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A possible way to construct a stable quantum computer could be to engineer topologically pro-
tected states that are by definition unaltered by small perturbations. One such possible state could
be anyons which are particles with an exchange statistic different from the fermions and the bosons.
However, we first need to create them in a lab in order to study them. As they are excitations, they
can not exist in a ground state but could be obtained after out-of-equilibrium dynamics. The goal
of my internship was to study the Kitaev Honeycomb model which exhibits such anyonic behavior,
and use the Kibble-Zurek mechanism to understand which states are excited after a ramp in the
parameters.

This report presents some studies I did during my
spring internship for the validation of my M1. I did this
internship at the Max Planck Institute for the Physics
of Complex Systems (MPI-PKS) in Dresden under the
supervision of Marín Bukov and Patrick Lenggenhager.
I was also in collaboration with Michael Kolodubretz
from UT Dallas and Tarik Yefsah from the LKB.

I studied the excitations we get from non-equilibrium
dynamics in the Kitaev Honeycomb model. The
first two months were focused on understanding the
different useful themes: the Kibble-Zurek mechanism,
the band topology in condensed matter, and the Kitaev
Honeycomb model. Then, I did more personal work
to understand the excitations that are created after a
ramp in the Kitaev model. This was done in different
conditions in particular with periodic boundary condi-
tions both analytically and numerically, and with open
boundary conditions, numerically. At the end of my
internship, I was also given the chance to present my
work in the internal seminar of condensed matter at
MPI-PKS and in the poster sessions of the workshop
"Non-equilibrium Many-body Physics Beyond the
Floquet Paradigm" at PKS.

In this report, I will be interested in presenting the
excitations we get after a ramp of a coupling parame-
ter in the Kitaev Honeycomb model. We will be, first,
focused on the Kibble-Zurek mechanism which stud-
ies what happens when we are crossing dynamically a
second-order phase transition, which here will be quan-
tum; I will in particular explain it in the case of the
transverse field Ising model. Then I will present, the
Kitaev Honeycomb model and how it could be extended

to have a chiral phase. Finally, I will combine the two
and study the Kibble-Zurek mechanism in the Kitaev
model with different conditions.
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I. KIBBLE-ZUREK MECHANISMS

A. Landau-Zener transition

In order to understand well the mechanism let’s first
focus on the simple case of a Landau-Zener transition
— which will also be a building block for the other sit-
uations. We consider a two-level system (for instance
a 1

2 -spin particle) where we have a time evolution such
that the ground state becomes the excited state (and
reversely). During this exchange, as we are in quan-
tum mechanics, we may suppose that there is also a
hybridization between the two states. A simple Hamil-
tonian which represents this phenomenon can be :

H =

(
−ε t

τQ
ℏΩ

ℏΩ ε t
τQ

)
. (1)

Here, 2ε t
τQ

is the energy of the gap between the ground
state and the excited state at infinite times (|t| ≫ τQ),
it changes sign at t = 0 which represent the change
between the two states; τQ is the "quench time" it is
the characteristic time scale of the evolution. We also
have an off-diagonal term ℏΩ which makes the two
systems hybridize, moreover, as we can see in the next
graph it also represents the gap between the two states
at t = 0. In particular, it is this term which dominates
at low times (|t| ≪ τQ).

We can diagonalize this Hamiltonian, it has the two

eigenvalues ±E(t) = ±
√(

ε t
τQ

)2
+ (ℏΩ)2, and the cor-

responding eigenstates are :


|ES⟩ ∝

(
ε t
τQ

− E

−ℏΩ

)
|GS⟩ ∝

(
ε t
τQ

+ E

−ℏΩ

) . (2)

In particular, if we note: |↓⟩ =

(
1
0

)
and |↑⟩ =

(
0
1

)
,

we have the exchange between the ground state and the
excited states as in the following schematics :

t
τQ

E(t)

2ℏΩ

|GS⟩ ≃ |↓⟩ |GS⟩ ≃ |↑⟩

|ES⟩ ≃ |↑⟩ |ES⟩ ≃ |↓⟩

This was the study of the instantaneous eigenstates
but what we are interested in, is the time evolution of
an initial state after a Schrödinger evolution :

iℏ
∂ |ψ⟩
∂t

= H |ψ⟩ . (3)

We suppose that we start at a time t0 < 0 such that
|t0| ≫ τQ i.e. we are in the limit t → −∞. We begin
the evolution in the ground state ψ(t0) = |↓⟩. Then, we
can write in general ψ(t) = α(t) |GS(t)⟩+ β(t) |ES(t)⟩.
If we do a measure at time t, we will have a probability
p(t) = |β(t)|2 to be excited and for instance p(t0) = 0.
A very useful tool to continue our study is the adiabatic
theorem first presented by Born and Fock in [1]. This
theorem states that for an evolution slow compared
to the gap between the states (or more precisely to
the inverse of the gap divided by ℏ) then there is no
transition between different states. This implies in
our study that for infinite times as the gap is very
large there is no transition. In other word for t1 < 0
and |t1| ≫ τQ, we have p(t1) ≃ (t0) = 0 and for
t2 > t3 ≫ τQ, p(t2) ≃ p(t3). This enables to have a
good definition of the Landau-Zener transition which
is pLZ = p(t2) (with t2 ≫ τQ), this quantity does not
depend on t0 nor on t2. It is the probability to be
excited at infinite time

There can be different ways to compute this value
pLZ , but I will not develop them here. We can find it
for instance in the original paper by Zener in [2]. We
get :

pLZ = exp

(
−π(ℏΩ)

2

ε ℏ
τQ

)
. (4)

From here, to simplify notation, we will take units such
that ε = 1, which gives an energy scale, and such that
ℏ = 1, this unites the notion of time and energy in
quantum mechanics. This gives us a new expression for
the Landau-Zener transition :

pLZ = exp
(
−πΩ2τQ

)
. (5)
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This means that there will be no excitation for Ω ≫
1√
τQ

. It is exactly the adiabatic theorem: for a large gap
or slow evolution we have no transition from the ground
state to the excited state. Here we have something more
specific because it also gives us the scale; which could
have also been found by dimension analysis if we did
not have taken dimensionless variables.

This is what we will use next, when we have an evo-
lution of characteristic time τQ and minimal energy Ω,
there can be excitation from the ground state to the
excited state iff :

Ω ≲
1

√
τQ
. (6)

Now that we have understood this building block we
can now go to a more complex system: the transverse
field Ising model.

B. Transverse field Ising model

In order to understand the Kibble-Zurek mechanism
we will first present it for a solvable model, the Trans-
field Field Ising Model (TFIM). This subsection and the
next one are in particular based on the work of Dziar-
maga in [3]. The system that we consider is a chain
of 1

2 -spins coupled by an Ising term according to the z
direction. In addition to that, we suppose that there is
a transverse magnetic field g in the x direction.

j

j − 1 j + 1

g

This leaves us the Hamiltonian :

H = −
∑
j

gσx
j + σz

jσ
z
j+1. (7)

As a reminder, we take dimensionless factors such
that ℏ = 1 and the energy of the Ising coupling is 2.
In the thermodynamic limit i.e. for a large value N
of the number of spins, this system exhibits a phase
transition. This can be already seen by the fact that
for large value of the field g ≫ 1, the ground state will
be the unique state where all the spins are aligned with
the field |→→→ · · ·⟩, it is paramagnetic; whereas for
vanishing field g = 0, we have two degenerate ground
states |↑↑↑ · · ·⟩ and |↓↓↓ · · ·⟩, it is ferromagnetic. These
two situations represent two phases and therefore there
will be a point where we have a phase transition. We

will see that, here, it happens for g = 1.

