and l hints at a possible static, spherical symmetric potential, which has

the surprising form of a ring potential. Previous attempts have been made to formulate

a time-independent description of the electron dynamics, e. g., the Rutherford scattering

problem [37] and a Lie transformation method [35]. However, both theories are only valid

for low-intensity pulses.

In the future, one could look for possible conserved quantities associated with the

static ring potential other than E and l. This leaves room to understand the change in

the RLV angle, possibly by formulating an analytical expression that would incorporate

such changes.

Chapter 4 is devoted mainly to the attoclock set up with a nearly circularly-polarized

pulse. Experimentally the polar angle in the photo-electron momentum plane, which is

measured at the detector, is typically mapped to the electric field at the ionization time.

The purpose of such a map is to gain insight into the tunnelling time. Our goal, however,

was to derive an analytical expression for the attoclock offset angle, which captures the

numerical results within a good agreement, not only for the single trajectory but also for

the classical-trajectory Monte Carlo (CTMC) simulations with many trajectories.

The derivation of getting an analytical formula, in this context, requires the knowledge

of the impulse from the KH potential. Although a perturbative expansion of the impulse

up to the first-order term reproduces the exact offset angle, it does not lead to a closed-

form analytical expression. Only approximations within this first-order perturbation can

give an analytical solution, which holds for high and low ends of the laser intensity. In

a low-intensity regime, the quiver amplitude becomes much smaller than the tunnelling

exit-radius, whereas in a high-intensity regime, the reverse is satisfied. Identifying the

critical intensity, which lies in the boundary of the two intensity regimes, a connection
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between the two extremes is achieved, resulting in a complete analytical prediction for the

offset angle as a function of intensity. The agreement of the analytically predicted angle

with the classical simulation results is good for low frequency and high ellipticity. The

physics behind the parameter dependence is based on two facts: the Coulomb attraction

at the tunnel exit and the electron’s initial momentum.

Furthermore, agreement with the experimental data has led to a new definition of the

tunnel exit-radius, which has been modelled by an unconventional form, involving the

physics of non-adiabatic tunnelling and depletion of the atomic ground state.

Such a formalism can also be extended to explore the attoclock with a bicircular laser

pulse [103], a glimpse of which is shown in section 4.8, as a warm-up.





Appendix A

Atomic units

In this thesis, the atomic units (au) have been used regularly. Note that the following

definition should be satisfied in au.

~ = me = e = a0 = 1, (A.1)

where ~ is the Planck’s constant, me and e are respectively the mass and the charge of the

electron, and a0 is the Bohr-radius. See the corresponding SI values of these quantities

from Table A.1.

Conversion factors from SI unit to au of some other useful quantities have been listed

in Table A.1. For example, using this table, the following relation between wavelength λ

in nm and frequency ω in au can be obtained.

λ =
2πc

ω
=

2π137.036

ω
[au] =

45.5636

ω [au]
[nm] (A.2)
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Quantities SI units Atomic units [au]
angular momentum, ~ = Planck’s

constant divided by 2 π
1.0546 ×10−34 J s 1 ~

mass, me 9.1094 ×10−31 kg 1 me

charge, e 1.6022 ×10−19 C 1 e
Bohr-radius, a0 5.2918 ×10−11 m 1 a0

permittivity in free space,
4πǫ0

1.1126 ×10−10 A s (V m)−1 1 mee
2a0/~

2

electron velocity in the first
Bohr-orbit, v0 = c/137.036

2.1877 ×106 m s−1 1 ~/(mea0)

electron orbital-period in the
first Bohr-orbit, t0 = a0/v0

2.4189 ×10−17 s 1 mea
2
0/~

electron angular-frequency in the
first Bohr-orbit, ν0 = v0/a0

4.1341 ×1016 s−1 1 ~/(mea
2
0)

electric field-strength felt by an electron
in the first Bohr-orbit, Fa = e/(4πǫ0a

2
0)

