

Floquet engineering for quantum simulation

MAX PLANCK INSTITUTE FOR THE PHYSICS OF COMPLEX SYSTEMS

lab frame

rotating frame

Funded by the European Union

European Research Council Established by the European Commission

Deutsche Forschungsgemeinschaft

MPI-PKS (Dresden)

Quantum technologies

Quantum Communication

image: PRL 123 100506 (2019)

process info with unprecedented security

Quantum Computing

image: IBM

speed up essential algorithms

Quantum Sensing & Metrology

image: ETH Zurich

measure weakest of fields

Quantum Simulation

 understand properties of quantum matter, complex molecules, drug discovery

superconducting qubits

image: IBM

neutral atoms

trapped ions

photons

image: ParityQC

image: Wikipedia

image: arXiv:2404.05620

Quantum Simulators

quantum simulator

Richard P Feynman

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy." (1982)

- use one quantum system to emulate the behavior of another
- restrictions: not all quantum systems can be simulated

Q: how can we expand the range of systems we can simulate?

Marín Bukov

Gross & Bloch, Science 357, 6355 (2017)

Periodically driven systems

video: YouTube (bluedwarf1127)

video: YouTube (Harvard Nat Sci)

High-frequency periodic drives can change drastically the fundamental properties of physical systems

- classical systems: fictitious forces
- quantum systems
- Periodically driven quantum systems
 - Floquet theorem
 - Floquet engineering
- Examples
 - spin-1 particle in a circularly polarized drive
 - quantum Kapitza oscillator
 - artificial gauge fields

- Rotating reference frames
 - classical systems: fictitious forces

lab frame

rotating frame

- rotating reference frame
 - not inertial
 - fictitious forces

Merry-go-round

- rotating reference frame
 - not inertial

fictitious forces

e.g.,
$$P(t) = \begin{pmatrix} \cos \omega t & -\sin \omega t & 0 \\ \sin \omega t & \cos \omega t & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

transformation between lab and rotating frames

rotation matrix: P(t)

lab frame

rot frame

 $\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$

 $\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$

 rotating reference frame $\hat{z} = \hat{z}_{rot}$ e.g., $P(t) = \begin{pmatrix} \cos \omega t & -\sin \omega t & 0 \\ \sin \omega t & \cos \omega t & 0 \\ 0 & 0 & 1 \end{pmatrix}$ not inertial $\hat{y}_{rot}(t)$ fictitious forces transformation between lab and rotating frames $P^{-1}(t) = P^{\dagger}(t)$ lab frame rot frame rotation matrix: P(t)position: $\vec{r}_{lab}(t)$ $\vec{r}_{\rm rot}(t)$ $\dot{\vec{r}}_{\rm rot}(t)$ velocity: $\dot{\vec{r}}_{lab}(t)$ $\ddot{\vec{r}}_{\rm rot}(t)$ acceleration: $\vec{r}_{lab}(t)$ $\overrightarrow{F}_{\rm rot}$ force: \overrightarrow{F}_{lab} $\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$ $\vec{F}_{lab}(t) = P(t) \vec{F}_{rot}(t)$

• time-dependent rotation matrix P(t)

$$f(t) = \begin{pmatrix} \cos \omega t & -\sin \omega t & 0\\ \sin \omega t & \cos \omega t & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$\hat{z} = \hat{z}_{rot}$$

$$\hat{y}_{rot}(t)$$

$$\hat{x}$$

$$\hat{x}$$

$$\hat{x}$$

$$\hat{x}$$

$$\hat{y}_{rot}(t)$$

- time-dependent rotation matrix $P(t) = \begin{pmatrix} \cos \omega t & -\sin \omega t & 0\\ \sin \omega t & \cos \omega t & 0\\ 0 & 0 & 1 \end{pmatrix} \hat{x}$
 - inverse transformation

$$P^{-1}(t) = P^{\dagger}(t) = P(t; -\omega) = \begin{pmatrix} \cos \omega t & +\sin \omega t & 0\\ -\sin \omega t & \cos \omega t & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$\hat{z} = \hat{z}_{\text{rot}}$$

$$\hat{y}_{\text{rot}}(t)$$

$$\hat{y}_{\text{rot}}(t)$$

• time-dependent rotation matrix

$$P(t) = \begin{pmatrix} \cos \omega t & -\sin \omega t & 0\\ \sin \omega t & \cos \omega t & 0\\ 0 & 0 & 1 \end{pmatrix}$$

inverse transformation

$$P^{-1}(t) = P^{\dagger}(t) = P(t; -\omega) = \begin{pmatrix} \cos \omega t & +\sin \omega t & 0\\ -\sin \omega t & \cos \omega t & 0\\ 0 & 0 & 1 \end{pmatrix}$$

element-wise derivatives

$$\dot{P}(t) = \omega \begin{pmatrix} -\sin\omega t & -\cos\omega t & 0\\ \cos\omega t & -\sin\omega t & 0\\ 0 & 0 & 0 \end{pmatrix}$$

• time-dependent rotation matrix

$$P(t) = \begin{pmatrix} \cos \omega t & -\sin \omega t & 0\\ \sin \omega t & \cos \omega t & 0\\ 0 & 0 & 1 \end{pmatrix}$$

inverse transformation

$$P^{-1}(t) = P^{\dagger}(t) = P(t; -\omega) = \begin{pmatrix} \cos \omega t & +\sin \omega t & 0\\ -\sin \omega t & \cos \omega t & 0\\ 0 & 0 & 1 \end{pmatrix}$$

► element-wise derivatives
$$\dot{P}(t) = \omega \begin{pmatrix} -\sin \omega t & -\cos \omega t & 0 \\ \cos \omega t & -\sin \omega t & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$P^{\dagger}(t)\dot{P}(t) = \begin{pmatrix} \cos\omega t & +\sin\omega t & 0\\ -\sin\omega t & \cos\omega t & 0\\ 0 & 0 & 1 \end{pmatrix} \omega \begin{pmatrix} -\sin\omega t & -\cos\omega t & 0\\ \cos\omega t & -\sin\omega t & 0\\ 0 & 0 & 0 \end{pmatrix} = \omega \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} = \omega \hat{z} \times \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a\\ b\\ c \end{pmatrix} = \begin{pmatrix} -b\\ a\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \times \begin{pmatrix} a\\ b\\ c \end{pmatrix}$$

Marín Bukov

 $\hat{z} = \hat{z}_{\rm rot}$

 $\hat{x}_{\rm rot}(t)$

â

time-dependent rotation matrix

$$P(t) = \begin{pmatrix} \cos \omega t & -\sin \omega t & 0\\ \sin \omega t & \cos \omega t & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$P^{-1}(t) = P^{\dagger}(t) = P(t; -\omega) = \begin{pmatrix} \cos \omega t & +\sin \omega t & 0\\ -\sin \omega t & \cos \omega t & 0\\ 0 & 0 & 1 \end{pmatrix}$$

► element-wise derivatives
$$\dot{P}(t) = \omega \begin{pmatrix} -\sin \omega t & -\cos \omega t & 0 \\ \cos \omega t & -\sin \omega t & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$P^{\dagger}(t)\dot{P}(t) = \begin{pmatrix} \cos \omega t & +\sin \omega t & 0 \\ -\sin \omega t & \cos \omega t & 0 \\ 0 & 0 & 1 \end{pmatrix} \omega \begin{pmatrix} -\sin \omega t & -\cos \omega t & 0 \\ \cos \omega t & -\sin \omega t & 0 \\ 0 & 0 & 0 \end{pmatrix} = \omega \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \omega \hat{z} \times$$

