
Lecture Notes

1. Landau-Zener Problem

In this problem, our goal is to derive the expression for the probability PLZ = exp
�
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�

of a diabatic transition in a two-level system (i.e., finding it in its excited state) at long times,
following a linear sweep.

Consider the time-dependent Hamiltonian
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where the external Zeeman field is ramped linearly in time t at a speed v, and h sets the size
of the minimum energy gap during the sweep (see sketch in lecture notes); σα are the Pauli
matrices. The Landau-Zener(-Stueckelberg-Majorana) problem is given by the Schroedinger
initial value problem

i∂t |ψ(t)〉= H(t) |ψ(t)〉 , |ψ(−∞)〉= |0〉 , t ∈ (−∞,+∞). (2)

We are interested in computing the probability of finding the two-level system in the excited
state |1〉 at time t → +∞, PLZ = | 〈1|ψ(+∞)〉 |2 (so-called diabatic transition).

1.1. Use the ansatz |ψ(t)〉 = c0(t) |0〉+ c1(t) |1〉 to express PLZ using the coefficients c0,1(t).
Show that c1(t) obeys the second-order ODE
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c1(t) = 0. (3)

Why is it meaningful to expand the wavefunction in the eigenstates of σz in the first place?

1.2. Consider the solution in the limit t → +∞; argue that the coefficient c1(t) takes the form
c1(t)

t→∞∼ |c1|e−iϕ(t) with a time-independent modulus |c1| and a time-dependent phase ϕ(t).
Show that, in this limit, the phase obeys the equations
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as t →±∞ . (4)

1.3. Derive the relations
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and use the left-hand-side equality to express the LZ probability PLZ.

Figure 1: Analytic continuation in the
complex plane C, with two contours C1
and C2.

1.4. To compute the integral by only knowing the ratio
ċ1(t)/c1(t) in the limit |t| →∞, we will use contour
integration. To this end, apply analytic continuation
t 7→ z ∈ C, and go polar using the parametrization
z = Reiθ . Then use the residue theorem (see Fig. 1) to
show that

log
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c1(−∞)

= −π
h2

4v
. (6)

Last, derive the expression for PLZ.
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2. Adiabatic Gauge Potentials for a general 2LS

In this problem, we will formally derive the expression for the adiabatic gauge potential
using calculus. Consider the general 2LS Hamiltonian Hctrl(θ ,ϕ) = En̂(θ ,ϕ) · σ⃗ where the
unit vector n̂(θ ,ϕ) is parametrized in spherical coordinates (θ ,ϕ), σ⃗ is the vector of Pauli
matrices, and ±E are the eigenenergies. You can think of (θ (t),ϕ(t)) as parameters that we
can change in time according to some arbitrary protocol.

2.1. Derive the expression for the intantaneous eigenstates

Hctrl(θ ,ϕ) |ψ±[θ ,ϕ]〉= ±E |ψ±[θ ,ϕ]〉 .

Construct the unitary transformation U(θ ,ϕ) that diagonalizes the instantaneous Hamiltonian
Hctrl(θ ,ϕ).

2.2. Now, recall that the parameters (θ (t),ϕ(t)) change in time according to some arbitrary
schedule. Write down the Hamiltonian H̃ctrl(θ ,ϕ) in the co-moving frame and identify the
moving-frame gauge potentials Ãθ (θ ,ϕ), Ãϕ(θ ,ϕ).

2.3. Evaluate algebraically the moving-frame gauge potentials Ãθ (θ ,ϕ), Ãϕ(θ ,ϕ); then go
back to the lab frame and find the lab-frame gauge potentials Aθ ,Aϕ. Verify that they act on
the instantaneous eigenstates as a derivative, e.g., Aϕ |ψ±[θ ,ϕ]〉= i∂ϕ |ψ±[θ ,ϕ]〉.

2.4. Compute the Kato gauge potentials AK ,θ ,AK ,ϕ. Explain in which sense the Kato gauge
potential corresponds to a covariant derivative (think of the analogy with electromagnetism).

2.5. Write down the counter-diabatic Hamiltonians for the gauge potentials A,AK ; why is the
CD Hamiltonian not unique? What does this imply physically?

2.6. Apply a re-phasing U(1) gauge transformation on the individual eigenstates,

|ψ±[θ ,ϕ]〉 7→ eiχ±(θ ,ϕ) |ψ±[θ ,ϕ]〉 . (7)

Show explicitly that the gauge potentialsAθ ,Aϕ change, while their Kato counterpartsAK ,θ ,AK ,ϕ
are gauge-invariant under this transformation.

2.7. “What I cannot create, I do not understand”, Richard P. Feynman.

Write your own code to explicitly verify numerically the accumulated phases from Table 1
below for the two-level system; use the periodic trajectory

n̂(θ∗,ϕ(t)) = (sinθ∗ cosωt, sinθ∗ sinωt, cosθ∗)
t

for a time-independent θ∗ = π/3 and ϕ(t) =ωt, with t ∈ [0, T] (T = 2π/ω). The definitions
of the dynamical and geometric phases in Table 1 are

φ±(t) =

∫ t

0

E±(λ(s)) ds ,

γ±(t) =

∫ λ(t)

λ(0)
〈ψ±[λ]|i∂λψ±[λ]〉 dλ . (8)

Which Hamiltonian H do we have to evolve with, if the wavefunction is supposed to accumu-
late no phase after one period T at all?
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drive Hamiltonian H(t) accumulated phase

adiabatic
Tramp→∞

Hctrl γn(t) +φn(t)

dyn. counterdiabatic
χn(t)=0

Hctrl +Aλ φn(t)

Kato counterdiabatic
gauge-invariant

Hctrl +AK ,λ γn(t) +φn(t)

generic counterdiabatic
χn arbitrary

Hctrl +A′
λ

χn(t)+φn(t)

Kato AGP
gauge-invariant

AK ,λ γn(t)

periodic AGP
χn(t)=2πℓn t/T

A(t)=A(t+T ) 2πℓn, ℓn∈Z (at t=T )

Table 1: Adiabatic gauges. Summary of common gauge choices (first column)
and the resulting accumulated phases (third column) for the Schroedinger equation
i∂t |ψn(t)〉=H(λ(t)) |ψn(t)〉, with H(t) given in the second column above. Independent
of the gauge choice for the adiabatic gauge potential (AGP) A, the AGP induces transitionless
driving between eigenstates of Hctrl; however, the gauge choice determines the accumulated
phase. The dynamical phase is φn(t), the geometric phase is γn(t), and χn(λ(t)) is an arbi-
trary smooth function; the periodic gauge is only well-defined for periodic control with ℓn∈Z.
Here λ(t) = ϕ(t) with θ = θ∗ is kept fixed (see problem 2.7 above), and the gauge potential
A′
λ

is obtained from A= (i∂λUλ)U
†
λ

by applying the re-phasing gauge transformation speci-
fied in the left column, see also Eq. (7); i.e., we measure χn w.r.t. the phase accumulated by
A.
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