5.1427 ×1011

V m−1 1 ~
2/(meea

3
0)

intensity corresponding to field-
strength Fa, Ia = ǫ0cF

2
a /2

3.5101 ×1016 W cm−2 1 ~
3/(m2

ea
6
0)

atomic energy (calculated as twice the
ionization potential) of the hydrogen

atom, 2|Ip| = e2/(4πǫ0a0)
27.2120 eV 1 ~

2/(mea
2
0)

Table A.1: Conversion factors between SI and atomic units



Appendix B

Asymptotic momentum in a Kepler

problem

For a given position and momentum ~r, and ~p at any time t, the asymptotic momentum ~P

at t → ∞ can be obtained by using the two conserved quantities in a Kepler problem —

the angular momentum ~l and the Runge-Lenz vector ~a. Since they are constant in time,

the following relations are satisfied

~l = ~r(t)× ~p(t) = constant, (B.1)

~a = ~p(t)×~l − ~r(t)

r(t)
= constant. (B.2)

Now, we use the asymptotic property for t → ∞

~r(t → ∞)

r(t → ∞)
=

~P

P
, (B.3)

with P being the magnitude of ~P as given by

P =

√

~p(t)2 − 2

r(t)
. (B.4)

The last equation is obtained from the conservation of energy. Using Eq. (B.3), the above

Eq. (B.2) reduces to

~a = ~P ×~l − ~P/P. (B.5)
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From this relation, the following identity is constructed.

P (~a×~l) + ~a = P
[(

~P ×~l −
~P

P

)

×~l
]

+
(

~P ×~l −
~P

P

)

= −~PPl2 −
~P

P

= −
~P

P

[

1 + P 2l2
]

. (B.6)

Where the cross-product properties

~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b), (B.7a)

(~a×~b)× ~c = ~b(~a · ~c)− ~a(~b · ~c), (B.7b)

and that the angular momentum lies perpendicular to the momentum, i. e.,

~P ·~l = 0 (B.8)

have been used.

Thus the general expression for the asymptotic momentum, from Eq. (B.6), reads

~P = P
P (~l × ~a)− ~a

1 + P 2l2
. (B.9)



Appendix C

Ground state depletion (GSD)

The ground state depletion (GSD) effect in strong-field ionization is a phenomena which

takes account the depletion of the atom in the presence of an intense laser. The survival

probability of the atom is given by

ρ(t) = exp

(

−
∫ t

−∞
R0(t

′)dt′
)

. (C.1)

Including this survival probability into the total ionization probability of the electron,

yields Eq. (4.10). The total ionization probability cf. Eq. (4.10) is obtained, in Fig. C.1

with and without encountering GSD, for two ionization potentials Ip = 0.51 au (Kr) and

Ip = 0.9 au (He) as a function of the initial phase φ0 = ωt0.

Figure C.1(a) shows that the peak of the ionization yield with GSD is shifted along

the φ0-axis slightly earlier than the peak of the yield without GSD. Now without the

GSD effect, the yield is maximum at φ0 = 0, i. e. at the field-maximum. Including

the GSD effect, when the electric field reaches its maximum, the atoms are already

depleted. Therefore, the ionization slightly earlier than the field-maximum becomes more

prominent than the ionization at the field-maximum. Hence, the most-probable trajectory

corresponds to Fmax − Fs, not to Fmax = F (φ0 = 0). Here, Fs = F (φ0 = φs) is a positive

quantity with φs = ωts being the shift in phase of the peak of the yield from the field-

maximum. φs is marked by the dotted vertical-line in the figure.

The depletion effect vanishes for high Ip, as shown for He in Fig. C.1(b).
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Figure C.1: Ionization probability with and without ground state depletion for two
different ionization potential as a function of the initial phase φ0 = ωt0. The laser
parameters used here are intensity I = 6 × 1014 Wcm−2, wavelength λ = 800 nm for
circular polarization (ellipticity ε = 1) with a cos4 pulse envelope containing N = 3

optical cycles.



