Addivative,
$$
H(\hat{X})
$$
 depend in an ext , power. \hat{X}
\n \Rightarrow of \mathbf{M}_{∞} , \hat{X} is a vector, but well (covariant
\n \Rightarrow of \mathbf{M}_{∞} , \hat{X} is a vector, but will (covariant
\n \mathbf{M}_{∞} is the \mathbf{M}_{∞} (1) \mathbf{M}_{∞} (2) \mathbf{M}_{∞}
\n \mathbf{M}_{∞} is the \mathbf{M}_{∞} (1) \mathbf{M}_{∞} (2) \mathbf{M}_{∞} (3) \mathbf{M}_{∞}
\n \mathbf{M}_{∞} is the \mathbf{M}_{∞} (1) \mathbf{M}_{∞} (2) \mathbf{M}_{∞} (3) \mathbf{M}_{∞}
\n(d) \mathbf{M}_{∞} is the \mathbf{M}_{∞} (4) \mathbf{M}_{∞} (5) \mathbf{M}_{∞} (6) \mathbf{M}_{∞} (6) \mathbf{M}_{∞} (6) \mathbf{M}_{∞} (6) \mathbf{M}_{∞} (6) \mathbf{M}_{∞} (6) \mathbf{M}_{∞}
\n \mathbf{M}_{∞} (6) \mathbf{M}_{∞} (6) \mathbf{M}_{∞} (6) \mathbf{M}_{∞}
\n \mathbf{M}_{∞} (6) \mathbf{M}_{∞} (6) \mathbf{M}_{∞}
\n \mathbf{M}_{∞} (6) \mathbf{M}_{∞} (6) \mathbf{M}_{∞}
\n \mathbf{M}_{∞} (6) \mathbf{M}_{∞}
\n \mathbf{M}_{∞} (6) \mathbf{M}_{∞}

$$
\frac{\partial u_{\alpha}L}{\partial t} = \frac{1}{2} \int \frac{1}{2
$$

Q : 1 have a $z_{\text{max}} = -i\omega$, ω is the ABP
1 result from EM coupling to z_{max} is the z_{max} field ϕ
1 (by z_{max}), ω is the z_{max} and z_{max}
1 (by z_{max}), z_{max} is the z_{max} and z_{max}
2 (by z_{max}), z_{max} is the z_{max} and z_{max} is the z_{max} and z_{max}
2 (by z_{max}), z_{max} is the z_{max} and z_{max} is the z_{max} and z_{max}
2 (by z_{max}), z_{max} is the z_{max} and z_{max} is the z_{max} and z_{max}
2 (by z_{max}), z_{max} is the z_{max} and z_{max} is the z_{max} and z_{max}
2 (by z_{max}), z_{max} is the z_{max} and z_{max} is the z_{max} and z_{max} is the z_{max} and <

 \bullet

$$
k_{\lambda} \mapsto A_{\lambda}^{c} + \sum_{u_{1} \in \mathbb{Z}} [1 - 5u_{1}] \leq k_{\lambda}^{c} \leq 31 \text{ if } 0_{\lambda} \leq k_{\lambda}^{c} \leq 31
$$
\n
$$
= k_{\lambda} \text{ if } 0_{\lambda} \leq k_{\lambda}^{c} \leq 31 \text{ if } 0_{\lambda} \leq k_{\lambda}^{c} \leq 31
$$
\n
$$
= k_{\lambda} \text{ if } 0_{\lambda} \leq k_{\lambda}^{c} \le
$$

Example (HW): 2L3 proventried by Hamilton

\n
$$
H(\theta, \varphi) = E \circ (\theta, \varphi) \cdot \hat{\sigma}, \text{ where } E \text{ sets } \text{energy}
$$
\n
$$
\hat{u}(\theta, \varphi) = \begin{pmatrix} \sin \theta & \cos \theta \\ \sin \theta & \sin \theta \end{pmatrix}; \quad \hat{\sigma}^2 = \begin{pmatrix} \sigma^* \\ \sigma^2 \end{pmatrix} \text{ vector of } \theta
$$
\nwhere $\vec{\lambda} = (\theta, \varphi)$ the operator manifold

\n
$$
\begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{pmatrix}
$$
\nwhere $\vec{\lambda} = (\theta, \varphi)$ the operator matrix, and the vector is given by θ and θ is given by θ and θ is given by θ .

