$$\frac{\operatorname{vol} :}{\operatorname{basis}} \operatorname{indeg.} \operatorname{def.} \operatorname{el} \mathcal{A}_{\lambda} := \operatorname{lu(\lambda)} \setminus \operatorname{cu(\lambda)} |$$

$$\frac{\operatorname{lu(\lambda)}}{\operatorname{lu(\lambda)}} := \operatorname{i} \mathcal{D}_{\lambda} \left(\mathcal{P}_{\lambda}(\lambda) (\cdot) \right) - \mathcal{P}_{\lambda}(\lambda) \cdot \mathcal{D}_{\lambda}(\cdot) = \left(\mathcal{A}_{\lambda} \mathcal{P}_{\lambda}(\lambda) - \mathcal{P}_{\lambda}(\lambda) \mathcal{A}_{\lambda} \right) (\cdot) = \left(\mathcal{A}_{\lambda} \mathcal{P}_{\lambda}(\lambda) - \mathcal{P}_{\lambda}(\lambda) \mathcal{A}_{\lambda} \right) (\cdot) = \left(\mathcal{A}_{\lambda} \mathcal{P}_{\lambda}(\lambda) - \mathcal{P}_{\lambda}(\lambda) \mathcal{A}_{\lambda} \right) (\cdot) = \left(\mathcal{A}_{\lambda} \mathcal{P}_{\lambda}(\lambda) - \mathcal{P}_{\lambda}(\lambda) \mathcal{A}_{\lambda} \right) (\cdot) = \left(\mathcal{A}_{\lambda} \mathcal{P}_{\lambda}(\lambda) \right) = \left(\mathcal{A}_{\lambda} \mathcal{P}_{\lambda}(\lambda) \right) \left(\mathcal{A}_{\lambda}(\lambda) + \mathcal{D}_{\lambda}(\lambda) \right) = \left(\mathcal{A}_{\lambda} \mathcal{P}_{\lambda}(\lambda) \right) = \left(\mathcal{A}_{\lambda} \mathcal{P}_{\lambda}(\lambda) \right) \mathcal{P}_{\lambda}(\lambda) + \mathcal{D}_{\lambda} \mathcal{D}_{\lambda} \mathcal{P}_{\lambda}(\lambda) = \left(\mathcal{A}_{\lambda} \mathcal{P}_{\lambda}(\lambda) \right) = \left(\mathcal{$$

.

$$\frac{d}{dx} \text{ is there a gauge -iw. description of the AGP?
recall from EN coupled to cpx. scalar field $\nothermal{\scalar}$
Lagrongian density: $L = -\frac{1}{\sqrt{2}} F_{\mu\nu} F^{\mu\nu} + (D^{\mu} $\nothermal{\scalar}$) (D_{\mu} $\nothermal{\scalar}$)
Will gauge trunch.
A_{\mu} = A_{\mu} - 0 \mathcal{X}
field tensor: F_{\mu\nu} = 0, A_{\nu} - 0, A_{\mu}$
 $\beta = 2 e^{-1} $\nothermal{\scalar}$}$
for e $\mathcal{\scalar}$}$
 $p_{\mu} = 2 $\mathcal{\scalar}$}$
 $p_{\mu} = -\frac{1}{2} $\mathcal{\scalar}$}$$
 $p_{\mu} = -\frac{1}{2} $\mathcal{\scalar}$}$
 $p_{\mu} = -\frac{1}{2} $\mathcal{\scalar}$}$$
 $p_{\mu} = -\frac{1}{2} $\mathcal{\scalar}$}$
 $p_{\mu} = -\frac{1}{2} $\mathcal{\scalar}$}$$
 $p_{\mu} = -\frac{1}{2$$$$$$$$$$$$$$

.