First, to solve our model, we make a change of vari-
able called the Jordan Wigner transformation such that,
instead of having a chain of spins, we consider having a
chain of positions, where a fermion could or could not
be. We note cj the operator annihilation of the fermion
on the point j and we consider the change : σx

j = 1− 2c†jcj

σz
j = −(c†j + cj)

∏
j′<j

σx
j
. (8)

With this, we get a Hamiltonian

H = −
∑
j

g

2
− gc†jcj + c†jcj+1 + cj+1cj +H.c.. (9)

We go in the thermodynamic limit where N the number
of spins is large compared to 1, the boundary limit does
not change anything so we can consider that it is peri-
odic: cN+1 = c1. We can then do a Fourier transform

cj =
1√
N

∑
k

cke
ikj (10)

where k takes value in {0, 2πN , . . . , 2π(N−1)
N }. This gives

us the new Hamiltonian :

H = −2
∑
k

(c†k c−k)

(
g − cos(k) sin(k)
sin(k) −(g − cos(k))

)(
ck
c†−k

)
.

(11)
This can be interpreted as fermions for each quasi mo-
mentum k which interact only with themselves and the
−k fermion. We can finally do a Bogoliubov-De Gennes
transformation where we mix the k and −k. This can
be done by the diagonalization of the matrix :

Hk = 2

(
g − cos(k) sin(k)
sin(k) −(g − cos(k))

)
(12)

which has the eigenvalues ±εk =

±
√
(g − cos(k))2 + sin2(k) and the associated eigen-

vectors
(
u±k
v±k

)
. Then we define the annihilation

operator

γk = u+k ck + v+k c
†
−k (13)

and with this, the Hamiltonian becomes :

H =
∑
k

ε

(
γ†kγk − 1

2

)
. (14)
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It means that the fermions γk represent the excitations
of the system: the ground state is achieved with the
vacuum of the γk and each presence of a fermion is an
additional energy εk. These γk will be our main in-
terest because they simply represent the system. The
excitation energies εk vanish only for k = 0 and g = 1
(for g ≥ 0). It means that the ground state is gaped
for g ̸= 1; therefore, the point of the phase transition
between ferromagnetic and paramagnetic phases is at
g = 1.

C. Out of equilibrium dynamics

We now consider what happens if we change the
tuning parameter g(t) with time. We will start from
the ground state. For a simple resolution, we take

g(t) = 1− t

τQ
with t going from −∞ to τQ such that a

phase transition happened at t = 0. We consider slow
evolution (τQ large) therefore by the adiabatic theorem,
we have excitation only for vanishing energy. However,
inside a phase, there is a gap and no vanishing energy
so excitations happen only at the phase transition; we
will see that in detail afterward. We get a Hamilto-

nian H =
∑
k

εg(t),k

(
γ†g(t),kγg(t),k − 1

2

)
where all the

different terms vary with time. As we are not in an
equilibrium situation, the probability of having an ex-
citation varies with time, it is pk(t) =

〈
γ†g(t),kγg(t),k

〉
t
.

The core of our study will be the study of the number
of excitations :

N =
∑
k

〈
γ†g(t),kγg(t),k

〉
t
=
∑
k

pk. (15)

With a system of size N we can consider more precisely
the density of excitations which is size invariant in the
large N limit :

ν =
N
N

≃
∫
BZ

dk

2π
pk (16)

Therefore, we want to get an expression (or at least
an approximation) of pk. For that, we can take the
Heisenberg picture which gives the expression (with ψi

the initial vector) :〈
γ†g(t),kγg(t),k

〉
t
= ⟨ψi| γ†g,k,tγg,k,t |ψi⟩ =

∣∣∣γg,k,t |ψi⟩
∣∣∣2.
(17)

By taking, the Heisenberg picture in (13), we have :

γg,k,t = ug,kck,t + vg,kc
†
−k,t =

(
ug,k vg,k

)( ck,t
c†−k,t

)
(18)

where all the dependencies are explicit and we write
u = u+ and v = v+. Now we can use the Heisenberg
equation :

i∂t

(
ck,t
c†−k,t

)
=

[(
ck,t
c†−k,t

)
, H(t)

]
= Hk(t)

(
ck,t
c†−k,t

)
. (19)

Therefore, with Uk(t) the evolution operator of Hk as
an Hamiltonian, we have :(

ck,t
c†−k,t

)
= Uk(t)

(
ck,ti
c†−k,ti

)
. (20)

This gives us :

pk(t) = |γg,k,t |ψi⟩|2 =

∣∣∣∣(ug,k vg,k
)
Uk(t)

(
ck,ti
c†−k,ti

)
|ψi⟩

∣∣∣∣2 .
(21)

However, by inverting (13) we also have :(
ck,ti
c†−k,ti

)
=

(
uk,gi −vk,gi
vk,gi uk,gi

)(
γgi,k,ti
γ†gi,−k,ti

)
(22)

and we finally get :

pk(t) =

∣∣∣∣(ug,k −vg,k
)
Uk(t)

(
uk,gi −vk,gi
vk,gi uk,gi

)(
γgi,k,ti
γ†gi,−k,ti

)
|ψi⟩

∣∣∣∣2.
(23)

We started from the ground state i.e. it is the vacuum
of the fermion γgi,k,ti and therefore :{

|γgi,k,ti |ψi⟩|2 = 0∣∣∣γ†gi,k,ti |ψi⟩
∣∣∣2 = 1

(24)

for all k. This simplifies (23) which becomes

pk(t) =

∣∣∣∣(ug,k vg,k
)
Uk(t)

(
−vk,gi
uk,gi

)∣∣∣∣2 (25)

and this is easy to understand physically, it is the prob-
ability of being in the excited state of Hk(t) after an
evolution ruled by Hk(t) and starting from the ground
state of Hk(ti). But we can spot that Hk(t) is a Landau-
Zener evolution

Hk(t) = 2

(
− τk

τQ
Ωk

Ωk
τk
τQ

)
(26)

with τk = t − τQ(1 − cos(k)) and Ωk = sin(k). This
gives us pk(t) as the Landau-Zener transition at τk. We
end the evolution at tf = τQ, therefore we have τk,f >
0 for −π

2 < k < π
2 . We suppose that we have slow

evolution, meaning that τQ ≫ 1 and the Landau-Zener
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FIG. 1: Density of excitation after a ramp in the
transverse field Ising model for a large system. In the
infinite τQ limit we have excitations which scale as
τ
− 1

2

Q and here we also have an explicit solution.

transition is quantitative only if Ωk = sin(k) ≲ τ
− 1

2

Q ≪ 1
i.e. k ≪ 1. In particular for these values, Ωk ≪ τk,f
and we are well within the infinite time limit. As these
are the only quantitative excitations, we can make the
approximation :

pk(t) = exp
(
−2πΩ2

kτQ
)
≃ exp

(
−2πk2τQ

)
(27)

with the 2 coming from the prefactor in Hk. Finally, we
can compute exactly the density of excitations :

ν =
1

2π

∫ π

−π

dkpk(t) ≃
1

2π

∫ ∞

−∞
exp
(
−2πk2τQ

)
(28)

ν =
1

π
√
2τQ

. (29)

We have an exact solution of the density of excitation,
in particular, we have the scaling of the excitations as
τ
− 1

2

Q which we can get generically from the universality
classes as presented in the next subsection. This was
the theoretical approach but it can also be observed
numerically, by computing the different pk and adding
them. We get the results in FIG. 1. They agree very
well with what we expected.