• general time-dependent rotation axis $\vec{\omega}(t)$ $\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -b \\ a \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

$$P^{\dagger}(t)\dot{P}(t) = \vec{\omega}(t) \times$$

Marín Bukov

MPI-PKS

 $\hat{z} = \hat{z}_{\rm rot}$

â

Newton's law

• lab frame:
$$m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t) / P^{\dagger}(t) \cdot$$

 $\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$ $\vec{F}_{\text{lab}}(t) = P(t)\vec{F}_{\text{rot}}(t)$

Newton's law

► lab frame:
$$m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t) / P^{\dagger}(t) \cdot$$

• rot frame:
$$mP^{\dagger}(t)\frac{d^2}{dt^2}\left[P(t)\underline{P^{\dagger}(t)\vec{r}_{lab}(t)}\right] = P^{\dagger}(t)\vec{F}_{lab}(t)$$

$\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$ $\vec{F}_{\text{lab}}(t) = P(t)\vec{F}_{\text{rot}}(t)$

Newton's law

► lab frame:
$$m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t) / P^{\dagger}(t) \cdot$$

• rot frame:
$$mP^{\dagger}(t)\frac{d^2}{dt^2}\left[P(t)\underline{P^{\dagger}(t)}\vec{r}_{lab}(t)\right] = P^{\dagger}(t)\vec{F}_{lab}(t)$$

$$mP^{\dagger}(t)\frac{\mathrm{d}}{\mathrm{d}t}\left(P(t)P^{\dagger}(t)\frac{\mathrm{d}}{\mathrm{d}t}\left[P(t)\vec{r}_{\mathrm{rot}}(t)\right]\right) = P^{\dagger}(t)\vec{F}_{\mathrm{lab}}(t)$$

$$\hat{z} = \hat{z}_{\text{rot}}$$

$$\hat{y}_{\text{rot}}(t)$$

$$\hat{x}$$

$$\hat{x}$$

$$\hat{x}_{\text{rot}}(t)$$

 $\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$ $\vec{F}_{\text{lab}}(t) = P(t)\vec{F}_{\text{rot}}(t)$

Newton's law

► lab frame:
$$m \frac{\mathrm{d}^2}{\mathrm{d}t^2} \vec{r}_{\mathrm{lab}}(t) = \vec{F}_{\mathrm{lab}}(t)$$
 / $P^{\dagger}(t)$.

• rot frame:
$$mP^{\dagger}(t)\frac{d^2}{dt^2}\left[P(t)P^{\dagger}(t)\vec{r}_{lab}(t)\right] = P^{\dagger}(t)\vec{F}_{lab}(t)$$

$$\hat{z} = \hat{z}_{rot}$$

$$\hat{y}_{rot}(t)$$

$$\hat{x}$$

$$\hat{x}$$

$$\hat{x}_{rot}(t)$$

$$\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$$
$$\vec{F}_{\text{lab}}(t) = P(t)\vec{F}_{\text{rot}}(t)$$

$$mP^{\dagger}(t)\frac{d}{dt}\left(P(t)P^{\dagger}(t)\frac{d}{dt}\left[P(t)\vec{r}_{rot}(t)\right]\right) = P^{\dagger}(t)\vec{F}_{lab}(t)$$

$$m\left(P^{\dagger}(t)\frac{d}{dt}P(t)\right)^{2}\vec{r}_{rot}(t) = P^{\dagger}(t)\vec{F}_{lab}(t)$$

$$P^{\dagger}(t)\frac{d}{dt}P(t)\vec{f}(t) = P^{\dagger}(t)\vec{P}(t)\vec{f}(t) + \frac{d}{dt}\vec{f}(t)$$

$$= \left(P^{\dagger}(t)\dot{P}(t) + \frac{d}{dt}\right)\vec{f}(t)$$

• Newton's law

► lab frame:
$$m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t) / P^{\dagger}(t) \cdot$$

• rot frame:
$$mP^{\dagger}(t)\frac{\mathrm{d}^2}{\mathrm{d}t^2}\left[P(t)P^{\dagger}(t)\vec{r}_{\mathrm{lab}}(t)\right] = P^{\dagger}(t)\vec{F}_{\mathrm{lab}}(t)$$

$$mP^{\dagger}(t)\frac{d}{dt}\left(P(t)P^{\dagger}(t)\frac{d}{dt}\left[P(t)\vec{r}_{rot}(t)\right]\right) = P^{\dagger}(t)\vec{F}_{lab}(t)$$

$$m\left(P^{\dagger}(t)\frac{d}{dt}P(t)\right)^{2}\vec{r}_{rot}(t) = P^{\dagger}(t)\vec{F}_{lab}(t)$$

$$m\left(\underline{P^{\dagger}(t)\dot{P}(t)} + \frac{d}{dt}\right)^{2}\vec{r}_{rot}(t) = P^{\dagger}(t)\vec{F}_{lab}(t)$$

$$\hat{z} = \hat{z}_{rot}$$

$$\hat{y}_{rot}(t)$$

$$\hat{x}$$

$$\hat{x}$$

$$\hat{x}_{rot}(t)$$

$$\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$$
$$\vec{F}_{\text{lab}}(t) = P(t)\vec{F}_{\text{rot}}(t)$$

$${}^{\dagger}(t)\frac{\mathrm{d}}{\mathrm{d}t}P(t)\vec{f}(t) = P^{\dagger}(t)\dot{P}(t)\vec{f}(t) + \frac{\mathrm{d}}{\mathrm{d}t}\vec{f}(t)$$
$$= \left(P^{\dagger}(t)\dot{P}(t) + \frac{\mathrm{d}}{\mathrm{d}t}\right)\vec{f}(t)$$

$$P^{\dagger}(t)\dot{P}(t) = \overrightarrow{\omega}(t) \times$$

Marín Bukov

MPI-PKS

Newton's law

• lab frame:
$$m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t) / P^{\dagger}(t) \cdot$$

• rot frame:
$$mP^{\dagger}(t)\frac{\mathrm{d}^2}{\mathrm{d}t^2}\left[P(t)P^{\dagger}(t)\vec{r}_{\mathrm{lab}}(t)\right] = P^{\dagger}(t)\vec{F}_{\mathrm{lab}}(t)$$

$$mP^{\dagger}(t)\frac{d}{dt}\left(P(t)P^{\dagger}(t)\frac{d}{dt}\left[P(t)\vec{r}_{rot}(t)\right]\right) = P^{\dagger}(t)\vec{F}_{lab}(t)$$
$$m\left(P^{\dagger}(t)\frac{d}{dt}P(t)\right)^{2}\vec{r}_{rot}(t) = P^{\dagger}(t)\vec{F}_{lab}(t)$$
$$m\left(\frac{P^{\dagger}(t)\dot{P}(t) + \frac{d}{dt}}{dt}\right)^{2}\vec{r}_{rot}(t) = P^{\dagger}(t)\vec{F}_{lab}(t)$$
$$m\left(\frac{d}{dt} + \vec{\omega}(t)\times\right)^{2}\vec{r}_{rot}(t) = P^{\dagger}(t)\vec{F}_{lab}(t)$$

$$\hat{z} = \hat{z}_{rot}$$

$$\hat{y}_{rot}(t)$$

$$\hat{x}$$

$$\hat{x}$$

$$\hat{x}$$

$$\hat{x}_{rot}(t)$$

$$\vec{r}_{lab}(t) = P(t)\vec{r}_{rot}(t)$$
$$\vec{F}_{lab}(t) = P(t)\vec{F}_{rot}(t)$$

$$P^{\dagger}(t)\frac{\mathrm{d}}{\mathrm{d}t}P(t)\vec{f}(t) = P^{\dagger}(t)\dot{P}(t)\vec{f}(t) + \frac{\mathrm{d}}{\mathrm{d}t}\vec{f}(t)$$
$$= \left(P^{\dagger}(t)\dot{P}(t) + \frac{\mathrm{d}}{\mathrm{d}t}\right)\vec{f}(t)$$

$$P^{\dagger}(t)\dot{P}(t) = \overrightarrow{\omega}(t) \times$$

Newton's law

• lab frame:
$$m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t) / P^{\dagger}(t) \cdot$$