. Kato AGP is ucuites
$$H_{\gamma}$$
 gauge inv.:
 $\mathcal{A}_{\lambda}^{\kappa} \longrightarrow \mathcal{A}_{\lambda}^{\kappa'} = \sum_{u,v} (I - \delta u_{v}) \langle u' [\lambda] / i \partial_{\lambda} / u \langle [\lambda] \rangle}{= \langle u | i \partial_{\lambda} / u \rangle e^{i \langle \mathcal{K}_{u} - \mathcal{K}_{u} \rangle}} = \frac{\langle u' [\lambda] / (\mathcal{L}_{u}] \rangle \langle u' [\lambda] \rangle}{= \langle u | u \rangle e^{i \langle \mathcal{K}_{u} - \mathcal{K}_{u} \rangle}} = e^{i \langle \mathcal{K}_{u} - \mathcal{K}_{u} \rangle}{|u(\lambda] \rangle \langle (\mathcal{M})}$

$$= \sum_{u,v} (I - \delta u_{v}) \langle u [\lambda] | i \partial_{\lambda} / u [\lambda] \rangle |u[\lambda] \rangle \langle u[\lambda] | u[\lambda] \rangle \langle u[$$

- Example (HW): 265 porametrized by Hamilbouicn
H(θ,φ) = E û(θ,φ). δ, where E sets energy
û(θ,φ) = {sic θ wosp
sic θ sin φ ; δ² = {o^x
o²} vector of
Pauli matrices
here
$$\vec{\lambda} = (\theta, φ)$$
 two-porameter manitold
-> two gauge polentials : to, to
each is 2x2 matrix
→ two Kato potentials : Ao, to

Counterdiabatic Driving -vecall LZ problem : H(+) = vt o2 + b ox $\frac{E(l)}{P_{exc}} = e^{-\frac{1}{2}\sqrt{l}}$ $\frac{E(l)}{L}$ · excited traction is exp. small but finite; depends li/v p=1-pexc issues: 1) percimencoses it speed vinereases 2) expression valid in regime t-3 ~; what about divite times ? Q: can we suppress excitations completely P at all times during the ramp Yes! -> transitionless driving / short cut to adiabaticity consider $H = H(\lambda) = H_{\lambda}$. let Us diagonalize Hz instantaneously, i.e. $U^{\dagger}(\lambda) H(\lambda) U(\lambda) - \begin{pmatrix} E_{1}(\lambda) \\ O \\ O \end{pmatrix} = : D(\lambda)$ recall that $\lambda = \lambda(t)$ changes in real time: U($\lambda(t)$) induces a change-of-frame transformation: consider 14(+)> & 14(+)> = Ut(2(+))/4(+)> Schr. eq. for 14(H) : i Dy (4(H) > = H(2(H)) 14(H)) which Hamiltonian H(t) generates time-evo. of 17(t)? $:\mathcal{O}_{t} | \varphi(H) > = :\mathcal{O}_{t} (u^{+}(\lambda H)) | \varphi(H) >)$ $= \frac{(i \partial_{+} u^{+})u}{(i \partial_{+} u^{+})} + \frac{u^{+}}{(i \partial_{+} u^{+})} + \frac{u^{+}}{(i \partial_{+} u^{+})} = \frac{u}{(i \partial_{+} u^{+})} = \frac{u$ = (U_x + U_x - U_x i D_t U_x) 1\varphi(+1) = F(+) cormoving frame Hamiltonian

=>
$$\widehat{H}(t) = U^{\dagger}(\lambda|H) H(\lambda|H) U(\lambda|H) U(\lambda|H) - U^{\dagger}(\lambda|H) i^{2}t U(\lambda|H)$$