Here we can spot that in our study the excitations
happen for k ≃ 0 and therefore around tf ≃ 0. This
comes from the adiabatic theorem, we have no excita-
tion if the energy is ≳ τ

− 1
2

Q , therefore for large τQ, there

is no excitation in the gapped phases, everything hap-
pens at the phase transition and if we stopped the evo-
lution at t = − τQ

2 or τQ
2 it would not change the density

of excitations.

D. General mechanism

We have seen what happens to the density of excita-
tions when we cross the phase transition in the TFIM,
but we can get more general results with the Kibble-
Zurek mechanism. This was first presented by Kibble to
study cosmological phase transition after the Big Bang
in [4] and extended by Zurek for generic second-order
phase transitions in [5]. Here we will study more pre-
cisely how it can be interpreted for quantum phase tran-
sition at T = 0. The first idea of this mechanism is
the fact that for slow evolution there is no excitation
in a gapped phase (we follow an adiabatic evolution),
therefore all the physics happens at the phase transition
where the gap vanishes. But, we also have at the phase
transition some universality properties so the scalings
will only depend on this universality.

Let’s consider a generic phase transition from a
gapped phase to a gapped phase going gapless at the
critical point (meaning it is second order). We name
λ the tuning parameter such that the phase transition
happens at λ = 0. Therefore, we have, by definition of
the critical exponents, for |λ| ≪ 1 :{

λ−ν ∼ ξ ∝ k−1

ξz ∼ τr ∝ ∆−1
(30)

with ξ the correlation length, τr the relaxation time,
k characteristic quasi-momentum and ∆ the gap. We

choose an evolution for which λ =
t

τQ
, therefore the

adiabaticity is broken when

τr ≳

(
d∆

dt

1

∆

)−1

(31)

because the RHS represents the characteristic time of
evolution and the LHS represents the time for the sys-
tem to come back to equilibrium. We get this equality
at the characteristic time :

tKZ ∼ τ
νz

1+νz

Q (32)

and therefore for a gap :

∆KZ ∼ τ
− νz

1+νz

Q . (33)
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kx

ky

kKZ

FIG. 2: Domain of the Brillouin zone where we have
excitations after a ramp of characteristic time scale τQ.

This is the energy under which the evolution is no longer
adiabatic, it is, therefore, the case for excitations repre-
sented by a quasi-momentum less than :

kKZ ∼ τ
− ν

1+νz

Q . (34)

If we are in a system of dimension d, we finally have a
domain exited as in the FIG. 2, the size of this domain

scales therefore as τ
− dν

1+νz

Q . If we look for the density
of excitations, the scaling will be the same as the size
over which excitations will appear in the Brillouin zone.
Therefore, we get in general :

ν ∼ τ
− dν

1+νz

Q . (35)

This is coherent with what we had for the TFIM because
in this system, d = z = ν = 1 and we had ν ∼ τ

− 1
2

Q .
These ideas are even more general, if we have the energy
∆KZ , we know what is excited by just looking at the
quasi-momentum for which the energy is less than ∆KZ .

II. SOLVING THE MODEL

Now that we understand the Kibble-Zurek mechanism
we want to apply it to a topological case but first we
need to understand our model: the Kitaev-Honeycomb
model. This was a model introduced by Kitaev in [6] to
have a toy model which represents anyons in a solvable
model. Kitaev in the same paper shows that by break-
ing the time-reversal symmetry the system exhibits non-
commutative anyons behaviors. I did not focus my
study on the anyonic behavior of the excitations but
I will present how we can solve the model with and
without time-reversal symmetry.

x x xx

x x

x

xx

x

x

x

x

x

xx

x

x x

x x x

x x x x

y y

y y

yy

y

y y

y

y

y

yy

y

y

y

y

y

y

y y y

y y y y

z z zz z

z z

z

z

z

z

z

z

z

z

z

z

z

z

z

z

z z

z

z

(j, l)

(j + 1, l)

(j, l − 1) (j, l + 1)

M1

M2

j

l

FIG. 3: Honeyomb lattice

A. Original model

We consider a system with spins 1
2 on the vertices

of a hexagonal lattice. We name the links x, y and z
according to their orientations as in FIG. 3. We then
choose the Hamiltonian :

H = −
∑

x-links

Jxσ
x
nσ

x
m −

∑
y-links

Jyσ
y
nσ

y
m −

∑
z-links

Jzσ
z
nσ

z
m

(36)
This Hamiltonian is such that we link neighbors with
different coupling and orientation depending on the na-
ture of the link. We have in particular three coupling
parameters Jx, Jy and Jz. Kitaev for his solution used a
decomposition of the spins in 4 majorana fermions which
enables a symmetric representation of the system. How-
ever, here I will use the Jordan Wigner transformation
presented by Chen and Nussinov in [7] which is easier
to implement numerically.

First, we label each site with the integers (j, l) as in
FIG. 3 such that a line j = cst is a horizontal line with
x and y links. We can then do a Jordan-Wigner trans-
formation saying that we have a fermion if the spin is
along +z :

σz
jl = 2c†jlcjl − 1

σx
jl = (cjl + c†jl)

∏
(j′,l′)<(j,l)

σz
j′l′

σy
jl = i(c†jl − cjl)

∏
(j′,l′)<(j,l)

σz
j′l′

. (37)

Here we need, to define a string of spins that are before
the one we are looking at. We take the lexico-graphical
order: (j′, l′) < (j, l) iff j′ < j or if j = j′ and l′ < l;
in a nutshell, a spin is before another if it is below or
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on the same line but before on this line. With this, the
Hamiltonian becomes :

H =−
∑

x-links

Jx(c
†
jl + cjl)(c

†
jl−1 − cjl−1)

−
∑

y-links

Jy(c
†
jl + cjl)(c

†
jl+1 − cjl+1)

−
∑

z-links

Jz(2c
†
jlcjl − 1)(2c†j+1lcj+1l − 1)

(38)

which is great because it is still local even though our
Jordan-Wigner transformation is not. We can then de-
fine for each site, two Majorana fermions which define
the complex fermion :

cn =
1

2
(an + ibn) (39)

with a†n = an and b†n = bn. This transforms the Hamil-
tonian into :

H =
∑
jl

iJxajlbjl−1 + iJyajlajl+1 + Jzajlbjlaj+1lbj+1l

(40)
where the sum spans only over the black sites. Here we
can spot that the terms αjl = ibjlaj+1l are constants of
motion (if jl represents a black site). We have α2

jl = 1
so αjl can take two eigenvalues ±1. We note that the
αjl represent the flux sector for the Majoranas ajl and
bjl+1 because for each plaquette, αjl · αjl+1 represent
the flux of the exchanges according to the Hamiltonian.
According to Lieb in [8], the ground state of such a
system is obtained when all the fluxes are equal to 1,
therefore in this study, we place ourselves in the domain
αjl = 1. This gives us the new Hamiltonian :