• rot frame:
$$mP^{\dagger}(t)\frac{d^2}{dt^2}\left[P(t)P^{\dagger}(t)\vec{r}_{lab}(t)\right] = P^{\dagger}(t)\vec{F}_{lab}(t)$$

$$mP^{\dagger}(t)\frac{d}{dt}\left(P(t)P^{\dagger}(t)\frac{d}{dt}\left[P(t)\vec{r}_{rot}(t)\right]\right) = P^{\dagger}(t)\vec{F}_{lab}(t)$$
$$m\left(P^{\dagger}(t)\frac{d}{dt}P(t)\right)^{2}\vec{r}_{rot}(t) = P^{\dagger}(t)\vec{F}_{lab}(t)$$
$$m\left(P^{\dagger}(t)\dot{P}(t) + \frac{d}{dt}\right)^{2}\vec{r}_{rot}(t) = P^{\dagger}(t)\vec{F}_{lab}(t)$$
$$m\left(\frac{d}{dt} + \vec{\omega}(t) \times\right)^{2}\vec{r}_{rot}(t) = P^{\dagger}(t)\vec{F}_{lab}(t)$$
$$m\left(\frac{d}{dt} + \vec{\omega}(t) \times\right)^{2}\vec{r}_{rot}(t) = P^{\dagger}(t)\vec{F}_{lab}(t)$$

 $\hat{z} = \hat{z}_{rot}$ $\hat{y}_{rot}(t)$ \hat{x} \hat{x} \hat{x} $\hat{x}_{rot}(t)$

$$\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$$
$$\vec{F}_{\text{lab}}(t) = P(t)\vec{F}_{\text{rot}}(t)$$

$$P^{\dagger}(t)\frac{\mathrm{d}}{\mathrm{d}t}P(t)\vec{f}(t) = P^{\dagger}(t)\dot{P}(t)\vec{f}(t) + \frac{\mathrm{d}}{\mathrm{d}t}\vec{f}(t)$$
$$= \left(P^{\dagger}(t)\dot{P}(t) + \frac{\mathrm{d}}{\mathrm{d}t}\right)\vec{f}(t)$$

$$P^{\dagger}(t)\dot{P}(t) = \overrightarrow{\omega}(t) \times$$

- Newton's law
 - ► lab frame: $m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t)$
 - ► rot frame:

$$m\left(\frac{\mathrm{d}}{\mathrm{d}t} + \vec{\omega}(t) \times\right) \left(\dot{\vec{r}}_{\mathrm{rot}}(t) + \vec{\omega}(t) \times \vec{r}_{\mathrm{rot}}(t)\right) = P^{\dagger}(t) \overrightarrow{F}_{\mathrm{lab}}(t)$$

- Newton's law
 - ► lab frame: $m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t)$

$$\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$$
$$\vec{F}_{\text{lab}}(t) = P(t)\vec{F}_{\text{rot}}(t)$$

• rot frame:
$$m\left(\frac{\mathrm{d}}{\mathrm{d}t} + \vec{\omega}(t) \times\right) \left(\dot{\vec{r}}_{\mathrm{rot}}(t) + \vec{\omega}(t) \times \vec{r}_{\mathrm{rot}}(t)\right) = P^{\dagger}(t) \overrightarrow{F}_{\mathrm{lab}}(t)$$

HW:
$$m\ddot{\vec{r}}_{rot}(t) + m\dot{\vec{\omega}}(t) \times \vec{r}_{rot}(t) + 2m\vec{\omega}(t) \times \dot{\vec{r}}_{rot}(t) + m\vec{\omega}(t) \times \left(\vec{\omega}(t) \times \vec{r}_{rot}(t)\right) = P^{\dagger}(t)\vec{F}_{lab}(t)$$

 $\hat{z} = \hat{z}_{\rm rot}$

 \hat{x}

- Newton's law
 - ► lab frame: $m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t)$

$$\overrightarrow{F}_{\text{lab}}(t) = P(t) \overrightarrow{F}_{\text{rot}}(t)$$

 $\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$

► rot frame:
$$m\left(\frac{\mathrm{d}}{\mathrm{d}t} + \vec{\omega}(t) \times \right) \left(\dot{\vec{r}}_{\mathrm{rot}}(t) + \vec{\omega}(t) \times \vec{r}_{\mathrm{rot}}(t)\right) = P^{\dagger}(t) \vec{F}_{\mathrm{lab}}(t)$$

$$\vec{m}\vec{r}_{\rm rot}(t) + \vec{m}\vec{\omega}(t) \times \vec{r}_{\rm rot}(t) + 2m\vec{\omega}(t) \times \dot{\vec{r}}_{\rm rot}(t) + m\vec{\omega}(t) \times \left(\vec{\omega}(t) \times \vec{r}_{\rm rot}(t)\right) = P^{\dagger}(t)\vec{F}_{\rm lab}(t)$$

$$m\ddot{\vec{r}}_{\rm rot}(t) = P^{\dagger}(t)\vec{F}_{\rm lab}(t) - m\dot{\vec{\omega}}(t) \times \vec{r}_{\rm rot}(t) - 2m\vec{\omega}(t) \times \dot{\vec{r}}_{\rm rot}(t) - m\vec{\omega}(t) \times \left(\vec{\omega}(t) \times \vec{r}_{\rm rot}(t)\right)$$

transformed original force

Marín Bukov

 $\hat{z} = \hat{z}_{\rm rot}$

x̂ ►

- Newton's law
 - lab frame: $m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t)$

$$\vec{r}_{\rm lab}(t) = P(t)\vec{r}_{\rm rot}(t)$$
$$\vec{F}_{\rm lab}(t) = P(t)\vec{F}_{\rm rot}(t)$$

• rot frame:
$$m\left(\frac{\mathrm{d}}{\mathrm{d}t} + \vec{\omega}(t) \times \right) \left(\dot{\vec{r}}_{\mathrm{rot}}(t) + \vec{\omega}(t) \times \vec{r}_{\mathrm{rot}}(t)\right) = P^{\dagger}(t)\vec{F}_{\mathrm{lab}}(t)$$

$$m\ddot{\vec{r}}_{\rm rot}(t) + m\dot{\vec{\omega}}(t) \times \vec{r}_{\rm rot}(t) + 2m\vec{\omega}(t) \times \dot{\vec{r}}_{\rm rot}(t) + m\vec{\omega}(t) \times \left(\vec{\omega}(t) \times \vec{r}_{\rm rot}(t)\right) = P^{\dagger}(t)\vec{F}_{\rm lab}(t)$$

$$m\ddot{\vec{r}}_{\rm rot}(t) = P^{\dagger}(t)\vec{F}_{\rm lab}(t) - m\dot{\vec{\omega}}(t) \times \vec{r}_{\rm rot}(t) - 2m\vec{\omega}(t) \times \dot{\vec{r}}_{\rm rot}(t) - m\vec{\omega}(t) \times \left(\vec{\omega}(t) \times \vec{r}_{\rm rot}(t)\right)$$

transformed Euler original force force

 $\hat{z} = \hat{z}_{\rm rot}$

x

- Newton's law
 - ► lab frame: $m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t)$

