1. Landau-Zener Problem

In this problem, our goal is to derive the expression for the probability $P_{LZ} = \exp\left(-\pi \frac{h^2}{2\nu}\right)$ of a diabatic transition in a two-level system (i.e., finding it in its excited state) at long times, following a linear sweep.

Consider the time-dependent Hamiltonian

$$H_{\rm LZ}(t) = \frac{vt}{2}\sigma^{z} + \frac{h}{2}\sigma^{x} = \begin{pmatrix} \frac{vt}{2} & \frac{h}{2} \\ \frac{h}{2} & -\frac{vt}{2} \end{pmatrix},$$
 (1)

where the external Zeeman field is ramped linearly in time *t* at a speed v, and *h* sets the size of the minimum energy gap during the sweep (see sketch in lecture notes); σ^{α} are the Pauli matrices. The Landau-Zener(-Stueckelberg-Majorana) problem is given by the Schroedinger initial value problem

$$i\partial_t |\psi(t)\rangle = H(t)|\psi(t)\rangle, \qquad |\psi(-\infty)\rangle = |0\rangle, \qquad t \in (-\infty, +\infty).$$
 (2)

We are interested in computing the probability of finding the two-level system in the excited state $|1\rangle$ at time $t \to +\infty$, $P_{LZ} = |\langle 1|\psi(+\infty)\rangle|^2$ (so-called diabatic transition).

1.1. Use the ansatz $|\psi(t)\rangle = c_0(t)|0\rangle + c_1(t)|1\rangle$ to express P_{LZ} using the coefficients $c_{0,1}(t)$. Show that $c_1(t)$ obeys the second-order ODE

$$\ddot{c}_1(t) + \left(\frac{i\nu}{2} + \frac{h^2}{4} + \frac{\nu^2 t^2}{4}\right)c_1(t) = 0.$$
(3)

Why is it meaningful to expand the wavefunction in the eigenstates of σ^z in the first place?

1.2. Consider the solution in the limit $t \to +\infty$; argue that the coefficient $c_1(t)$ takes the form $c_1(t) \stackrel{t\to\infty}{\sim} |c_1| e^{-i\varphi(t)}$ with a time-independent modulus $|c_1|$ and a time-dependent phase $\varphi(t)$. Show that, in this limit, the phase obeys the equations

$$\begin{cases} \dot{\varphi}(t) \approx \frac{vt}{2} + \frac{1}{4}\frac{h^2}{vt} + \cdots \\ \ddot{\varphi}(t) \approx \frac{v}{2} + \cdots \end{cases} \quad \text{as} \quad t \to \pm \infty \;. \tag{4}$$

1.3. Derive the relations

$$\log \frac{c_1(+\infty)}{c_1(-\infty)} = \int_{-\infty}^{\infty} dt \frac{\dot{c}_1(t)}{c_1(t)}, \qquad \qquad \frac{\dot{c}_1(t)}{c_1(t)} \stackrel{|t| \to \infty}{\sim} -i\left(\frac{\nu t}{2} + \frac{1}{4}\frac{h^2}{\nu t}\right), \tag{5}$$

and use the left-hand-side equality to express the LZ probability P_{LZ} .

1.4. To compute the integral by only knowing the ratio $\dot{c}_1(t)/c_1(t)$ in the limit $|t| \to \infty$, we will use contour integration. To this end, apply analytic continuation $t \mapsto z \in \mathbb{C}$, and go polar using the parametrization $z = Re^{i\theta}$. Then use the residue theorem (see Fig. 1) to show that

$$\log \frac{c_1(+\infty)}{c_1(-\infty)} = -\pi \frac{h^2}{4\nu} \,.$$

Last, derive the expression for P_{LZ} .

(6) Figure 1: Analytic continuation in the complex plane \mathbb{C} , with two contours C_1 and C_2 .

2. Adiabatic Gauge Potentials for a general 2LS

In this problem, we will formally derive the expression for the adiabatic gauge potential using calculus. Consider the general 2LS Hamiltonian $H_{\text{ctrl}}(\theta, \varphi) = E\hat{n}(\theta, \varphi) \cdot \vec{\sigma}$ where the unit vector $\hat{n}(\theta, \varphi)$ is parametrized in spherical coordinates (θ, φ) , $\vec{\sigma}$ is the vector of Pauli matrices, and $\pm E$ are the eigenenergies. You can think of $(\theta(t), \varphi(t))$ as parameters that we can change in time according to some arbitrary protocol.

2.1. Derive the expression for the intantaneous eigenstates

$$H_{\text{ctrl}}(\theta,\varphi) |\psi_{\pm}[\theta,\varphi]\rangle = \pm E |\psi_{\pm}[\theta,\varphi]\rangle.$$

Construct the unitary transformation $U(\theta, \varphi)$ that diagonalizes the instantaneous Hamiltonian $H_{\text{ctrl}}(\theta, \varphi)$.

2.2. Now, recall that the parameters $(\theta(t), \varphi(t))$ change in time according to some arbitrary schedule. Write down the Hamiltonian $\tilde{H}_{\text{ctrl}}(\theta, \varphi)$ in the co-moving frame and identify the moving-frame gauge potentials $\tilde{\mathcal{A}}_{\theta}(\theta, \varphi), \tilde{\mathcal{A}}_{\varphi}(\theta, \varphi)$.