H = i
∑
n⃗

Jxan⃗bn⃗−M⃗1
+ Jyan⃗bn⃗+M⃗2

+ Jzan⃗bn⃗ (41)

where we consider now the sum over all vertical links z
and for each link we consider an⃗ = ajl and bn⃗ = bj+1l.
Now we consider a system of large size N and put the
system in the periodic boundary condition. Then, we
can do a Fourier transform :

ak =
1√
2N

∑
n

ane
ik⃗·n⃗

bk =
1√
2N

∑
n

bne
ik⃗·n⃗

(42)

Implementing this in the Hamiltonian gives us :

H = 2
∑
k

i
(
Jxakb

†
ke

ik1 + Jyakb
†
ke

−ik2 + Jzakb
†
k

)
(43)

with k1 = k⃗ · M⃗1 and k2 = k⃗ · M⃗2. We label χk =

(
ak
bk

)
where the ak and bk are complex fermions with a†k = a−k

and b†k = b−k, then we can write :

H =
∑
k

χ†
kHkχk (44)

where the sum spans over half the Brillouin zone and

Hk = 2
(

0 i
(
Jz + Jxe

−ik1 + Jye
ik2
)

−i
(
Jz + Jxe

ik1 + Jye
−ik2

)
0

)
.

(45)
To simplify further this expression, we can label τx, τy
and τz the Pauli matrices, and then

Hk = h⃗ · τ⃗ (46)

with :

h⃗ = 2

 Jx sin(k1)− Jy sin(k2)
−(Jz + Jx cos(k1) + Jy cos(k2))

0

. (47)

Now we are in a situation very similar to the one of
the TFIM, we can do a Bogoliubov-De Gennes trans-
formation, with (uk, vk) positive eigenvector of Hk of
eigenvalue εk :

χk =

(
uk −v∗k
vk u∗k

)(
γk
γ†−k

)
(48)

we have

H =
∑
k

εk(γ
†
kγk − 1

2
). (49)

Therefore we have a representation with the fermions γk
constants of motion. The ground state is achieved for
the vacuum of these fermions and each γk represents an
excitation of energy

εk =
∣∣Jz + Jxe

−ik1 + Jye
ik2
∣∣ . (50)

B. Phase diagram

We have the expression of the energy of an excitation
in (50). If we look at this energy as the norm of a
complex number in C = R2, it is the sum of three vectors
of independent angles as in FIG. 4. In particular, εk can
vanish if it is possible to form a triangle with the length
of its sides equal to Jx, Jy and Jz, i.e. iff : Jx + Jy > Jz

Jz + Jx > Jy
Jy + Jz > Jx

. (51)
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Jz

Jxe
−ik2

Jye
ik1

FIG. 4: Representation of εk in C = R2 : εk is the
norm of the red vector.

In this situation, we are therefore in a gapless phase,
otherwise, we are in a gapped phase. To represent the
different possibilities we need to be able to represent the
different values of Jx, Jy and Jz. To do that, we can
spot that changing the sign of one Ji does not change the
aspect of the spectrum up to a translation in the Bril-
louin zone, so we can consider Jx, Jy, Jz > 0. Moreover,
multiplying all the Jx, Jy and Jz by the same constant
λ does not change the aspect of the spectrum: it only
scales it by λ. Therefore we can use the barycentric rep-
resentation of three reals: we take A,B and C forming
an equilateral triangle, the point (Jx, Jy, Jz) is then the
point M inside the triangle such that

Jx
−−→
MA+ Jy

−−→
MB + Jz

−−→
MC = 0 (52)

for more information please see on Wikipedia. The im-
portant idea is that the bigger, one number is, compared
to the other, the closer the point will be to a vertex of
the triangle. Finally, we get the phase diagram in 5.

What we see is that we have a central gapless phase
in orange and three gapped phases when one Ji is larger
than the sum of the others. In [6], Kitaev showed that
the gapped phases are topologically equivalent to the
toric code; whereas the gapless phase exhibits anyonic
behavior.

If we look more closely at the spectrum, we have dif-
ferent situations depending on where we are in the phase
diagram.

• For the gapped phase, we won’t develop more than
the fact that it is gapped.

• Inside the gapless phase, we have two Dirac cones
in the Brillouin zone, they exhibit linear disper-
sion, everywhere else in gapped.

• On the critical line (in green), we have one point
of vanishing energy where there is a quadratic dis-
persion in one direction and a linear dispersion in
the other direction. This comes from the fact that
the phase transition is happening when two Dirac

Jy = +∞ Jx = +∞

Jz = +∞

Jz = 0

Gapless phase

Gapped phases

FIG. 5: Phase diagram of Kitaev honeycomb model.

cones merge, they flatten the dispersion in the di-
rection where they meet.

• At the multicritical point (in cyan), we have an
entire line in the Brillouin zone where the energy
is vanishing, and the dispersion is linear in the
other direction. It is because at this point we have
one Ji = 0 and therefore the system is no longer
2D but a set of 1D lines. The Ji = 0 is even
equivalent to the TFIM and Jx = Jy corresponds
to the phase transition.

We can see this represented in FIG. 6.

C. Extended version

We solved the Kitaev model in the original scenario,
we will now focus on the Kitaev model with a time-
reversal breaking.

This was first introduced by Kitaev in [6] with a mag-
netic field. However, this magnetic field does not com-
mute with the flux sector and therefore we lose the αjl

constants of motions; this makes our study a lot more
difficult. Nevertheless, this can also be done via an ef-
fective Floquet Hamiltonian as presented by Sun and al.
in [9]. This gives us a Hamiltonian :

H = HK + ε
∑
⟨⟨j,l⟩⟩

JαJγσ
α
j σ

β
kσ

γ
l (53)

withHK the precedent Hamiltonian, the sum taken over
the second-nearest neighbors and j, k, l, α, β and γ as in
FIG. 7. The ε is a constant depending on the protocol
we use. It must stay small to have H as a realistic
Hamiltonian.

This new Hamiltonian breaks the time-reversal sym-
metry T because T σα

j = −σα
j . This will open the gap

in the gapless phase because the vanishing energy was

https://en.wikipedia.org/wiki/Barycentric_coordinate_system
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(a) In the gapless
phase

(b) On the
critical line

(c) At the
multicritical

point

FIG. 6: Spectrum of the Kitaev model in different
situations. The horizontal axes represent the Brillouin

zone k and the vertical axis represents the energies
±εk.

topologically protected by the time-reversal and the in-
version symmetries (as it is the case for instance for
graphene).