$$\overrightarrow{F}_{\text{lab}}(t) = P(t) \overrightarrow{F}_{\text{rot}}(t)$$

 $\vec{r}_{\text{lab}}(t) = P(t)\vec{r}_{\text{rot}}(t)$

► rot frame:
$$m\left(\frac{\mathrm{d}}{\mathrm{d}t} + \vec{\omega}(t) \times \right) \left(\dot{\vec{r}}_{\mathrm{rot}}(t) + \vec{\omega}(t) \times \vec{r}_{\mathrm{rot}}(t)\right) = P^{\dagger}(t) \vec{F}_{\mathrm{lab}}(t)$$

$$m\ddot{\vec{r}}_{\rm rot}(t) + m\dot{\vec{\omega}}(t) \times \vec{r}_{\rm rot}(t) + 2m\vec{\omega}(t) \times \dot{\vec{r}}_{\rm rot}(t) + m\vec{\omega}(t) \times \left(\vec{\omega}(t) \times \vec{r}_{\rm rot}(t)\right) = P^{\dagger}(t)\vec{F}_{\rm lab}(t)$$

$$m\ddot{\vec{r}}_{\rm rot}(t) = P^{\dagger}(t)\vec{F}_{\rm lab}(t) - m\dot{\vec{\omega}}(t) \times \vec{r}_{\rm rot}(t) - 2m\vec{\omega}(t) \times \dot{\vec{r}}_{\rm rot}(t) - m\vec{\omega}(t) \times \left(\vec{\omega}(t) \times \vec{r}_{\rm rot}(t)\right)$$

transformed	Euler	Coriolis
original force	force	force

 $\hat{z} = \hat{z}_{\rm rot}$

x̂ ⊾

Newton's law

 $\hat{z} = \hat{z}_{\rm rot}$

▶ lab frame:
$$m \frac{d^2}{dt^2} \vec{r}_{lab}(t) = \vec{F}_{lab}(t)$$
▶ rot frame: $m \left(\frac{d}{dt} + \vec{\omega}(t) \times \right) \left(\dot{\vec{r}}_{rot}(t) + \vec{\omega}(t) \times \vec{r}_{rot}(t)\right) = P^{\dagger}(t) \vec{F}_{lab}(t)$
 $m \vec{\vec{r}}_{rot}(t) + m \vec{\omega}(t) \times \vec{r}_{rot}(t) + 2m \vec{\omega}(t) \times \vec{r}_{rot}(t) + m \vec{\omega}(t) \times (\vec{\omega}(t) \times \vec{r}_{rot}(t)) = P^{\dagger}(t) \vec{F}_{lab}(t)$
 $m \vec{\vec{r}}_{rot}(t) = P^{\dagger}(t) \vec{F}_{lab}(t) - m \vec{\omega}(t) \times \vec{r}_{rot}(t) - 2m \vec{\omega}(t) \times \dot{\vec{r}}_{rot}(t) - m \vec{\omega}(t) \times (\vec{\omega}(t) \times \vec{r}_{rot}(t))$

transformed	Euler	Coriolis	centrifugal	
original force	force	force	force	

Newton's law

 $\hat{z} = \hat{z}_{\rm rot}$

▶ ;	ab frame:	$m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\vec{r}_{\mathrm{lab}}(t) = \vec{h}$	$\vec{F}_{lab}(t)$	$F_{\text{lab}}(t) = P(t)I$	$\overline{F}_{rot}(t)$
► r	ot frame:		$m\left(\frac{\mathrm{d}}{\mathrm{d}t} + \overrightarrow{\omega}(t) \times\right)$	$\int \left(\dot{\vec{r}}_{\rm rot}(t) + \vec{\omega}(t) \times \vec{r}_{\rm rot} \right)$	$_{\rm tt}(t) = P^{\dagger}(t) \overrightarrow{F}_{\rm lab}(t)$
ŀ	$n\ddot{\vec{r}}_{\rm rot}(t) + d$	$m\dot{\overrightarrow{\omega}}(t) \times \overrightarrow{r}_{\rm rot}(t) +$	$2m\vec{\omega}(t) \times \dot{\vec{r}}_{rot}(t)$ -	+ $m\vec{\omega}(t) \times (\vec{\omega}(t) \times \vec{r}_{rot})$	$_{\rm ot}(t) = P^{\dagger}(t) \overrightarrow{F}_{\rm lab}(t)$
$m\ddot{\vec{r}}_{\rm rot}(t) = P^{\dagger}(t)\vec{F}_{\rm lab}(t) - m\dot{\vec{\omega}}(t) \times \vec{r}_{\rm rot}(t) - 2m\vec{\omega}(t) \times \dot{\vec{r}}_{\rm rot}(t) - m\vec{\omega}(t) \times \left(\vec{\omega}(t) \times \vec{r}_{\rm rot}(t)\right)$					
		transformed original force	Euler force	Coriolis force	centrifugal force

• fictitious forces arise from Galilean term $P^{\dagger}(t)\dot{P}(t)$

$$P^{\dagger}(t)\dot{P}(t) = \overrightarrow{\omega}(t) \times$$

• Newton's law

Þ	lab frame: 1	$m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\vec{r}_{\mathrm{lab}}(t) = \overline{F}$	$\vec{t}_{lab}(t)$	$\dot{F}_{lab}(t) = P(t)F$	$r_{\rm rot}(t)$	
Þ	rot frame:	ľ	$n\left(\frac{\mathrm{d}}{\mathrm{d}t} + \overrightarrow{\omega}(t) \times\right)$	$\int \left(\dot{\vec{r}}_{\rm rot}(t) + \vec{\omega}(t) \times \vec{r}_{\rm rot} \right)$	(t) = $P^{\dagger}(t) \overrightarrow{F}_{lab}(t)$	
	$m\ddot{\vec{r}}_{\rm rot}(t) + m\dot{\vec{r}}$	$\dot{\vec{\omega}}(t) \times \vec{r}_{\rm rot}(t) + 2$	$2m\vec{\omega}(t) \times \dot{\vec{r}}_{rot}(t) +$	$- m \overrightarrow{\omega}(t) \times \left(\overrightarrow{\omega}(t) \times \overrightarrow{r}_{ro} \right)$	$_{\rm t}(t) = P^{\dagger}(t) \overrightarrow{F}_{\rm lab}(t)$	
	$\vec{m}\vec{r}_{\rm rot}(t) = P^{\dagger}(t)\vec{F}_{\rm lab}(t) - \vec{m}\vec{\omega}(t) \times \vec{r}_{\rm rot}(t) - 2m\vec{\omega}(t) \times \dot{\vec{r}}_{\rm rot}(t) - m\vec{\omega}(t) \times \left(\vec{\omega}(t) \times \vec{r}_{\rm rot}(t)\right)$					
	tra ori	ansformed ginal force	Euler force	Coriolis force	centrifugal force	

• fictitious forces arise from Galilean term $P^{\dagger}(t)\dot{P}(t)$

 $P^{\dagger}(t)\dot{P}(t) = \overrightarrow{\omega}(t) \times$

Q: can we understand dynamical stabilization as a fictitious force in some rotating frame? Marín Bukov MPI-PKS

- Rotating reference frames
 - quantum systems

lab frame

Outline

rotating frame

Quantum mechanics

- rotating reference frame
 - not inertial
 - fictitious forces
- transformation between lab and rotating frames

lab frame

rot frame

P(t)

Quantum mechanics

- rotating reference frame
 - not inertial
 - fictitious forces
- transformation between lab and rotating frames

$$|\psi(t)\rangle_{\text{lab}} = P(t) |\psi(t)\rangle_{\text{rot}}$$

Quantum mechanics

- rotating reference frame
 - not inertial
 - fictitious forces
- transformation between lab and rotating frames