2.3. Evaluate algebraically the moving-frame gauge potentials $\hat{\mathcal{A}}_{\theta}(\theta, \varphi), \hat{\mathcal{A}}_{\varphi}(\theta, \varphi)$; then go back to the lab frame and find the lab-frame gauge potentials $\mathcal{A}_{\theta}, \mathcal{A}_{\varphi}$. Verify that they act on the instantaneous eigenstates as a derivative, e.g., $\mathcal{A}_{\varphi} |\psi_{\pm}[\theta, \varphi] \rangle = i \partial_{\varphi} |\psi_{\pm}[\theta, \varphi] \rangle$.

2.4. Compute the Kato gauge potentials $\mathcal{A}_{K,\theta}$, $\mathcal{A}_{K,\varphi}$. Explain in which sense the Kato gauge potential corresponds to a covariant derivative (think of the analogy with electromagnetism).

2.5. Write down the counter-diabatic Hamiltonians for the gauge potentials A, A_K ; why is the CD Hamiltonian not unique? What does this imply physically?

2.6. Apply a re-phasing U(1) gauge transformation on the individual eigenstates,

$$|\psi_{\pm}[\theta,\varphi]\rangle \mapsto e^{i\chi_{\pm}(\theta,\varphi)} |\psi_{\pm}[\theta,\varphi]\rangle.$$
(7)

Show explicitly that the gauge potentials A_{θ} , A_{φ} change, while their Kato counterparts $A_{K,\theta}$, $A_{K,\varphi}$ are gauge-invariant under this transformation.

2.7. "What I cannot create, I do not understand", Richard P. Feynman.

Write your own code to explicitly verify numerically the accumulated phases from Table 1 below for the two-level system; use the periodic trajectory

$$\hat{n}(\theta_*,\varphi(t)) = (\sin\theta_*\cos\omega t, \sin\theta_*\sin\omega t, \cos\theta_*)^t$$

for a time-independent $\theta_* = \pi/3$ and $\varphi(t) = \omega t$, with $t \in [0, T]$ $(T = 2\pi/\omega)$. The definitions of the dynamical and geometric phases in Table 1 are

$$\phi_{\pm}(t) = \int_{0}^{t} E_{\pm}(\lambda(s)) \, ds \,,$$

$$\gamma_{\pm}(t) = \int_{\lambda(0)}^{\lambda(t)} \langle \psi_{\pm}[\lambda] | i \partial_{\lambda} \psi_{\pm}[\lambda] \rangle \, d\lambda \,.$$
(8)

Which Hamiltonian \mathcal{H} do we have to evolve with, if the wavefunction is supposed to accumulate no phase after one period *T* at all?

drive	Hamiltonian $\mathcal{H}(t)$	accumulated phase
adiabatic	H _{ctrl}	$\gamma_n(t) + \phi_n(t)$
$T_{\rm ramp} \rightarrow \infty$		
dyn. counterdiabatic	$H_{\rm ctrl} + A_{\lambda}$	$\phi_n(t)$
$\chi_n(t)=0$		
Kato counterdiabatic	$H_{\mathrm{ctrl}} + \mathcal{A}_{K,\lambda}$	$\gamma_n(t) + \phi_n(t)$
gauge-invariant		
generic counterdiabatic	$H_{\mathrm{ctrl}} + \mathcal{A}'_{\lambda}$	$\chi_n(t)+\phi_n(t)$
χ_n arbitrary		
Kato AGP	$\mathcal{A}_{K,\lambda}$	$\gamma_n(t)$
gauge-invariant		
periodic AGP	$\mathcal{A}(t) = \mathcal{A}(t+T)$	$2\pi\ell_n, \ell_n \in \mathbb{Z} \text{ (at } t=T)$
$\chi_n(t) = 2\pi \ell_n t / T$		

Table 1: Adiabatic gauges. Summary of common gauge choices (first column) and the resulting accumulated phases (third column) for the Schroedinger equation $i\partial_t |\psi_n(t)\rangle = \mathcal{H}(\lambda(t)) |\psi_n(t)\rangle$, with $\mathcal{H}(t)$ given in the second column above. Independent of the gauge choice for the *adiabatic gauge potential* (AGP) \mathcal{A} , the AGP induces transitionless driving between eigenstates of H_{ctrl} ; however, the gauge choice determines the accumulated phase. The dynamical phase is $\phi_n(t)$, the geometric phase is $\gamma_n(t)$, and $\chi_n(\lambda(t))$ is an arbitrary smooth function; the periodic gauge is only well-defined for periodic control with $\ell_n \in \mathbb{Z}$. Here $\lambda(t) = \varphi(t)$ with $\theta = \theta_*$ is kept fixed (see problem 2.7 above), and the gauge potential \mathcal{A}'_{λ} is obtained from $\mathcal{A} = (i\partial_{\lambda}U_{\lambda})U^{\dagger}_{\lambda}$ by applying the re-phasing gauge transformation specified in the left column, see also Eq. (7); i.e., we measure χ_n w.r.t. the phase accumulated by \mathcal{A} .