Appendix D

Accelerated Kepler problem

The elliptical nuclear motion due to the presence of an elliptically-polarized laser pulse,

as depicted in Fig. 3.1, can be considered by a hyperbolic motion if the relations cos(ωt) =

1 − ω2t2

2
, and sin(ωt) = ωt are satisfied. Such approximations can work if the electron

quickly flies off from the moving nucleus after staying for a short time near the nucleus.

Therefore, we can write down the position of the nucleus with a CW pulse as

~R(t) = rq(cos(ωt)~ey + ε sin(ωt)~ex) ≈ rq

((

1− ω2t2

2

)

~ey + εωt~ex

)

. (D.1)

This leads to linear momentum along the y-axis, and constant momentum along the x-

axis, therefore, constant acceleration along the y-axis, and zero acceleration along the

x-axis. The problem becomes an accelerated Kepler problem (AKP), as discussed in [99].

We apply this method to describe the electron’s motion in the KH frame, as discussed in

the following.

Newton’s equations of motion (eom) of an electron in the space-fixed frame with a KH

potential is given by
d2~r

dt2
= − d

dr

−1

|~r − ~rq(t)|
. (D.2)

Now, going to the relative coordinates of motion ~rr = ~r− ~R, and using ~rq(t) = ~R(t) from

Eq. (D.1), the above equation reduces to

d2~rr
dt2

= − ~rr
|~rr|3

+ rq ω2 ~ey. (D.3)
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This is the eom of an electron in the presence of a static force. In principle, this has

a closed-form solution [100]. Now, the electron’s coordinate in the space-fixed frame is

given by

~r(t) = ~R(t) + ~rr(t). (D.4)

In order to solve the above eom Eq. (D.3), we need to know the initial conditions in the

relative coordinates.

The initial coordinates of the electrons as obtained from Eqs. (3.23)-(3.24), are given

by

~r(0) = (re + rq)~ey ~p(0) = rqεω~ex. (D.5)

The initial coordinates of the nucleus using Eq.(D.1) are given by

~R(0) = rq~ey ~̇R(0) = rqεω~ex. (D.6)

This makes the initial coordinates in the relative coordinate as

~rr(0) = re~ey ~pr(0) = 0, (D.7)

which makes the problem to be decoupled in x and y-direction.

Since the force in the x-direction for the eom in Eq. (D.3) is zero with zero values of

initial coordinates, the motion does not change in this direction, for which the electron’s

coordinate in this dimension is determined entirely by the nucleus motion, which is given

by

~x(t) = ~Rx(t) = rqεωt~ex, (D.8)

~px(t) = ~̇Rx(t) = rqεω~ex. (D.9)

The motion in the y-direction is obtained by solving the eom for the following Hamiltonian

corresponding to Eq. (D.3)

H(~rr, ~pr) =
~pyr

2

2
− 1

yr
− rqω

2yr. (D.10)
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The final momentum ~pyr(t → ∞) from this equation can be obtained using a perturbation

approach as has been done in [15], which gives

~pyr(t → ∞) = ~pyr,l(t → ∞) + ~pyr,c(t → ∞)

=

(

0 −
∫ ∞

0

dt
1

yr(t)2

)

~ey

=

(

−
∫ ∞

0

dt
1

[re +
1
2
rq ω2 t2]2

)

~ey

= − π
√

rqω2(2re)3
~ey. (D.11)

Here, ~pyr,l(t → ∞) corresponds to the final momentum in the presence of the laser only,

i. e., ignoring any Coulomb interaction in the relative coordinate. This momentum is

equal to ~py,l(t → ∞)− ~̇Ry,l(t → ∞), which reads zero since both of the terms separately

are zero.





Appendix E

Different tunnel exit points

The tunnel exit-radius re is an important parameter in the analytical angle. Here, we

analyse the intensity dependence of the analytical attoclock angle for different re and

compare this with the corresponding CTMC simulation results. The tunnel exit point

can not be traced in a real experiment, however there are various theoretical models that

predict this re which are discussed in the following.