 $|\psi(t)\rangle_{\text{lab}} = P(t) |\psi(t)\rangle_{\text{rot}}$ $U_{\text{lab}}(t,0) = P(t)U_{\text{rot}}(t,0)P^{\dagger}(0)$
$\hat{z} = \hat{z}_{rot}$ $\hat{y}_{rot}(t)$ \hat{x} \hat{x} \hat{x} $\hat{x}_{rot}(t)$

- Schrödinger's equation (set $\hbar = 1$)
 - lab frame: $i\partial_t |\psi(t)\rangle_{\text{lab}} = H_{\text{lab}} |\psi(t)\rangle_{\text{lab}} / P^{\dagger}(t) \cdot$

 $|\psi(t)\rangle_{\text{lab}} = P(t) |\psi(t)\rangle_{\text{rot}}$ $U_{\text{lab}}(t,0) = P(t)U_{\text{rot}}(t,0)P^{\dagger}(0)$

- Schrödinger's equation
 - lab frame: $i\partial_t |\psi(t)\rangle_{\text{lab}} = H_{\text{lab}} |\psi(t)\rangle_{\text{lab}}$ / $P^{\dagger}(t)$.

 $|\psi(t)\rangle_{\text{lab}} = P(t) |\psi(t)\rangle_{\text{rot}}$ $U_{\text{lab}}(t,0) = P(t)U_{\text{rot}}(t,0)P^{\dagger}(0)$

• rot frame: $iP^{\dagger}(t)\partial_t \left(P(t)P^{\dagger}(t)|\psi(t)\rangle_{\text{lab}}\right) = P^{\dagger}(t)H_{\text{lab}}P(t)P^{\dagger}(t)|\psi(t)\rangle_{\text{lab}}$

- Schrödinger's equation
 - lab frame: $i\partial_t |\psi(t)\rangle_{\text{lab}} = H_{\text{lab}} |\psi(t)\rangle_{\text{lab}} / P^{\dagger}(t) \cdot$

 $|\psi(t)\rangle_{\text{lab}} = P(t) |\psi(t)\rangle_{\text{rot}}$ $U_{\text{lab}}(t,0) = P(t)U_{\text{rot}}(t,0)P^{\dagger}(0)$

• rot frame: $iP^{\dagger}(t)\partial_t \left(P(t)P^{\dagger}(t)|\psi(t)\rangle_{\text{lab}}\right) = P^{\dagger}(t)H_{\text{lab}}P(t)P^{\dagger}(t)|\psi(t)\rangle_{\text{lab}}$

 $iP^{\dagger}(t)\partial_{t}\left(P(t)|\psi(t)\rangle_{\rm rot}\right) = P^{\dagger}(t)H_{\rm lab}P(t)|\psi(t)\rangle_{\rm rot}$

- Schrödinger's equation
 - lab frame: $i\partial_t |\psi(t)\rangle_{\text{lab}} = H_{\text{lab}} |\psi(t)\rangle_{\text{lab}} / P^{\dagger}(t) \cdot$

- $|\psi(t)\rangle_{\text{lab}} = P(t) |\psi(t)\rangle_{\text{rot}}$ $U_{\text{lab}}(t,0) = P(t)U_{\text{rot}}(t,0)P^{\dagger}(0)$
- rot frame: $iP^{\dagger}(t)\partial_t \left(P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}\right) = P^{\dagger}(t)H_{\text{lab}}P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}$

 $iP^{\dagger}(t)\partial_{t}\left(P(t)|\psi(t)\rangle_{\text{rot}}\right) = P^{\dagger}(t)H_{\text{lab}}P(t)|\psi(t)\rangle_{\text{rot}}$

 $iP^{\dagger}(t)\dot{P}(t)|\psi(t)\rangle_{\rm rot} + i\partial_t|\psi(t)\rangle_{\rm rot} = P^{\dagger}(t)H_{\rm lab}P(t)|\psi(t)\rangle_{\rm rot}$

- Schrödinger's equation
 - lab frame: $i\partial_t |\psi(t)\rangle_{\text{lab}} = H_{\text{lab}} |\psi(t)\rangle_{\text{lab}} / P^{\dagger}(t) \cdot$

- $|\psi(t)\rangle_{\text{lab}} = P(t) |\psi(t)\rangle_{\text{rot}}$ $U_{\text{lab}}(t,0) = P(t)U_{\text{rot}}(t,0)P^{\dagger}(0)$
- rot frame: $iP^{\dagger}(t)\partial_t \left(P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}\right) = P^{\dagger}(t)H_{\text{lab}}P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}$

 $iP^{\dagger}(t)\partial_{t}\left(P(t)|\psi(t)\rangle_{\text{rot}}\right) = P^{\dagger}(t)H_{\text{lab}}P(t)|\psi(t)\rangle_{\text{rot}}$

 $iP^{\dagger}(t)\dot{P}(t)|\psi(t)\rangle_{\rm rot} + i\partial_t|\psi(t)\rangle_{\rm rot} = P^{\dagger}(t)H_{\rm lab}P(t)|\psi(t)\rangle_{\rm rot}$

 $i\partial_t |\psi(t)\rangle_{\rm rot} = P^{\dagger}(t)H_{\rm lab}P(t) |\psi(t)\rangle_{\rm rot} - iP^{\dagger}(t)\dot{P}(t) |\psi(t)\rangle_{\rm rot}$

- Schrödinger's equation
 - lab frame: $i\partial_t |\psi(t)\rangle_{\text{lab}} = H_{\text{lab}} |\psi(t)\rangle_{\text{lab}} / P^{\dagger}(t) \cdot$

- $|\psi(t)\rangle_{\text{lab}} = P(t) |\psi(t)\rangle_{\text{rot}}$ $U_{\text{lab}}(t,0) = P(t)U_{\text{rot}}(t,0)P^{\dagger}(0)$
- rot frame: $iP^{\dagger}(t)\partial_t \left(P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}\right) = P^{\dagger}(t)H_{\text{lab}}P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}$

 $iP^{\dagger}(t)\partial_{t}\left(P(t)|\psi(t)\rangle_{\rm rot}\right) = P^{\dagger}(t)H_{\rm lab}P(t)|\psi(t)\rangle_{\rm rot}$

 $iP^{\dagger}(t)\dot{P}(t)|\psi(t)\rangle_{\rm rot} + i\partial_t|\psi(t)\rangle_{\rm rot} = P^{\dagger}(t)H_{\rm lab}P(t)|\psi(t)\rangle_{\rm rot}$

 $i\partial_t |\psi(t)\rangle_{\rm rot} = P^{\dagger}(t)H_{\rm lab}P(t) |\psi(t)\rangle_{\rm rot} - iP^{\dagger}(t)\dot{P}(t) |\psi(t)\rangle_{\rm rot}$

 $i\partial_t |\psi(t)\rangle_{\rm rot} = \left(P^{\dagger}(t)H_{\rm lab}P(t) - iP^{\dagger}(t)\dot{P}(t)\right) |\psi(t)\rangle_{\rm rot}$

- Schrödinger's equation
 - lab frame: $i\partial_t |\psi(t)\rangle_{\text{lab}} = H_{\text{lab}} |\psi(t)\rangle_{\text{lab}} / P^{\dagger}(t) \cdot$

- $|\psi(t)\rangle_{\text{lab}} = P(t) |\psi(t)\rangle_{\text{rot}}$ $U_{\text{lab}}(t,0) = P(t)U_{\text{rot}}(t,0)P^{\dagger}(0)$
- rot frame: $iP^{\dagger}(t)\partial_t \left(P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}\right) = P^{\dagger}(t)H_{\text{lab}}P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}$