We can do the same transformation as in the prece-
dent subsections, we get for instance :

σx
j−1lσ

y
jlσ

z
jl+1 = iαjlbj−1lbjl+1 (54)

I will not develop all the computations but in the zero
flux sector (αjl = 1), we get after Fourier transform the
Hamiltonian in the form :

H =
∑
k

χ†
kHkχk (55)

with Hk = h⃗ · τ⃗ (the τi are the Pauli matrices) and

h⃗ = 2

 Jx sin(k1)− Jy sin(k2)
−(Jz + Jx cos(k1) + Jy cos(k2))

2ε(JxJy sin(k1 + k2)− JxJz sin(k1)− JyJz sin(k2))

.
(56)

We can also get after a Bogoliubov-De Gennes transfor-
mation :

H =
∑
k

εk(γ
†
kγk − 1

2
) (57)

with this time :

εk =
∣∣∣⃗h∣∣∣ (58)

This effectively opens the gap so we get 4 gapped
phases at the same positions as in FIG. 5. On the critical
green lines, we still have a phase transition, and the gap
vanishes. However, this time we also have a different
topology between the phases: the central orange phase

β

γ

α
k

j

l

FIG. 7: Second nearest neighbors as in the
Hamiltonian of the extended model.

is chiral and the extremal blue phases are topologically
trivial. Kitaev showed that the excitations in this chiral
phase can be seen as non-abelian anyons but I will not
develop this part.

III. OUT OF EQUILIBRIUM DYNAMICS FOR
THE HONEYCOMB MODEL

We have presented how to solve the equilibrium Ki-
taev model, now we are interested in diving into the out-
of-equilibrium dynamics. In particular, we will study
the density of excitation after a ramp in different situ-
ations. Some of the results of the first subsection were
already done by Das and al. in [10] and Hikichi and al.
in [11], but all the following work is new. The goal of
my internship was in particular to study the excitations
in the extended model on open boundary conditions be-
cause it enables us to understand the excitation of edge
states.

A. Periodic boundary condition on the Kitaev
model

We consider a ramp going through the phase diagram

as in FIG. 8: we choose Jx = Jy = 1 and Jz = − t

τQ
. We

start the process at t = −∞ in the ground state and we
will stop the process at different times. The situation
is very similar to the first section, in fact, we have the
same form of Hamiltonian :

H(t) =
∑

χ†
kHk(t)χk (59)

with χk independent of time (in Schrödinger picture).
Here we want to study

ν =
1

N

∑
k

〈
γ†g(t),kγg(t),k

〉
t

(60)

and as in the first section, we have

ν ≃
∫

d2k

4π2
pk(t) (61)
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Jy = +∞ Jx = +∞

Jz = +∞

Jz = −∞

Critical line

Critical line

Multicritical pointGapless
phases

Gapped
phases

FIG. 8: Protocol of our evolution going from Jz = +∞
to Jz = −∞. In this representation, we also added the

part of the phase diagram for negative Jz which is
simply the symmetric of the upper diagram, this

enables us to cross the multicritical point.

with pk(t) the probability of being in the excited state
after starting in the ground state of the Hamiltonian
Hk(t). With a change of basis, we can even write Hk(t)
as the Landau-Zener Hamiltonian :

Hk(t) = 2

(
− τk

τQ
Ωk

Ωk
τk
τQ

)
(62)

with τk = (cos(k1) + cos(k2) + t), Ωk = | sin k1− sin k2|.
Therefore, we need to know if pk(t) is quantitative, we
need to look at two things: Ωk ≲ τ

− 1
2

Q and τk(t) > 0.
This can be resumed by one fact: at the k position, εk
was small compared to τ−

1
2

Q at one point in its evolution.
For instance, for t < −2τQ, we are always in the gapped
phase and therefore, there is no excitation. We will
separate three situations: if we stop at the critical line
(t = −2τQ), if we stop inside the gapless phase (−2τQ <
t < 0), if we stop after the multicritical point (t > 0).

1. At the critical line

We stop first our evolution at the critical line i.e.
t = −2τQ. We have the spectrum represented in
FIG. 6b: it is linear in one direction and quadratic in the
other. Therefore, the region where the energy is small
compared to τ−

1
2

Q is of size τ−
1
2

Q in the linear direction

and τ
− 1

4

Q in the other. In total, the area of this region

where we have quantitative excitations is of size τ−
3
4

Q ,
and it follows that the density of excitations scales as :

ν ∼ τ
− 3

4

Q . (63)

FIG. 9: Density of excitations after a ramp starting in
the gapped phase and ending exactly at the phase

transition. Theory predicts a density scaling as τ−
3
4

Q ,
we do a power-law fit and it seems to follow this −0.75

factor.

This result is also found numerically, it is represented
in FIG. 9.

This way of reasoning uses the same ideas as the
Kibble-Zurek mechanism, but we have to adapt it a lit-
tle because we have two directions with different z, this
gives us a scaling of excitations:

ν ∼ τ
− νz

1+νz

(
1
zx

+ 1
zy

)
Q (64)

when we follow the same reasoning as in ID. This was in
part done also by Hikichi and al. in [11], with a slightly
different interpretation (but which comes to the same in
the end).

2. In the gapless phase

Now we stop our evolution in the gapless phase, first,
let’s present the scaling of the excitations with Kibble-
Zurek ideas. During the ramp, if we look at the spec-
trum we have this evolution: an anisotropic vanishing
energy point appeared at t = −2τQ, it then split into 2
Dirac cones with linear dispersion, these 2 Dirac cones
then moved in the Brillouin zone. We have seen we have
excitations in all the regions where the energy has been
during the evolution smaller than τ−

1
2

Q . Around a Dirac
point, the energy has a linear dispersion, and therefore
the region where there are excitations scales as τ−

1
2

Q in
both directions (it is an area of size τ−1

Q ). However,
during the evolution the Dirac cone moved in the Bril-
louin zone, the excitation was therefore integrated in
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FIG. 10: Density of excitations after a ramp starting
from the gapped phase and ending inside the gapless
phase. The Kibble-Zurek mechanism predicts a τ−

1
2

Q
scaling, we are here able to give an analytical result.

one direction where the extension of the region of ex-
citations is of the order of 1. Thus, the scaling comes
only from the orthogonal direction where we have τ−

1
2

Q
scaling. Finally, we get a density of excitations :

ν ∼ τ
− 1

2

Q (65)

This was a hand-waving argument but here in this
solvable model, we can have an analytical result. As
explained at the beginning of this subsection, we have
for each k sector a Landau-Zener Hamiltonian given in
(62). In particular, with the change of variable:

k =
k1 + k2

2

δk =
k1 − k2

2

(66)

we get {
Ωk = 2| cos

(
k
)
sin(δk)|

τk = 2τQ cos
(
k
)
cos(δk) + t

. (67)

If we stop our evolution at −2τQ < tf < 0, we will
get excitations for |δk| ≲ τ

− 1
2

Q ≪ 1 and for |k| < kf =

arccos
(

tf
2τQ

)
. In this region, we have the approximation

Ωk ≃ 2| cos
(
k
)
||δk|. (68)

With the expression of the Landau-Zener transition, we

finally get :

ν =

∫
d2k

4π2
pk(tf ) (69)

≃ 1

2π2

∫
−kf<k<kf

dk

∫
δk

dδk exp
(
−8πτQ cos

(
k
)
(δk)2

)
(70)

where the second integral spans over all the real axis
because we can extend the integral where it is negligible.
This gives us by integration :

ν ≃ 1

τ
1
2

Q2
√
2π2

∫ kf

0

dk

cos
(
k
) . (71)

We have here the scaling as τ−
1
2

Q with the exact prefactor
(which can be expressed with trigonometric functions).
We can also simulate this ramp numerically and we get
the results in FIG. 10 for tf = −τQ. The analytical
result fits the simulations for large values of τQ.

As a remark, this excitation is added to excitations we
had on the critical line but the τ−

1
2

Q dominates the τ−
3
4

Q
and therefore for large τQ we only see the excitations
from the gapless phase evolution.