Considering the adiabatic tunnel ionization i. e. the ionization occurring by the in-

stantaneous field, three models for calculating re are discussed in the following. The field

direction model (FDM) [62]: re is calculated simply by using the energy conservation

with zero kinetic energy at the tunnel-exit, given by

Ip = 1/re + Fεre, (E.1)

The corresponding solution for the tunnel exit-radius re is obtained as the following

re, FDM =
Ip +

√

I2p − 4Fε

2Fε

. (E.2)

In the simplest case by ignoring the Coulomb interaction term 1/re in Eq. (E.1) we obtain

re, SFA as follows

re, SFA =
Ip
Fε

. (E.3)
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Another model within the adiabatic tunnel ionization picture, which includes the pure

Coulomb potential 1/r, can be obtained by changing Cartesian coordinates to parabolic

coordinates ([21], [98]). The interaction Hamiltonian in Eq. (2.15) but with static electric

field, when written in the parabolic coordinates, can be separated into two dimensions,

namely the unbound (u) and bound (v) dimensions (see the supplemental material of

[53]). The electron tunnels along the u-dimension. The assumption that all the ionized-

electron energy is transferred to u-dimension leads to the same exit-radius as in Cartesian-

coordinate (Eq. E.2). However, in the quantum description, the energy in the v-dimension

is not zero but finite and equals to the zero-point energy (
√

2Ip/2). Therefore, from the

energy conservation, there is missing energy in the u-dimension, which modifies the tunnel

exit-radius as given by

re, Para =
Ip +

√

I2p − 4βFε

2Fε

, (E.4)

here β = 1−
√

Ip
2
.

From Eqs. (E.2)-(E.4), it can be seen that re, FDM<re, Para<re, SFA, with the difference

becoming larger for larger intensity, as can also be observed from the inset of Fig. E.1.

The attoclock offset angle θ0, originating from the Coulomb attraction force at the tunnel-

exit, falls with re, and follows a reverse order i. e. θc, FDM>θc, Para>θc, SFA corresponding

to the three models. This qualitative behaviour of offset angle is also sustained by our

analytical angle (Eq. 4.41), as observed in Fig. E.1 (dashed curves). With the analytical

angle, the offset angle θ0 obtained from the CTMC-simulation as described in section

4.3.3 is shown for the three re. The figure shows that the analytical angle agrees even

quantitatively with the CTMC-simulation results.

The argument within the square root of Eqs. (E.2) and (E.4) becomes zero or negative

above some field amplitude Fε, and the corresponding process is known as over barrier

ionization (OBI). Because of the factor-β in re,Para, the OBI field amplitude with re,Para is

always larger than with re,FDM. Whereas, with the SFA exit-radius re,SFA, cf. Eq. (E.3),

there is no such OBI process. Therefore, re should be chosen depending on the purpose

of the problem.
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Figure E.1: Offset angle as a function of intensity I for three different models of tunnel
exit-radius re shown in the inset. The dashed curves and points represent respectively
the results from the analytical and CTMC-simulation calculations. Parameters are the

same as in Fig. 4.4.
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Ich erkläre dass die in dieser Arbeit vorgestellten Forschungsarbeiten und verwandten In-

halte zur Erlangung des Doktors rerum naturalium (Dr. rer. Nat.) Das Ergebnis mein-

erpersönlichen Bemühungen unter Anleitung meines Betreuers, Prof. Dr. Jan-Michael

Rost und Prof. Dr. Ulf Saalmann. Alle meine Arbeiten wurden am Max Planck Institut

für Physik komplexer Systeme in Dresden durchgeführt.

In Anlehnung an die Ethik und Maximen der wissenschaftlichen Berichterstattung und

Dokumentation wurden gebührende Anerkennungen und Zitate gemacht, wo immer derIn-

halt der Arbeit auf zuvor gemeldeten Arbeiten basiert oder sich auf diese bezieht. Jegliche

Auslassung, die aufgrund von Versehen aufgetreten sein könnte, ist unbeabsichtigt und

wird bedauert.

16.04.2021

————————– ————————–

Datum Unterschrift

108