= $U^{\dagger}_{A} H_{A} M_{A} - \hat{\lambda} U^{\dagger}_{A} i^{2}_{A} M_{A}$
= $\widehat{O}_{A} dive. = \widehat{A} gauge pot. in commentations
while: $\widehat{O}(A)$ is diagonal; therefore:
any excitations during the zoo. under $H(\lambda|I)$ must
usersarity be caused by AGP \widehat{A}_{A} in commentations
idea: apply extra "fore" to combrant excitations
idea: apply extra "fore" to combrant excitations
idea: $dP_{A} = H(A) - H(A) + \hat{\lambda}A_{A} =: H_{CD}$ counterdiabatic
eq. consider $H(\lambda) - H(\lambda) + \hat{\lambda}A_{A} =: H_{CD}$ counterdiabatic
eq. consider $H(\lambda) - H(\lambda) + \hat{\lambda}A_{A} =: H_{CD}$ counterdiabatic
excitations $dP_{A} = U_{A} \widehat{A}_{A} U_{A}^{A} - (i \widehat{O}_{A} U) U^{T} AGP in tab take
check: $\widehat{H}_{CD} = U^{\dagger}_{A} (H_{A} + \hat{\lambda}A_{A})U_{A} - \hat{\lambda} U^{\dagger}_{A} O_{A} U_{A}^{A} - \hat{\lambda} \widehat{A}_{A}$
= \widehat{O}_{A} to more excitations?
= O_{A} to more excitations?
= O_{A} to more excitations?
= O_{A} to more excitations?
= $for this evolution the form in the inst. exitate of $H(\lambda|I)$
at all times, up to an overall plate (depends on $U(I)$ gauge)
= transition driving
= $-i\int_{a}^{a} H_{CD} (\lambda(I)) dS$
= $T = O$ is a driving for any protocol $\lambda(I)$
h(I) = $T = O$
= I_{A} the consistion less driving for any protocol $\lambda(I)$?
= I_{A} the driving for any protocol $\lambda(I)$?$$$

intuition: limiting cases
a)
$$\dot{\lambda} \rightarrow \infty \Rightarrow HeD \approx \dot{\lambda} t_{\Delta}$$

Schr. eq. i'dt (4(4)) = HeD (t) (4(4))
 $\approx \dot{\lambda} A_{1}(4(4))$
change variables: i'Da (4(λ)) = Aa (4(λ))
=> to generates eno. in porameter space (coporallel
port)
which becomes exact as $\dot{\lambda} \rightarrow \infty$
b) adiabatic limit: $\dot{\lambda} \rightarrow 0 = 2$ HeD \approx H
 \rightarrow time eno is generated by H(λ) ("(z t limit))
therefore: HeD = H(λ) + $\dot{\lambda}$ interpolates b/m
infinitely slow adiabatic evo. generated by H_A
R rapid evo generated by AGP $\dot{\lambda}$ A

$$\frac{Example}{H(\lambda)} = \Delta \sigma^{2} + \lambda(H) \sigma^{x}$$

$$\frac{H(\lambda)}{I} = \Delta \sigma^{2} + \lambda(H) \sigma^{x}$$

$$\frac{I}{I} = \frac{I}{I} = \frac{I}{I$$

Bloch sphere
$$\longrightarrow 2x - plane = -ip(\lambda \Delta) \frac{\sigma^2}{2}$$

 $Afer \qquad U(\lambda) = e^{-ip(\lambda \Delta) \frac{\sigma^2}{2}}$
 $fi)$ nuel $A_x = U_x^+ i\partial_x U_x = U^+ \partial_x p \frac{\sigma^2}{2} U = \frac{1}{2} \partial_x p \frac{\sigma^2}{2}$
 $\partial_x p = \partial_x \operatorname{arctau}(\Delta) = \frac{1}{2} \frac{1}{(A \otimes p)^2} = \frac{\Delta}{D^2 + \lambda^2}$
 $\Rightarrow A_x = \frac{1}{2} \frac{\Delta}{D^2 + \lambda^2} \frac{\sigma^2}{2} = A_x$
 $(A, U) = 0$
(iii) construct $H_{CD} =$
 $H_{CD}(\lambda U) = D \sigma^2 + \lambda U \sigma^2 + \frac{\lambda}{2} \frac{\Delta}{D^2 + \lambda^2} + \sigma^2$
 $Rick : AGP A_x = (i\partial_x U_x)U_x^+ does ust contain information
about change of - basis transformation; it only tells
 u_x how to move from one inst. e'basis to another:
 $i\partial_x U_x = A_x U_x$ Subv. eq. for A_x on poram. until
 $\Rightarrow U(\lambda I, \lambda I) = P e^{-i\int_{\Delta I} \Delta I \lambda I} U(\lambda I, \lambda I)$
 $poll-ordered exp. I = initial condition.
 $dehices diagonalizing transformation.$
 $= CD Hamiltonian is not unique, since AGP can be
changed using U(I) gauge transformation that less dribing
 $-cut y$ difference is in accumulated global phase.$$$