 $iP^{\dagger}(t)\partial_{t}\left(P(t)|\psi(t)\rangle_{\rm rot}\right) = P^{\dagger}(t)H_{\rm lab}P(t)|\psi(t)\rangle_{\rm rot}$

 $iP^{\dagger}(t)\dot{P}(t)|\psi(t)\rangle_{\rm rot} + i\partial_t|\psi(t)\rangle_{\rm rot} = P^{\dagger}(t)H_{\rm lab}P(t)|\psi(t)\rangle_{\rm rot}$

 $i\partial_t |\psi(t)\rangle_{\rm rot} = P^{\dagger}(t)H_{\rm lab}P(t) |\psi(t)\rangle_{\rm rot} - iP^{\dagger}(t)\dot{P}(t) |\psi(t)\rangle_{\rm rot}$

$$i\partial_t |\psi(t)\rangle_{\rm rot} = \left(P^{\dagger}(t)H_{\rm lab}P(t) - iP^{\dagger}(t)\dot{P}(t)\right)|\psi(t)\rangle_{\rm rot}$$

► rot frame Hamiltonian: $H_{rot}(t) = P^{\dagger}(t)H_{lab}P(t) - iP^{\dagger}(t)\dot{P}(t)$

energy in the rot frame not the same as the transformed lab-frame Hamiltonian

Marín Bukov

MPI-PKS

- Schrödinger's equation
 - lab frame: $i\partial_t |\psi(t)\rangle_{\text{lab}} = H_{\text{lab}} |\psi(t)\rangle_{\text{lab}} / P^{\dagger}(t) \cdot$

- $|\psi(t)\rangle_{\text{lab}} = P(t) |\psi(t)\rangle_{\text{rot}}$ $U_{\text{lab}}(t,0) = P(t)U_{\text{rot}}(t,0)P^{\dagger}(0)$
- rot frame: $iP^{\dagger}(t)\partial_t \left(P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}\right) = P^{\dagger}(t)H_{\text{lab}}P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}$

 $iP^{\dagger}(t)\partial_{t}\left(P(t)|\psi(t)\rangle_{\rm rot}\right) = P^{\dagger}(t)H_{\rm lab}P(t)|\psi(t)\rangle_{\rm rot}$

 $iP^{\dagger}(t)\dot{P}(t)|\psi(t)\rangle_{\rm rot} + i\partial_t|\psi(t)\rangle_{\rm rot} = P^{\dagger}(t)H_{\rm lab}P(t)|\psi(t)\rangle_{\rm rot}$

 $i\partial_t |\psi(t)\rangle_{\rm rot} = P^{\dagger}(t)H_{\rm lab}P(t) |\psi(t)\rangle_{\rm rot} - iP^{\dagger}(t)\dot{P}(t) |\psi(t)\rangle_{\rm rot}$

 $i\partial_t |\psi(t)\rangle_{\rm rot} = \left(P^{\dagger}(t)H_{\rm lab}P(t) - iP^{\dagger}(t)\dot{P}(t)\right) |\psi(t)\rangle_{\rm rot}$

rot frame Hamiltonian:

 $H_{\rm rot}(t) = P^{\dagger}(t)H_{\rm lab}P(t) - iP^{\dagger}(t)\dot{P}(t)$

Galilean term, fictitious force potential

energy in the rot frame not the same as the transformed lab-frame Hamiltonian

- Schrödinger's equation
 - lab frame: $i\partial_t |\psi(t)\rangle_{\text{lab}} = H_{\text{lab}} |\psi(t)\rangle_{\text{lab}} / P^{\dagger}(t) \cdot$

- $|\psi(t)\rangle_{\text{lab}} = P(t) |\psi(t)\rangle_{\text{rot}}$ $U_{\text{lab}}(t,0) = P(t)U_{\text{rot}}(t,0)P^{\dagger}(0)$
- rot frame: $iP^{\dagger}(t)\partial_t \left(P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}\right) = P^{\dagger}(t)H_{\text{lab}}P(t)P^{\dagger}(t) |\psi(t)\rangle_{\text{lab}}$

 $iP^{\dagger}(t)\partial_{t}\left(P(t)|\psi(t)\rangle_{\rm rot}\right) = P^{\dagger}(t)H_{\rm lab}P(t)|\psi(t)\rangle_{\rm rot}$

 $iP^{\dagger}(t)\dot{P}(t)|\psi(t)\rangle_{\rm rot} + i\partial_t|\psi(t)\rangle_{\rm rot} = P^{\dagger}(t)H_{\rm lab}P(t)|\psi(t)\rangle_{\rm rot}$

 $i\partial_t |\psi(t)\rangle_{\rm rot} = P^{\dagger}(t)H_{\rm lab}P(t) |\psi(t)\rangle_{\rm rot} - iP^{\dagger}(t)\dot{P}(t) |\psi(t)\rangle_{\rm rot}$

 $i\partial_t |\psi(t)\rangle_{\rm rot} = \left(P^{\dagger}(t)H_{\rm lab}P(t) - iP^{\dagger}(t)\dot{P}(t)\right) |\psi(t)\rangle_{\rm rot}$

rot frame Hamiltonian:

 $H_{\rm rot}(t) = P^{\dagger}(t)H_{\rm lab}P(t) - iP^{\dagger}(t)\dot{P}(t)$

Galilean term, fictitious force potential

energy in the rot frame not the same as the transformed lab-frame Hamiltonian

Q: can we understand dynamical stabilization as a fictitious force in a rotating frame? Marín Bukov MPI-PKS

• static systems $H = \text{const}_t$

- static systems $H = \text{const}_t$
 - time-dependent Schrödinger equation $i\partial_t |\psi(t)\rangle = H |\psi(t)\rangle$

- static systems $H = \text{const}_t$
 - time-dependent Schrödinger equation $i\partial_t |\psi(t)\rangle = H |\psi(t)\rangle$
 - solution: $|\psi(t)\rangle = U(t,0) |\psi(0)\rangle$
 - time-evolution operator $U(t,0) = e^{-itH}$ $H = \text{const}_t$

- static systems $H = \text{const}_t$
 - time-dependent Schrödinger equation $i\partial_t |\psi(t)\rangle = H |\psi(t)\rangle$
 - solution: $|\psi(t)\rangle = U(t,0) |\psi(0)\rangle$
 - time-evolution operator $U(t,0) = e^{-itH}$ $H = \text{const}_t$
 - to describe time evolution, can use eigenstates (stationary states): $H | n \rangle = E_n | n \rangle$

- static systems $H = \text{const}_t$
 - time-dependent Schrödinger equation $i\partial_t |\psi(t)\rangle = H |\psi(t)\rangle$
 - solution: $|\psi(t)\rangle = U(t,0) |\psi(0)\rangle$
 - time-evolution operator $U(t,0) = e^{-itH}$ $H = \text{const}_t$
 - to describe time evolution, can use eigenstates (stationary states): $H|n\rangle = E_n|n\rangle$
- driven (time-dependent) systems H = H(t)

$$U(t,0) = \mathscr{T} \exp\left(-i \int_{0}^{t} H(s) \, \mathrm{d}s\right) = \lim_{\delta t \to 0} e^{-i\delta t H(t)} e^{-i\delta t H(t-\delta t)} \cdots e^{-i\delta t H(2\delta t)} e^{-i\delta t H(\delta t)}$$

order of exponentials matters!
(causality)