3. After the multicritical point

This subsubsection is new work that was not done previ-
ously. At the multicritical point, the spectrum behaves
in a very peculiar fashion: it flattens in one direction
on the line k = ±π

2 where the energy vanishes. To
study it, we consider that we stop the study after going
through all the ramp (tf = +∞), with this we have the
excitation from the critical lines, the two gapless phases
(which dominate the latter), and the multicritical point.
We already know the excitations at the critical lines and
in the gapless phases so we will be able to spot what
happens at the multicritical point.

First, let’s consider a scaling argument as before. At
the multicritical point, we have a line where the energy
vanishes and there is a linear dispersion in the other
direction. Therefore, if we look at the region where the
energy is smaller than τ

− 1
2

Q , it will be of scale as τ−
1
2

Q .

In addition to the τ−
1
2

Q from the gapless phases, we get
excitations as:

ν ∼ τ
− 1

2

Q . (72)

We have done numerical simulations in FIG. 11, we mul-
tiplied the density of excitations by τ

1
2

Q but we do not
get the constant line we expect from this computation.
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FIG. 11: Density of excitation after a ramp starting
from the gapped phase, going through the two gapless
phases and the multicritical point and ending in the

gapped phase, multiplied by τ
1
2

Q . The axes are semi-log
and as the simulation points follow a nonconstant line,

we have excitations as log(τQ)τ
− 1

2

Q .

This comes from the fact that just before becoming a
vanishing line at the multicritical point, the Dirac cone
was linear in both directions but almost zero in one di-
rection. Thereby, there is more excitation than what we
expected, let’s dive into the computations to understand
better.

This time as we ended the evolution at t = +∞, all
the Landau-Zener transitions were done and we only
have to look at

Ωk = 2| cos
(
k
)
sin(δk)|. (73)

We can consider the computation done in the last sub-
subsection, here we integrate over all the Brillouin all
the Brillouin zone thus :

ν ≃ 1

τ
1
2

Q

√
2π2

∫ kf

0

dk

cos
(
k
) (74)

with kf going to
π

2
. However, this integral diverges be-

cause cos(x) ∼
(
x− π

2

)
for x → π

2
. Therefore, the

integral diverges as a log, but this comes from the fact
that we did a too crude approximation near

π

2
, in prac-

tice, there will be a cutoff of size τ−
1
2

Q in this divergence
and therefore we will have a scaling of the excitations
as:

ν ∼ (a+ b log(τQ))
1

√
τQ

(75)

with a and b some constants.

FIG. 12: Density of excitations over time in Kitaev
model, multiplied by √

τQ. We have different scalings
according to the phase in question. In particular, we
have a perfect τ−

1
2

Q scaling in the gapless phase but at
the critical point in addition to that, there is a log(τQ)

term.

For this ramp we can even compute explicitly the scal-
ing (this is done in the appendix A) :

ν =
1√
2π2

1
√
τQ

(log(τQ) + 4 log(2) + C)+O(τ−1
Q ) (76)

with C ≃ 4.49453 an integration constant. This scaling
is observed in simulation as we can see in the FIG. 11
where we multiply by τ

1
2

Q and use semi-log axis to see

the log-correction to the first idea of a τ−
1
2

Q scaling.
This log-correction seems to come from the fact that

we are going through a phase transition between two
gapless phases. We did not find another place where a
similar log-correction was observed, in particular with
no log in the dispersion, in the appendix B, I present
some ideas of where a log-correction can come from.

As a conclusion of this part, we have FIG. 12 which
represents the evolution of the density of excitations
over time. We have different scaling of excitations de-
pending on the moment but all the excitations are added
to each other and in the end we get a log(τQ)τ

− 1
2

Q scal-
ing.

B. Periodic boundary condition on the extended
model

In the extended model, we can do a similar ramp as
in the original Kitaev model but this is not necessary.
Here, we have only gapped phases and the spectrum is
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FIG. 13: Density of excitation going through the
critical line. Here it means we are going from a

non-chiral to a chiral phase. We have excitations going
as τ−1

Q , this is the Kibble-Zurek scaling. Here, we can
see a good fit but finite size effect for large linear size

N of the system.

gapless only at the phase transitions. Thus, the exci-
tations only appear at the phase transition and we can
look at them individually. Therefore we will do two

ramps: Jx = Jy = 1 and Jz = 2

(
1− t

τQ

)
to study the

critical line; and Jx = Jy = 1 and Jz = −2
t

τQ
to study

the multicritical point (each time we start before 0 and
stop afterward).

Let’s study the first ramp, here (and for the second
ramp too), we are still in the same situation with a
Hamiltonian in the form:

H(t) =
∑
k

χ†
kHk(t)χk (77)

and the study is

ν =

∫
d2k

4π2
pk(t) (78)

with pk(t) the probability of transition of Hk(t). Now
that we are going from gapped to gapped phase, at the
phase transition, at t = 0, the spectrum has a vanishing
gap at a linear Dirac cone. Therefore, the region where
there is excitation i.e. where εk ≲ τ

− 1
2

Q is of size τ−
1
2

Q in
both directions and therefore we have a scaling:

ν ∼ τ−1
Q . (79)

This is the Kibble-Zurek scaling with ν = 1 = z and
d = 2. Here, by looking at the explicit Landau-Zener

FIG. 14: Density of excitation after the multicritical
point. Here it means we are going from one chiral

phase to another. We see that the excitation follows
the τ−1

Q scaling.

transitions at each point (I do not present these compu-
tations), we can have an explicit value:

ν ≃ 1

48π2ε

1

τQ
. (80)

This is also what we get in numerical simulations as
presented in FIG. 13.

If we now look at the second protocol, we are going
from a chiral to the other chiral phase. At the phase
transition, we still have the degeneracy of having a line
where the energy is vanishing. However, in this evolu-
tion, it is the only thing happening and we do not have
any log-correction. Therefore, we get the scaling

ν ∼ τ
− 1

2

Q (81)

because it is the size of the region of linear dispersion
around this line where the energy is below τ

− 1
2

Q . Here
again, we can compute everything explicitly and we get:

ν ≃ 1
√
τQ

1

4π2
I(ε) (82)

with

I(ε)
ε→0≃ 4 log(ε) + C (83)

with C ≃ 1.62186. In particular, we can interpret this
equation as the fact that the log correction has been
taken by the ε term which is the one giving the cutoff
in the log divergence of the integral. We can see this in
FIG. 14.

In the end, this extended model is easier than the orig-
inal model because we do not have any gapless phase.
However, it is still interesting because as we have a chi-
ral phase we can also study the edge modes. But for
that, we need to open the boundary by definition.
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FIG. 15: Spectrum of the extended Kitaev model on a
cylinder inside the chiral phase. We represent a dot for
the energy of each eigenvector and choose the color to

represent the inverse participation ratio. We see as
expected in a chiral phase, the existence of edge states

with an inverse participation ratio of the order of 1
and they live in the gap.

C. Excitation of the edge modes in the extended
model

Here we study the ramp going from the non-chiral to

the chiral phase, i.e. Jx = Jy = 1 and Jz = 2

(
1− t

τQ

)
.