consider Schr	. eq: i 0+ 1u(+1) = F	(1+) 14(+1)
where $H(0)$	u(0) > = E(0) u(0) >	
drive	Hamiltonian H(+)	acc. phase
adiabatic ; T-> 20	R(+) = HICHARI (+)	provf: cf. adiabatic Hom.
dynamical CD fixed gauge: Xn (t) = D	$\mathcal{F}(\mathcal{U}) = \mathcal{H}_{c+r}(\mathcal{U}) + \dot{\lambda} \mathcal{A}_{\lambda};$ $\mathcal{A}_{\lambda} = (i\partial_{\lambda} \mathcal{U}_{\lambda}) \mathcal{U}_{\lambda}^{\dagger}$ $\mathcal{R} \mathcal{U}_{\lambda}^{\dagger} \mathcal{H}_{c+r} \mathcal{U}_{\lambda} = diag$	
Kato CD gauge-inv.	$\mathcal{R}(H) = H_{uhol}(H) + \dot{\lambda} \mathcal{A}_{\lambda}^{k};$ $\mathcal{A}_{\lambda}^{k} = \frac{1}{2} \sum_{i} [R_{i}, i\partial_{\lambda}R_{i}]$ $\mathcal{P}_{i} = Iu[\lambda] > \langle u[\lambda] /$	

generic CD	F((+) = Herry (+) + A'_2;	$\chi_{u}(t) + \phi_{u}(t)$
Xn (f) arbitrary (Suf fixed)	$A'_{\lambda} = A_{\lambda} - \sum_{n} O_{\lambda} K P_{n}$	prost: same as for Az but non w/ extra phase St 2(s) & K(1(s)) ds
Kato AGP	ア(1) = シスズ	$= \chi_{L}(\lambda UH)$ $\chi_{L}(L+)$
gauge - inv.		$\widetilde{\mathcal{F}}(H) = \dot{\lambda} \left(\widetilde{\mathcal{A}}_{\lambda}^{*} - \widetilde{\mathcal{A}}_{\lambda} \right)$ $= \sum \dot{\lambda} \mathcal{A}_{\mu} \mathcal{P}_{\mu} \left(\lambda \mathcal{U} \right)$ $\mathcal{R} \text{ same as above}$
periodic AGP fixed gauge $X_{u}(t) = 2\pi l_{u} \frac{t}{T}$ $l_{u} \in \mathbb{Z}$	P((+) = A(+) [here $\lambda = t$] & A(t+T) = A(+) periodic w/period T $\ln[T] = n[0]$ periodic ONB for A(+)	$2\pi\ell_{n}, \ \ell_{n} \in \mathbb{Z} \ (a+t=T)$ $p = t \Rightarrow \hat{\lambda} = 1$ $\overline{H} (t) = \mathcal{A} (t)$ $= \sum \mathcal{A}_{n} (t) \mathcal{P}_{n} (t) + \mathcal{A}^{k} (t)$ $= \sum -i \oint \mathcal{A}^{k} (t) dt ; p = t$ $h(T) = Te \qquad e \qquad h(T)$ $= e \qquad h(T)$ $= e \qquad h(T)$ $= e^{2\pi i \ell_{n}} + i g = t$