Floquat engineering Q . how should we design the Hamiltonian $H(l+)$, so that we can prescribe desired properties vt Hi $E_{\text{ramp}^{'}}$ $\left| \begin{array}{cc} 1 & \text{dynamical stable} \\ -\text{dynamical stable} \end{array} \right|$ itization -> Kapitza oscillator (Pioto Kapitza, 'J') - Kapiter pendulum using FM expansion: t $\frac{\rho_0^2}{2w}$ - $w \left(w_0^2 + Aw \omega w + \right) \omega_0 \theta$ = Hair + H_{pot} + ω $f(f)$ Hdrive where: Huin = $96 / 2m$ $H_{p+1} = -\omega \omega^2 \omega s \theta$ $H_{\text{drive}} = -\omega \omega \theta$; $f(t) = A \omega \omega t$ due to scaling of drive amplitude w/ frequency w, we cannot simply take the time-average in lab frame \Rightarrow limit $w \Rightarrow \infty$ not just given by time-ave -> missing higher order contributions: to [Him +Hpot, yoftdrive] of when term contains w-nested commutators b) P u-fold time-volered integral $\approx \frac{1}{10}$ Q: is there a more estiment way to compute HFM $yes! \Rightarrow in$ the votating frame: $H(f) = \frac{\rho}{2\pi} - \mu \left(\omega_o^2 + 4\omega \omega \omega + \omega \right) \omega_1 \theta$ problematic scaling. I wesses up the power counting of w $\frac{rccc\sqrt{1}}{r}$ H_{rot}(+) = $V^{\dagger}(r)H(r)V(r) - iV^{\dagger}(r)U(r)U(r)$

$$
\frac{\partial e_{\alpha} \cdot \mu_{\alpha} - \partial u \partial_{\alpha} \cdot \mu_{\alpha} - \partial u \partial_{\alpha} \cdot \mu_{\alpha} + \partial u \
$$

$$
\int_{\infty} \frac{1}{2} \arcsin(\frac{1}{2} + \arctan \frac{1}{2} + \ar
$$

ueed: $e^{i\phi h}$ a $e^{-i\phi h}$ = : $F(d)$ (*) $x = A_j$ in wt $Q_{1}F = e^{i\lambda u}i\omega a e^{-i\lambda u} = -iF$ => $F(A) = F(0) e^{-id} = a e^{-id}$
- $\frac{1}{\lim_{t\to 0+}}$ = $\frac{1}{2}-3e^{+i4sin\omega t}$ (j+1) α_{j+1} = Asimit $\frac{1}{2}\alpha_{j} + h\cdot 1 - \mu_{j}$ $= \sum_{i} - J \left(e^{+i A_{s}}\omega + a_{i} + b.c.\right) - \mu_{i}$ $-$ apply IFE: $H_P^{(6)} = \frac{1}{T} \int_0^T d\tau \ H_{\text{tot}}(t) = \frac{1}{\lambda} - \frac{1}{2} F(R(A)) \left(a_{\frac{1}{2} + 1}^{\frac{1}{2}} a_{\frac{1}{2} + 1}^{\$ where $J_{\epsilon A}(A) = \int_{0}^{T} \frac{dt}{T} e^{-i A_{siv} \omega t} = J_{o}(A)$ zeroth Bessel fu $\mathfrak{I}(\mathsf{A})$ at $4 \approx 2.41$
 $\frac{1}{4}$ Jeff $(A_x) \approx 0$ \Rightarrow suppression of -> dynamical localization Example 3: artiticial magnetic fielels consider the Harper-Hutstedter world: PRB 14 2238, 1976 $\sum_{m,n} e^{i\varphi_{m,n}} a_{m+1,n}^{\dagger} a_{m+1,n} + b.c.$ $-7\sum_{m,n} a_{m,n+1}^{\dagger} a_{m-}^{\dagger} + h.c.$ $\varphi_{\mu\nu} = \varPhi_{\mathfrak{g}}(\mu+\mu)$ $\sum_{\substack{n \text{odd } n}}$ nun : = amu amu particle op. . Φ_{n} unguetic flux per jolognette
-sbreaks time-veversal, cancot be geouged away

in the kink is at a specific
\na
$$
e^{-x}x
$$
 through 1, $cos\theta$ with $sin\theta$
\nb $sin\theta$ is $\frac{dy}{dx}$, $cos\theta$ with $cos\theta$ (1) $(-5$ kelu/ical
\n $sin\theta$
\n $cos\theta$
\n

$$
H_{E}^{[0]} = -\sum_{w|U} Ke^{i\theta_{ww}} \alpha_{w+1}^{+} \alpha_{ww} + h.c. \qquad HH \text{ Hamiltonian } w
$$
\n
$$
T \alpha_{w+1}^{+} \alpha_{ww} + h.c. \qquad HH \text{ Hamiltonian } w
$$
\n
$$
L = J_{x} \mathcal{I}_{d} \{ \mathcal{I}_{\overline{\Phi}} \} \qquad R \qquad J = J_{\overline{q}} \mathcal{I}_{e} \{ \mathcal{I}_{\overline{B}} \} \qquad \text{for all } w \text{ is a positive}
$$
\n
$$
L = \sum_{w|U} K = \sum_{w} \mathcal{I}_{d} \{ \mathcal{I}_{\overline{\Phi}} \} \qquad R \qquad J = J_{\overline{q}} \mathcal{I}_{e} \{ \mathcal{I}_{\overline{B}} \} \qquad \text{for all } w \text{ is a positive}
$$
\n
$$
L = \sum_{w|U} K \mathcal{I}_{q} \{ \mathcal{I}_{\overline{\Phi}} \} \qquad R \qquad J = J_{\overline{q}} \mathcal{I}_{e} \{ \mathcal{I}_{\overline{B}} \} \qquad \text{non equal to } \mathcal{I}_{e} \}
$$
\n
$$
= \sum_{w|U} K \mathcal{I}_{q} \{ \mathcal{I}_{\overline{B}} \} \qquad \text{for all } w \text{ is a positive}
$$
\n
$$
= \sum_{w|U} K \mathcal{I}_{q} \{ \mathcal{I}_{\overline{B}} \} \qquad \text{for all } w \text{ is a positive}
$$
\n
$$
= \sum_{w|U} K \mathcal{I}_{q} \{ \mathcal{I}_{\overline{B}} \} \qquad \text{for all } w \text{ is a positive}
$$
\n
$$
= \sum_{w|U} K \mathcal{I}_{q} \{ \mathcal{I}_{\overline{B}} \} \qquad \text{for all } w \text{ is a positive}
$$
\n
$$
= \sum_{w|U} K \mathcal{I}_{q} \{ \mathcal{I}_{\overline{B}} \} \qquad \text{for all } w \text{ is a positive}
$$
\n
$$
= \sum_{w|U} K \mathcal{I}_{q} \{ \mathcal{I}_{\overline{B}} \} \qquad \text{for all } w \text{
$$