We want to study the edge states so we need to open
a boundary however it is also useful to have periodic
boundary conditions in order to have conserved quanti-
ties. Thereby, we chose to put the system on a cylinder,
that is, it is open in one direction (the y-direction in my
study) and periodic in the other (the x-direction in my
study).

Therefore, we can do a Fourier transform in the x
direction and we get a Hamiltonian in the form:

H =
∑
kx

χ†
kx
Hkxχkx (84)

with χkx
a Ny vector of annihilation operators for each

ordinate y. We can do a Bogoliubov-De Gennes trans-
formation with the eigenvectors ψkx,i(y) of Hkx

in order
to get:

H =
∑
kx,i

εkx,i

(
γ†kx,i

γkx,i −
1

2

)
. (85)

If we consider a time-varying Hamiltonian, we have with

FIG. 16: Density of excitation of the edge modes in
the extended model after going from the non-chiral to
the chiral phase. We have a scaling as τ−

1
2

Q , this is the
Kibble-Zurek scaling for a dimension d = 1. There is
little finite size effect for these sizes of systems (N is
the linear size of the system: there are 2N2 sites).

the same reasoning as in the first section, that:

ν =
1

N

∑
kx,i

〈
γ†g(t),kx,i

γg(t),kx,i

〉
t
=

1

N

∑
kx,i,j

pkx,j→i(t)

(86)
with pkx,j→i(t) the probability of getting from the

negative energy eigenstate i to the positive energy eigen-
state j. In particular, we can spot the density of exci-
tation of edge states by only summing the pkx,j→i for i
an edge state.

We therefore need a way to know whether a certain
state is an edge state or not. For that, we can use the
inverse participation ratio (IPR):

Ikx,i =
∑
y

|ψkx,i(y)|4. (87)

This number is between 0 and 1 and if ψ is a wave-

function spanned uniformely other L sites then I =
1

L
.

Therefore, in our system of size Ny for the eigenvectors,

we have Ikx,i of the order of
1

Ny
for the bulk modes but

of the order of 1 for the edge modes. We can compute
it for our system, one example is given in FIG. 15 with
also a representation of the energy for each state. We
see in particular that inside the chiral phase, we have
edge states and they live in the gap. Now we can ef-
fectively choose the edge states as the states of inverse
participation ratio greater than 0.2 (arbitrarily) and do
the numerical simulation.
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In the simulation of the evolution, we first notice that
the edge states do not get excited inside the chiral phase
even though they have vanishing energy: it may be be-
cause we do not have an evolution of the eigenstates
and therefore there is no reason to be excited (they feel
a constant Hamiltonian). However, we get excitation at
the phase transition as presented in FIG. 16.

In this simulation, we spot that the density of excita-
tions scales as τ−

1
2

Q , this is the Kibble-Zurek excitation
for this system (ν = z = 1) with a dimension d = 1.
This is logical because the edge modes live on the fron-
tier which is of dimension 1.

CONCLUSION

In my work, I studied the Kitaev Honeycomb model
and applied the Kibble-Zurek mechanism to get the scal-
ing of the number of excitations after a ramp. The idea
is to use these scalings to conceive an experimental pro-
tocol that creates only specific excitations: anyons. I
did not have time to finish this part during my intern-

ship but I am still in discussion with my supervisors to
do it.

Along the way, I encountered a logarithmic scaling
that was not observed before in similar systems. It could
be interesting to understand further what are the con-
ditions that make it appear.

I would like to thank my supervisors Marin and
Patrick who found me a really interesting project and
prepared for me a lot of preliminary work such that I
could be efficient upon my arrival at PKS. They were a
lot helpful during my internship and afterward. I would
also like to thank Michael and Tarik who helped make
this project go further and gave a lot of ideas during
our discussions. Moreover, I would like to thank all
the students, researchers, and staff at PKS, they helped
me a lot enjoy my stay at Dresden and have enriching
conversations about physics. Finally, I would like to
thank Nicolas, Sylvain, Matthieu, and of course Valens
for their support and discussion during this internship.
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Appendix A: Computation of the log-correction

We want to study how many excitations are created
from gapped to gapped when we go through the gapless
phase and the multicritical point. This is given by :

ν =
1

N

∑
k∈BZ

pk ≃
∫
k∈BZ

dk1dk2
4π2

pk (A1)

With pk the Landau-Zener transition probability (at in-
finite time) of

Hk(t) = 2

(
− τk

τQ
Ωk

Ωk
τk
τQ

)
(A2)

with Ωk = | sin k1 − sin k2|. We therefore have :

pk = e−πτQ(sin k1−sin k2)
2

(A3)
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To study our problem, we take the change of variables
of the average and the half-difference :

k =
k1 + k2

2

δk =
k1 − k2

2

(A4)

We can spot that kx =
2
√
3

3
k and ky =

2

3
δk. In par-

ticular, the Brillouin zone won’t have the same propor-
tions as usual. The change of variable is of Jacobian 1

2 .
Therefore, we can then rewrite :

ν =

∫
k∈BZ

dkdδk

2π2
exp

(
−2πτQ sin2(δk) cos2(k)

)
(A5)

We want the asymptotic value of ν when τQ is going
to infinity. However, we have exponential decay of pk
when | sin(δk) cos

(
k
)
| ≴ 1

√
τQ

. We have

sin(δk) cos
(
k
)
= 0 ⇔ δk = 0 or k = ±π

2
(A6)

and we, therefore, study the neighborhood of this
condition. We cut our Brillouin zone into 4 zones A,
B, C and D as presented in Fig. 17. The idea is to
be able to do different approximations depending on
which region we are in. The cutoffs are such that
klim = ±π

2
± τ

− 1
6

Q and δklim = ±τ−
1
6

Q . The choice

of τ−
1
6

Q is arbitrary but the result does not depend
on this choice of course. In general, to use the same

approximations as we do, we could choose instead of
1

6

some factor α such that 0 < α <
1

4
.

We have

ν = νA + νB + νC + νD (A7)

such that

νX =

∫
k∈X

dkdδk

2π2
exp

(
−2πτQ sin2(δk) cos2(k)

)
(A8)

For k ∈A, we have |δk| ≤ τ
− 1

6

Q ≪ 1. Therefore :

νA ≃ 2

∫
−π

2
+ τ

− 1
6

Q < k < +π
2
− τ

− 1
6

Q

−τ
− 1

6
Q < δk < τ

− 1
6

Q

dkdδk

2π2
exp

(
−2πτQδk

2 cos2(k)
)

(A9)
Where the factor 2 comes from the fact that this is the
integral of the central part of A which is half the total

k2

k1

k

δk

2τ
− 1

6
Q

2τ
− 1

6
Q

D

A e AA

BB

B B

CC

k = −π

2
k =

π

2

δk = 0

FIG. 17: Brillouin Zone separated into 4 regions

area. With the change of variable u = 2
√
τQδk cos

(
k
)
,

we get :

νA =
1√

2π2√τQ

∫
−π

2
+ τ

− 1
6

Q < k < +π
2
− τ

− 1
6

Q

−2τ
1
3
Q cos

(
k
)
< u < 2τ

1
3
Q cos

(
k
)
dkdu

cos
(
k
) exp (−πu2)

(A10)
In each of the Gaussian integrals, we have the limit at
or above 2τ

1
3

Q cos
(

π
2 − τ

− 1
6

Q

)
≃ 2τ

1
6

Q ≫ 1. Therefore, we
can expand each of the Gaussian integrals to infinity
and they are equal to 1. We get :