- static systems $H = \text{const}_t$
 - time-dependent Schrödinger equation $i\partial_t |\psi(t)\rangle = H |\psi(t)\rangle$
 - solution: $|\psi(t)\rangle = U(t,0) |\psi(0)\rangle$
 - time-evolution operator $U(t,0) = e^{-itH}$ f $H = \text{const}_t$
 - to describe time evolution, can use eigenstates (stationary states): $H|n\rangle = E_n|n\rangle$
- driven (time-dependent) systems H = H(t)

$$U(t,0) = \mathcal{T} \exp\left(-i \int_{0}^{t} H(s) \, \mathrm{d}s\right) = \lim_{\delta t \to 0} e^{-i\delta t \, H(t)} \, e^{-i\delta t \, H(t-\delta t)} \, \cdots \, e^{-i\delta t \, H(2\delta t)} \, e^{-i\delta t \, H(\delta t)}$$
order of exponentials matters!
(causality)

in general, cannot evaluate in closed form

- static systems $H = \text{const}_t$
 - time-dependent Schrödinger equation $i\partial_t |\psi(t)\rangle = H |\psi(t)\rangle$
 - solution: $|\psi(t)\rangle = U(t,0) |\psi(0)\rangle$
 - time-evolution operator $U(t,0) = e^{-itH}$ \uparrow $H = \text{const}_t$
 - to describe time evolution, can use eigenstates (stationary states): $H|n\rangle = E_n|n\rangle$
- driven (time-dependent) systems H = H(t)

$$U(t,0) = \mathcal{T} \exp\left(-i \int_{0}^{t} H(s) \, \mathrm{d}s\right) = \lim_{\delta t \to 0} e^{-i\delta t \, H(t)} \, e^{-i\delta t \, H(t-\delta t)} \cdots e^{-i\delta t \, H(2\delta t)} \, e^{-i\delta t \, H(\delta t)}$$
order of exponentials matters!
(causality)

- in general, cannot evaluate in closed form
- do not have meaningful stationary states (in general)

- Periodically driven quantum systems
 - Floquet theorem
 - Floquet engineering

• time dependence H(t) = H(t + T), $T = 2\pi/\omega$

• time dependence $H(t) = H(t + T), \quad T = 2\pi/\omega$

• Floquet theorem (1883) $U(t,0) = \mathcal{T} \exp\left(-i \int_0^t H(s) \, ds\right) = \frac{P(t) \exp(-itH_F)}{\uparrow}$

micromotion Floquet Hamiltonian

 $-\pi$

 π

• time dependence $H(t) = H(t + T), \quad T = 2\pi/\omega$

- Floquet theorem (1883) $U(t,0) = \mathcal{T} \exp\left(-i \int_0^t H(s) \, ds\right) = \frac{P(t) \exp(-itH_F)}{\uparrow}$
 - micromotion: P(t) = P(t + T)

micromotion Floquet Hamiltonian

mmm

 $-\pi$

periodic with same period T as drive

• $U(0,0) = 1 \quad \Rightarrow \quad P(0) = 1 \quad \Rightarrow \quad P(\ell T) = 1, \quad \forall \ell \in \mathbb{Z}$

- time dependence $H(t) = H(t + T), \quad T = 2\pi/\omega$
- Floquet theorem (1883) $U(t,0) = \mathcal{T} \exp\left(-i \int_0^t H(s) \, \mathrm{d}s\right) = \frac{P(t) \exp(-itH_F)}{\uparrow}$
 - micromotion: P(t) = P(t + T)

micromotion Floquet Hamiltonian

min

 $-\pi$

periodic with same period T as drive

- $U(0,0) = 1 \quad \Rightarrow \quad P(0) = 1 \quad \Rightarrow \quad P(\ell T) = 1, \quad \forall \ell \in \mathbb{Z}$
- Floquet Hamiltonian H_F is *time-independent*

in general: $H_F \neq H(t = 0)$, $H_F \neq H(A = 0)$, no obvious relation to drive H(t)

difficult to compute in closed form (except in special cases)

• time dependence $H(t) = H(t + T), \quad T = 2\pi/\omega$

- Floquet theorem (1883) $U(t,0) = \mathcal{T} \exp\left(-i\int_0^t H(s) \, \mathrm{d}s\right) = \frac{P(t) \exp(-itH_F)}{\uparrow}$
 - micromotion: P(t) = P(t + T)

micromotion Floquet Hamiltonian

min

 $-\pi$

- periodic with same period T as drive
- $\bullet \ U(0,0) = 1 \quad \Rightarrow \quad P(0) = 1 \quad \Rightarrow \quad P(\ell T) = 1, \quad \forall \ell \in \mathbb{Z}$
- Floquet Hamiltonian H_F is *time-independent* in general: $H_F \neq H(t = 0)$, $H_F \neq H(A = 0)$, no obvious relation to drive H(t)
 - difficult to compute in closed form (except in special cases)

cf. static Hamiltonians:

 $H|n\rangle = E_n|n\rangle$

• Floquet states: $H_F | n_F \rangle = E_{F,n} | n_F \rangle$

Marín Bukov

• stationary states for H(t): $U(\ell T,0) |n_F\rangle = e^{-i\ell T E_{F,n}} |n_F\rangle$ $U(t,0) |n\rangle = e^{-it E_n} |n\rangle$

- time dependence $H(t) = H(t + T), \quad T = 2\pi/\omega$
- Floquet theorem (1883) $U(t,0) = \mathcal{T} \exp\left(-i \int_0^t H(s) \, ds\right) = \frac{P(t) \exp(-itH_F)}{\uparrow}$
 - micromotion: P(t) = P(t + T)

P(t) = P(t + T) micromotion Floquet Hamiltonian periodic with same period *T* as drive

- $\bullet \ U(0,0) = 1 \quad \Rightarrow \quad P(0) = 1 \quad \Rightarrow \quad P(\ell T) = 1, \quad \forall \ell \in \mathbb{Z}$
- Floquet Hamiltonian H_F is time-independent
 in general: H_F ≠ H(t = 0), H_F ≠ H(A = 0), no obvious relation to drive H(t)
 - difficult to compute in closed form (except in special cases)
- Floquet states: $H_F | n_F \rangle = E_{F,n} | n_F \rangle$
 - stationary states for H(t): $U(\ell T,0) |n_F\rangle = e^{-i\ell T E_{F,n}} |n_F\rangle$ $U(t,0) |n\rangle = e^{-it E_n} |n\rangle$
- why useful?
 - theory similar to static systems
 - time-scale separation in high-frequency limit

 $-\pi$

cf. static Hamiltonians:

 $H|n\rangle = E_n|n\rangle$

• physical meaning of Floquet's theorem? $U(t,0) = P(t) \exp(-itH_F)$

• physical meaning of Floquet's theorem? $U(t,0) = P(t) \exp(-itH_F)$

► recall: $U_{\text{lab}}(t,0) = P(t)U_{\text{rot}}(t,0)P^{\dagger}(0)$

lab frame

rot frame

P(t)

defined by the micromotion operator P(t)

Marín Bukov

lab frame

rotating frame

 $H_{\rm rot}(t) = P^{\dagger}(t)H_{\rm lab}P(t) - iP^{\dagger}(t)\dot{P}(t)$

Marín Bukov

lab frame

H(t)

 $P^{\dagger}(t)$

rotating frame

 $H_{\rm F}$

- Floquet's theorem proves the existence of a special rotating frame, defined by the micromotion operator P(t)
 - the rotating frame Hamiltonian is the time-independent ${\cal H}_{F}$

$$H_F = P^{\dagger}(t)H(t)P(t) - iP^{\dagger}(t)\dot{P}(t)$$

• note: H_F contains fictitious force potential $iP^{\dagger}\dot{P}$!

• Floquet engineering: how do we choose the drive H(t) to design properties to H_F ?