Counterdination Driving $-$ vecall L^2 problem : $H(t) = \frac{v^{\frac{1}{2}}}{2} \sigma^2 + \frac{1}{2} \sigma^x$ $P_{\text{e}k} = e^{-\frac{\pi h^2}{2V}}$ · excited traction is exp. suall $\rho = 1 - \rho$ exc issues: 1) perc increases it speed vincreases a) expression valid in regime $t \rightarrow \infty$;
what about timite times? Q: can we suppress excitations completely & at all times during the ramp Yes! -> tracsitionless driving / short cut to adiabaticity coussider $H = H(\lambda) = H_{\lambda}$ let Us diagonalize Hs instantanement, i.e. consider $|\psi(t)\rangle$ β $|\tilde{\psi}(t)\rangle = U^{\dagger}(\lambda(t))|\psi(t)\rangle$ Schv. eq. for $|t(t)\rangle$: ${}^{,}9_{+}$ $|\psi(t)\rangle$ = $H(\lambda(t))|\psi(t)\rangle$ which Hamiltonian $\tilde{H}(t)$ generates time-evo. of $1\tilde{\gamma}(t) > ?$ $\langle \hat{U}_{t} | \tilde{\psi}(t) \rangle = i \hat{U}_{t} (u^{+1}|\psi(t)| \tilde{\psi}(t))$ $\frac{1}{2}$ (i) u^+ $u^$ $Q_{4}u^{+}$ $U_{4}u^{+}$ $=\frac{1}{\mu^{+}_{\lambda}H_{\lambda}U_{\lambda}-U_{\lambda}^{+}\cdot V_{\epsilon}U_{\lambda}}1\tilde{r}(t)$
= $\tilde{r}(t)$ co-moving frame Hamiltarian

$$
F(t) = H^{1}(\lambda|t) H(\lambda|t) H(\lambda|t) U(\lambda|t) - H^{1}(\lambda|t) \cdot \partial_{+} U(\lambda|t))
$$
\n
$$
= \underbrace{U_{\lambda}^{+} H_{\lambda} U_{\lambda}}_{= \underbrace{D_{\lambda} \text{ along } C_{\lambda} \text{ along } C_{\lambda}
$$

infinite, finite, case

\nso
$$
\Rightarrow
$$
 He₀ = λA_{λ}

\nSchr. e_{\uparrow} . $10.1403 = H_{c0} (1.1401)$

\n $\approx \lambda A_{\lambda} 1403$

\nchange vanishes: $10.14(13) = A_{\lambda} 1403$

\nchouge vonishes: $10.14(13) = A_{\lambda} 1403$

\nso the same set, we can find that the number of numbers in the point λ and then λ is the number of numbers.

\nSo, a single number of numbers are A and λ and λ are A and λ are A and λ and λ are A and λ are A and λ and λ are A and λ and λ are A and λ are A and λ are A and λ and λ are A and λ and λ are A and λ

Example: two-level system under arbitrary protocol:

\n
$$
H(\lambda) = \Delta \sigma^{2} + \lambda(H) \sigma^{2}
$$
\nStep (i) [chcep tricle]: use $\overline{A} = U^{+} / \partial_{2} U$, where $U_{\lambda}^{+} H_{\lambda} U_{\lambda} = \text{diag}_{\lambda}$

\nwhere, H_{λ} is vac-independent \Rightarrow exists real, the result $\partial_{2} U$ is orthogonal and $\partial_{3} U$ is orthogonal.

\nNow, for $2LS$:

\n
$$
U_{\lambda} = e^{-\int_{0}^{L} f(\lambda) \sigma^{2} \Delta t} \Rightarrow \sigma^{2} \text{ is imaginary-valued}
$$

Sloch sphere
$$
\rightarrow \infty
$$
 = $\sqrt{10}$ sec \rightarrow $\frac{1}{2}$

\n Δ_{10}^2

\n Δ_{11}^2

\n Δ_{12}^2

\n Δ_{13}^2

\n Δ_{14}^2

\n Δ_{15}^2

\n Δ_{16}^2

\n Δ_{18}^2

\n Δ_{19}^2

\n Δ_{10}^2

\n Δ_{10}^2

\n Δ_{10}^2

\n Δ_{11}^2

\n Δ_{12}^2

\n Δ_{13}^2

\n Δ_{14}^2

\n Δ_{15}^2

\n Δ_{16}^2

\n Δ_{17}^2

\n Δ_{18}^2

\n Δ_{19}^2

\n Δ_{10}^2

\n Δ_{11}^2

\n Δ_{10}^2

\n Δ_{11}^2

\n Δ_{12}^2

\n Δ_{13}^2

\n Δ_{14}^2

\n Δ_{15}^2

\n Δ_{16}^2

\n Δ_{17}^2

\n Δ_{18}^2

\n Δ_{19}^2

\n Δ_{10}^2

\n Δ_{11}^2

\n Δ_{10}^2

\n Δ_{11}^2

\n Δ_{10}^2

\n Δ_{11}^2

\n Δ_{12}^2

\n Δ_{13}^2

\n Δ_{14}^2

\n