νA ≃ 1√
2π2√τQ

∫
−π

2 +τ
− 1

6
Q <k<+π

2 −τ
− 1

6
Q

dk

cos
(
k
) (A11)

The integrand is even, thus :

νA ≃
√
2

π2√τQ

∫
0<k<+π

2 −τ
− 1

6
Q

dk

cos
(
k
) (A12)

Here, we can understand why we get a logarithmic cor-
rection here: when k → π

2
, cos

(
k
)

∼
(
k − π

2

)
and

therefore we integrate the function x 7→ 1

x
. To have

a better approximation, we use Wolfram|Alpha, to have
:

νA =

√
2

π2√τQ
(
− log

(
cos
(
x
2

)
− sin

(
x
2

))
+ log

(
cos
(
x
2

)
+ sin

(
x
2

)))
(A13)
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With x = π
2 − τ

− 1
6

Q . Therefore :

νA ≃
√
2

6π2

1
√
τQ

log(τQ) +

√
2

π2

1
√
τQ

log(2) (A14)

We can see that if we exchange π
2 − k and δk, we get

the same computations between νA and νB . Therefore
νA = νB .
Moreover, in D, we have exponential decay of pk,
therefore νD ≃ 0. We now have only to compute νC .

We consider the right part of C (the two parts have
equal integral), therefore we have |δk| < τ

− 1
6

Q ≪ 1 and

|k − π
2 | < τ

− 1
6

Q ≪ 1. We can then approximate pk by :

pk ≃ exp
(
−2πτQ(δk)

2(k − π

2
)2
)

(A15)

By the change of variables u1 =
√
2τ

1
4

Qδk and u2 =
√
2τ

1
4

Q(k − π
2 ), we get :

νC =
1√

2π2√τQ

∫
[
−
√
2τ

1
12
Q ,

√
2τ

1
12
Q

]2

du1du2 exp
(
−πu21u22

)
(A16)

This is the integral of a function with the area growing
with τQ. To get the scaling, we can consider only one
side of the square, and in the neighborhood of the side,
we have the integration of a Gaussian, which gives :

νC =

√
2

6π2

1
√
τQ

log τQ +O

(
1

√
τQ

)
(A17)

With Mathematica, we can numerically compute the

O

(
1

√
τQ

)
, we get :

νC =

√
2

6π2

1
√
τQ

log τQ +
1

2π2

1
√
τQ
C (A18)

with C ≃= 4.49453.

This finally gives us :

ν = νA + νB + νC + νD (A19)

=
1√
2π2

1
√
τQ

(log(τQ) + 4 log(2) + C) +O

(
1

τQ

)
(A20)

Which fits perfectly with the simulations, cf Fig. 11.

Appendix B: Circumstances of log-correction

The idea here is to understand when we can have
a scaling with a log when studying the number of
excitations of a system with out-of-equilibrium dynam-
ics. We will first use some assumptions of a generic
system. We consider having excitations labeled by a
quasi-momentum k, with k = (kx, ky). We suppose
to have a time evolution of the energy E(k, t) and we
write ∆(k) = min

t
E(k, t). We will assume (it can be

reasonable but I am not sure of when it is the case) that
∆(k) is in the form |f(k)| with f(k) an analytic func-
tion. We study the density of excitations represented

by ν =

∫
dkxdky
4π2

pk the integral of the probability pk

of excitation of a particle of momentum k. If the evolu-
tion follows as precedently a Landau-Zener transition,
pk = exp

(
−τQ∆(k)2

)
. This leads us to say that we

have excitations if ∆(k) ≲ τ
− 1

2

Q . In general with an
evolution ruled by the universality E ∼ (t/τQ)

νz, the
adiabaticity is broken and therefore we have excitations
when ∆(k) ≲ τ

− νz
νz+1

Q . I will continue with νz = 1 but
it does not change the reasoning.

We now want to see the appearance of a log term
when studying τQ going to +∞.

→ If ∆(k) is vanishing only at one point (wlog
at k = 0) (it is the case for instance with a
phase transition), then with a Taylor expansion
we have ∆(k) ∼ |kzxx k

zy
y |. Therefore the region where

∆(k) ≲ τ
−1/2
Q is of the form as below :

kx

ky
ν ∼ τ

− 1
2 (

1
zx

+ 1
zy

)

Q

τ
− 1

2zy

Q

τ
− 1

2zx

Q

We therefore have excitations scaling as τQτ
− 1

2 (
1
zx

+ 1
zy

)

Q
and no log-correction.

→ If ∆(k) is vanishing on a line (wlog at kx = 0), it
is the case when we are going through a gapless phase
with a Dirac cone moving in the Brillouin zone or if we
are going through a phase transition (between gapped
phases) with a 1D degeneracy at the phase transition.
Then with a Taylor expansion, we have ∆(k) ∼ Ck

zy
y

with C a constant (in general it could depend on kx
but it doesn’t change the scaling). Therefore the region
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where ∆(k) ≲ τ
−1/2
Q is of the form as below :

kx

ky
ν ∼ τ

− 1
2zy

Q

τ
− 1

2zy

Q

O(1)

We therefore have excitations scaling as τ
− 1

2zy

Q and no
log-correction.

→ The interesting case is when we have two intersect-
ing lines where ∆(k) is vanishing (wlog on kx = 0 and
ky = 0). It can happen when we are going from a gap-
less phase to a gapless phase with a 1D degeneracy at
the phase transition, I think it could also happen if two
Dirac cones merge at a phase transition and then sepa-
rate again. With a Taylor expansion, we have ∆(kx ≃
0, ky) ≃ C(ky)·kzxx and ∆(kx, ky ≃ 0) ≃ D(kx)·k

zy
y with

C(ky) and D(kx) non vanishing constants (for kx ̸= 0
and ky ̸= 0). This gives/comes from ∂αx∆(0, ky) = 0
for α < kx and ∂βy∆(kx, 0) = 0 for α < ky. Con-
sequently, ∂αx ∂βy∆(0, 0) = 0 for α < zx or β < zy.
By Taylor expansion, the first non-vanishing term is :
∆(kx ≃ 0, ky ≃ 0) ≃ λkzxx k

zy
y with λ a non vanishing

constant. This gives us the region where ∆(k) ≲ τ
−1/2
Q

is of the form as below :

kx

ky

τ
− 1

2zy

Q

τ
− 1

2zx

Q

If we are near the kx = 0 axis but far from the ky = 0

then the excitations scale as τ
− 1

2zy

Q and for the other

axis it is as τ
− 1

2zx

Q . However, for the central region, it
depends on zx and zy. On one hand, if zx and zy are dif-
ferent they are dominated by the larger of the smaller of
the two, and if for instance zx < zy then the excitations

scales as τ
− 1

zx

Q and in total ν ∼ τ
− 1

zx

Q . But on the other
hand, if zx = zy, then the central area is a hyperbola

and the excitations scale as τ
− 1

zx

Q log(τQ). In total we
therefore have excitations :

ν ∼ τ
− 1

zx

Q log(τQ)

In conclusion, we seem to have a log correction when
we are specifically going from a gapless phase to a gap-
less phase but we also need another characteristic given
by zx = zy which is true for the Kitaev case where
zx = zy = 1.
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