1. Landau-Zener Problem

In this problem, our goal is to derive the expression for the probability $P_{\rm LZ} = \exp\Bigl(-\pi \frac{h^2}{2\nu} \Bigr)$ $rac{h^2}{2\nu}$ of a diabatic transition in a two-level system (i.e., finding it in its excited state) at long times, following a linear sweep.

Consider the time-dependent Hamiltonian

$$
H_{\rm LZ}(t) = \frac{\nu t}{2} \sigma^z + \frac{h}{2} \sigma^x = \begin{pmatrix} \frac{\nu t}{2} & \frac{h}{2} \\ \frac{h}{2} & -\frac{\nu t}{2} \end{pmatrix},\tag{1}
$$

where the external Zeeman field is ramped linearly in time t at a speed v , and h sets the size of the minimum energy gap during the sweep (see sketch in lecture notes); σ^{α} are the Pauli matrices. The Landau-Zener(-Stueckelberg-Majorana) problem is given by the Schroedinger initial value problem

$$
i\partial_t |\psi(t)\rangle = H(t) |\psi(t)\rangle, \qquad |\psi(-\infty)\rangle = |0\rangle, \qquad t \in (-\infty, +\infty). \tag{2}
$$

We are interested in computing the probability of finding the two-level system in the excited state $|1\rangle$ at time $t \to +\infty$, $P_{\text{LZ}} = |\langle 1 | \psi(+\infty) \rangle|^2$ (so-called diabatic transition).

1.1. Use the ansatz $|\psi(t)\rangle = c_0(t)|0\rangle + c_1(t)|1\rangle$ to express P_{LZ} using the coefficients $c_{0,1}(t)$. Show that $c_1(t)$ obeys the second-order ODE

$$
\ddot{c}_1(t) + \left(\frac{iv}{2} + \frac{h^2}{4} + \frac{v^2 t^2}{4}\right) c_1(t) = 0.
$$
 (3)

Why is it meaningful to expand the wavefunction in the eigenstates of σ^z in the first place?

1.2. Consider the solution in the limit $t \to +\infty$; argue that the coefficient $c_1(t)$ takes the form $c_1(t)$ ^{*t*→∞} $|c_1|e^{-i\varphi(t)}$ with a time-independent modulus $|c_1|$ and a time-dependent phase $\varphi(t)$. Show that, in this limit, the phase obeys the equations

$$
\begin{cases}\n\dot{\varphi}(t) \approx \frac{vt}{2} + \frac{1}{4} \frac{h^2}{vt} + \cdots \\
\dot{\varphi}(t) \approx \frac{v}{2} + \cdots\n\end{cases} \quad \text{as} \quad t \to \pm \infty \,.
$$
\n(4)

1.3. Derive the relations

$$
\log \frac{c_1(+\infty)}{c_1(-\infty)} = \int_{-\infty}^{\infty} dt \frac{\dot{c}_1(t)}{c_1(t)}, \qquad \frac{\dot{c}_1(t)}{c_1(t)} \sim \frac{\dot{c}_1(t)}{c_1(t)} \sim \frac{\dot{c}_1(t)}{2} + \frac{1}{4} \frac{h^2}{vt}, \qquad (5)
$$

and use the left-hand-side equality to express the LZ probability P_{LZ} .

1.4. To compute the integral by only knowing the ratio $\dot{c}_1(t)/c_1(t)$ in the limit $|t| \to \infty$, we will use contour integration. To this end, apply analytic continuation $t \mapsto z \in \mathbb{C}$, and go polar using the parametrization $z = Re^{i\theta}$. Then use the residue theorem (see Fig. [1\)](#page-0-0) to show that

$$
\log \frac{c_1(+\infty)}{c_1(-\infty)} = -\pi \frac{h^2}{4\nu}.
$$

Last, derive the expression for P_{LZ} .

Figure 1: Analytic continuation in the complex plane C, with two contours *C*¹ and C_2 . . (6)

2. Adiabatic Gauge Potentials for a general 2LS

In this problem, we will formally derive the expression for the adiabatic gauge potential using calculus. Consider the general 2LS Hamiltonian $H_{\text{ctrl}}(\theta, \varphi) = E \hat{n}(\theta, \varphi) \cdot \vec{\sigma}$ where the unit vector $\hat{n}(\theta, \varphi)$ is parametrized in spherical coordinates (θ, φ) , $\vec{\sigma}$ is the vector of Pauli matrices, and $\pm E$ are the eigenenergies. You can think of $(\theta(t), \varphi(t))$ as parameters that we can change in time according to some arbitrary protocol.

2.1. Derive the expression for the intantaneous eigenstates

 $H_{\text{ctrl}}(\theta, \varphi)|\psi_{+}[\theta, \varphi]\rangle = \pm E|\psi_{+}[\theta, \varphi]\rangle.$

Construct the unitary transformation $U(\theta, \varphi)$ that diagonalizes the instantaneous Hamiltonian $H_{\text{ctrl}}(\theta, \varphi)$.

2.2. Now, recall that the parameters $(\theta(t), \varphi(t))$ change in time according to some arbitrary schedule. Write down the Hamiltonian $\tilde{H}_{\text{ctrl}}(\theta, \varphi)$ in the co-moving frame and identify the moving-frame gauge potentials $\mathcal{\tilde{A}}_{\theta}(\theta,\varphi)$, $\mathcal{\tilde{A}}_{\varphi}(\theta,\varphi)$.

