
Lecture Notes

Geometric Floquet Theory

In this problem set, our goal is to drive an alternative, geometric decomposition of the unitary
evolution operator for periodically-driven systems described by the Hamiltonian H(t+ T ) = H(t),
and relate it to Floquet’s theorem:

U(t, 0) = T exp

�

−i

∫ t

0

H(s)ds

�

Floquet thm
= P(t)exp (−i tHF [0]) , (1)

where P(t + T ) = P(t) is the micromotion operator, and HF [0] is the Floquet Hamiltonian at
Floquet gauge t0 = 0 (see notes from class). We denote by T = 2π/ω the period (frequency) of
the drive.

1. Show that the Floquet Hamiltonian at Floquet gauge t, HF [t], satisfies the relation

HF [t] = H(t)− (i∂t P(t))P
†(t). (2)

Argue that HF [t] = HF [t + T] is periodic in the Floquet gauge.

2. Define AF (t) = (i∂t P(t))P†(t) and show that AF (t) is a proper gauge potential for the Floquet
eigenstates HF [t]|nF [t]〉= ϵF

n |nF [t]〉. What is the physical manifestation of the control parameter
λ in this case?

3. Show that the lab-frame Hamiltonian H(t),

H(t) = HF [t] +AF (t) = HCD(t), (3)

generates counterdiabatic driving for the Floquet states.

4. Recall the general U(1) re-phasing gauge transformation for the adiabatic gauge potential,

|n[λ]〉 7→ |n′[λ]〉= eiχn(λ)|n[λ]〉.

Now use the periodicity of the Floquet states |n[t + T]〉 = |n[t]〉 and the properties of the
quasienergies to show that the most general form of the gauge transformation which preserves the
Floquet structure reads as

χn(t) = mnωt, mn ∈ Z. (4)

What is the gauge group forAF (t)? What is the manifestation/meaning of the gauge transformation
for HF [t]?

5. Consider the gauge-invariant Kato potential, AK(t), in the Floquet case. Using it, show the
alternative “Kato” decomposition

H(t) = HK(t) +AK(t), (5)

and define the Kato Hamiltonian HK(t) and the Kato AGP AK(t) in terms of the Floquet Hamil-
tonian HF [t] and the Floquet AGP AF (t).

6a. Determine the eigenstates of the Kato Hamiltonian HK(t) and compare them to those of HF [t].
Show that the Kato energies are given by ϵK

n (t) = 〈nF [t]|H(t)|nF [t]〉.
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6b. Compare the Kato and Floquet AGPs: which phases do the Floquet states accumulate under
evolution over one drive cycle, for each of the two AGPs?

7a. Like in CD driving, consider the change-of-frame transformation infinitesimally generated by
AK(t), and compute the co-moving frame Hamiltonian H̃(t). Find an expression for the evolution
operator in the co-moving frame.

7b. Apply the general expression derived in class for the unitary operator in the lab frame in terms
of the unitary operator in the co-moving frame and the frame transformation itself, to show that
the lab-frame evolution operator can be decomposed as

U(t, 0) =W(t, 0)exp (−i tÆ(t, 0)) , (6)

where the Average Energy operator is given by

Æ(t, 0) =
∑

n

æn(t) |nF [0]〉〉〈nF [0]〉| , æn(t) =
1
t

∫ t

0

ϵK
n (s)ds,

and the Wilson line operator is

W(t, 0) = T exp

�

−i

∫ t

0

AK(s)ds

�

Is the Wilsone line operator W(t, 0) a valid micromotion operator?

8. Now consider stroboscopic times t = ℓT , ℓ ∈ N, where

U(ℓT, 0) =W (ℓT )exp (−iℓTÆ(T, 0)) .

Argue that the Wilson loop operator W(T ) =W(T, 0) is a unitary operator that does not depend on
the Floquet gauge/initial time; show that its eigenvalues are given by the geometric phases γn(T )
of the Floquet states. Use this to argue that the average energy operator over one period generates
the dynamical phases φn(t) and relate those to its eigenvalues æn(t).

9a. Show the quasienergy decomposition

TϵF
n = Tæn(T ) + γn(T ). (7)

Argue that this decomposition holds at arbitrary times t.

9b. Why is defining a Floquet ground state using the quasienergies is inappropriate? Argue that
the eigenvalues æn(T ) can be used to unambiguously sort the Floquet states and define a Floquet
ground state.

Equation (6) is called the geometric Floquet decomposition. It appears that inherently nonequilib-
rium effects, such as Floquet anomalous topological insulators and Floquet time crystals [later in
the course], are geometric in their origin as their physics is determined by the geometric phases.
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