2.3. Evaluate algebraically the moving-frame gauge potentials $\tilde{\cal A}_\theta(\theta,\varphi), \tilde{\cal A}_\varphi(\theta,\varphi);$ then go back to the lab frame and find the lab-frame gauge potentials $\mathcal{A}_\theta,\mathcal{A}_\varphi.$ Verify that they act on the instantaneous eigenstates as a derivative, e.g., $\mathcal{A}_{\varphi}|\psi_{\pm}[\theta,\varphi]\rangle = i\partial_{\varphi}|\psi_{\pm}[\theta,\varphi]\rangle$.

2.4. Compute the Kato gauge potentials $\mathcal{A}_{K,\theta}$, $\mathcal{A}_{K,\varphi}$. Explain in which sense the Kato gauge potential corresponds to a covariant derivative (think of the analogy with electromagnetism).

2.5. Write down the counter-diabatic Hamiltonians for the gauge potentials A, A_K ; why is the CD Hamiltonian not unique? What does this imply physically?

2.6. Apply a re-phasing *U*(1) gauge transformation on the individual eigenstates,

$$
|\psi_{\pm}[\theta,\varphi]\rangle \mapsto e^{i\chi_{\pm}(\theta,\varphi)}|\psi_{\pm}[\theta,\varphi]\rangle. \tag{7}
$$

Show explicitly that the gauge potentials $\cal A_\theta$, $\cal A_\varphi$ change, while their Kato counterparts $\cal A_{K,\theta}$, $\cal A_{K,\varphi}$ are gauge-invariant under this transformation.

2.7. *"What I cannot create, I do not understand"*, Richard P. Feynman.

Write your own code to explicitly verify numerically the accumulated phases from Table [1](#page-2-0) below for the two-level system; use the periodic trajectory

$$
\hat{n}(\theta_*, \varphi(t)) = (\sin \theta_* \cos \omega t, \sin \theta_* \sin \omega t, \cos \theta_*)^t
$$

for a time-independent $\theta_* = \pi/3$ and $\varphi(t) = \omega t$, with $t \in [0, T]$ ($T = 2\pi/\omega$). The definitions of the dynamical and geometric phases in Table [1](#page-2-0) are

$$
\phi_{\pm}(t) = \int_0^t E_{\pm}(\lambda(s)) ds ,
$$

\n
$$
\gamma_{\pm}(t) = \int_{\lambda(0)}^{\lambda(t)} \langle \psi_{\pm}[\lambda] | i \partial_{\lambda} \psi_{\pm}[\lambda] \rangle d\lambda .
$$
\n(8)

Which Hamiltonian H do we have to evolve with, if the wavefunction is supposed to accumulate no phase after one period *T* at all?

drive	Hamiltonian $H(t)$	accumulated phase
adiabatic	$H_{\rm crit}$	$\gamma_n(t) + \phi_n(t)$
$T_{\text{ramp}} \rightarrow \infty$		
dyn. counterdiabatic	$H_{\text{ctrl}} + A_{\lambda}$	$\phi_n(t)$
$\chi_{n}(t)=0$		
Kato counterdiabatic	$H_{\text{ctrl}} + \mathcal{A}_{K,\lambda}$	$\gamma_n(t) + \phi_n(t)$
gauge-invariant		
generic counterdiabatic	$H_{\text{ctrl}} + \mathcal{A}'_2$	$\chi_n(t)+\phi_n(t)$
χ_n arbitrary		
Kato AGP	$\mathcal{A}_{K,\lambda}$	$\gamma_n(t)$
gauge-invariant		
periodic AGP	$\mathcal{A}(t) = \mathcal{A}(t+T)$	$2\pi\ell_n, \ell_n \in \mathbb{Z}$ (at $t=T$)
$\chi_n(t)=2\pi\ell_n t/T$		

Table 1: Adiabatic gauges. Summary of common gauge choices (first column) and the resulting accumulated phases (third column) for the Schroedinger equation $i\partial_t |\psi_n(t)\rangle = \mathcal{H}(\lambda(t)) |\psi_n(t)\rangle$, with $\mathcal{H}(t)$ given in the second column above. Independent of the gauge choice for the *adiabatic gauge potential* (AGP) A, the AGP induces transitionless driving between eigenstates of H_{ctrl} ; however, the gauge choice determines the accumulated phase. The dynamical phase is $φ_n(t)$, the geometric phase is $γ_n(t)$, and $χ_n(λ(t))$ is an arbitrary smooth function; the periodic gauge is only well-defined for periodic control with *ℓn*∈Z. Here $\lambda(t)=\varphi(t)$ with $\theta=\theta_*$ is kept fixed (see problem 2.7 above), and the gauge potential \mathcal{A}'_{λ} is obtained from $\mathcal{A} = (i\partial_{\lambda}U_{\lambda})U_{\lambda}^{\dagger}$ *λ* by applying the re-phasing gauge transformation speci-fied in the left column, see also Eq. [\(7\)](#page-1-0); i.e., we measure χ_n w.r.t. the phase accumulated by A.