Marín Bukov

MPI-PKS

- Examples
 - spin-1 particle in a circularly polarized drive
 - quantum Kapitza oscillator
 - artificial gauge fields

Spin-1 particle in a circularly polarized magnetic field

► spin-1 matrices

$$S^{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad S^{y} = \frac{1}{i\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \qquad S^{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Spin-1 particle in a circularly polarized magnetic field

- Hamiltonian $H(t) = \Delta S^z + g(\cos \omega t S^x + \sin \omega t S^y)$
 - ► spin-1 matrices

$$S^{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad S^{y} = \frac{1}{i\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \qquad S^{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

• define co-rotating frame $P(t) = \exp(-i\omega t S^z)$

Spin-1 particle in a circularly polarized magnetic field

- Hamiltonian $H(t) = \Delta S^z + g(\cos \omega t S^x + \sin \omega t S^y)$
 - spin-1 matrices

$$S^{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad S^{y} = \frac{1}{i\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \qquad S^{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- define co-rotating frame $P(t) = \exp(-i\omega t S^z)$
 - check: $P(t+T) = e^{-i\omega(t+T)S^{z}} = e^{-i\omega t S^{z}} e^{-i\omega T S^{z}} = e^{-i\omega t S^{z}} = P(t)$

y y'

₿

 $\langle \vec{\sigma} \rangle$

Spin-1 particle in a circularly polarized magnetic field

spin-1 matrices

$$S^{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad S^{y} = \frac{1}{i\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \qquad S^{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

• define co-rotating frame $P(t) = \exp(-i\omega t S^z)$

► check:
$$P(t+T) = e^{-i\omega(t+T)S^{z}} = e^{-i\omega t S^{z}} e^{-i\omega T S^{z}} = e^{-i\omega t S^{z}} = P(t)$$

 $P^{\dagger}(t)S^{z}P(t) = S^{z}$

► can show (HW): $P^{\dagger}(t)(\cos \omega t S^{x} + \sin \omega t S^{y})P(t) = S^{x}$ (by design) $iP^{\dagger}(t)\dot{P}(t) = \omega S^{z}$

Spin-1 particle in a circularly polarized magnetic field

spin-1 matrices

$$S^{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad S^{y} = \frac{1}{i\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \qquad S^{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

• define co-rotating frame $P(t) = \exp(-i\omega t S^z)$

► check:
$$P(t+T) = e^{-i\omega(t+T)S^{z}} = e^{-i\omega t S^{z}} e^{-i\omega T S^{z}} = e^{-i\omega t S^{z}} = P(t)$$

 $P^{\dagger}(t)S^{z}P(t) = S^{z}$

- can show (HW): $P^{\dagger}(t)(\cos \omega t S^x + \sin \omega t S^y)P(t) = S^x$ (by design) $iP^{\dagger}(t)\dot{P}(t) = \omega S^z$
- Floquet Hamiltonian: $H_F = P^{\dagger}(t)H(t)P(t) iP^{\dagger}(t)\dot{P}(t) = (\Delta \omega)S^z + gS^x$

Marín Bukov

MPI-PKS

Spin-1 particle in a circularly polarized magnetic field

spin-1 matrices

$$S^{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad S^{y} = \frac{1}{i\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \qquad S^{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

• define co-rotating frame $P(t) = \exp(-i\omega t S^z)$

• check:
$$P(t+T) = e^{-i\omega(t+T)S^{z}} = e^{-i\omega t S^{z}} e^{-i\omega T S^{z}} = e^{-i\omega t S^{z}} = P(t)$$

 $P^{\dagger}(t)S^{z}P(t) = S^{z}$

- can show (HW): $P^{\dagger}(t)(\cos \omega t S^x + \sin \omega t S^y)P(t) = S^x$ (by design) $iP^{\dagger}(t)\dot{P}(t) = \omega S^z$
- Floquet Hamiltonian: $H_F = P^{\dagger}(t)H(t)P(t) iP^{\dagger}(t)\dot{P}(t) = (\Delta \omega)S^z + gS^x$
- note: very few exactly solvable models

- Examples
 - quantum Kapitza oscillator
 - artificial gauge fields

- Hamiltonian $H(t) = \frac{p^2}{2} (\omega_0^2 + A\omega \cos \omega t) \cos \theta$ note: simplified units
 - stable inverted equilibrium for $A \gg \omega_0$

- Hamiltonian $H(t) = \frac{p^2}{2} (\omega_0^2 + A\omega \cos \omega t) \cos \theta$ note: simplified units
 - stable inverted equilibrium for $A \gg \omega_0$

- high-frequency limit
 - usually given by time-average Hamiltonian, ...but: $H_{ave} = T^{-1} \int_0^T dt \ H(t) = p^2/2 \omega_0^2 \cos \theta$

- Hamiltonian $H(t) = \frac{p^2}{2} (\omega_0^2 + A\omega \cos \omega t) \cos \theta$ note: simplified units
 - stable inverted equilibrium for $A \gg \omega_0$

- high-frequency limit
 - usually given by time-average Hamiltonian, ...but: $H_{ave} = T^{-1} \int_0^T dt \ H(t) = p^2/2 \omega_0^2 \cos \theta$ issue: effective amplitude $\propto \omega \rightarrow ever$ more strongly driven as $\omega \rightarrow \infty$

• Hamiltonian
$$H(t) = \frac{p^2}{2} - (\omega_0^2 + A\omega \cos \omega t) \cos \theta$$

note: simplified units

• stable inverted equilibrium for $A \gg \omega_0$

- high-frequency limit
 - usually given by time-average Hamiltonian, ...but: $H_{\text{ave}} = T^{-1} \int_0^T dt \ H(t) = p^2/2 \omega_0^2 \cos \theta$ issue: effective amplitude $\propto \omega \rightarrow \text{ever more strongly driven as } \omega \rightarrow \infty$
- idea: use Galilean 'force potential' in rot frame to cancel strong periodic drive

$$H_{\rm rot}(t) = \mathscr{P}^{\dagger}(t) \left(\frac{p^2}{2} - \left(\omega_0^2 + \underline{A\omega \cos \omega t} \right) \cos \theta \right) \mathscr{P}(t) - \underline{i} \mathscr{P}^{\dagger}(t) \dot{\mathscr{P}}(t)$$

• Hamiltonian
$$H(t) = \frac{p^2}{2} - (\omega_0^2 + A\omega \cos \omega t) \cos \theta$$

note: simplified units

• stable inverted equilibrium for $A \gg \omega_0$

How large is large enough?

- high-frequency limit
 - usually given by time-average Hamiltonian, ...but: $H_{ave} = T^{-1} \int_0^T dt \ H(t) = p^2/2 \omega_0^2 \cos \theta$ issue: effective amplitude $\propto \omega \rightarrow ever$ more strongly driven as $\omega \rightarrow \infty$
- idea: use Galilean 'force potential' in rot frame to cancel strong periodic drive

$$H_{\text{rot}}(t) = \mathscr{P}^{\dagger}(t) \left(\frac{p^2}{2} - \left(\omega_0^2 + \underline{A\omega \cos \omega t} \right) \cos \theta \right) \mathscr{P}(t) - \underline{i\mathscr{P}^{\dagger}(t)\dot{\mathscr{P}}(t)}$$

guess: $\mathscr{P}(t) = \exp\left(+ i \underbrace{A \sin \omega t}_{=\int^t A\omega \cos \omega t' dt'} \cos \theta \right) \Rightarrow \mathscr{P}^{\dagger}(t) i \dot{\mathscr{P}}(t) = -A\omega \cos \omega t \cos \theta$

- Hamiltonian $H(t) = \frac{p^2}{2} (\omega_0^2 + A\omega \cos \omega t) \cos \theta$ note: simplified units
 - stable inverted equilibrium for $A \gg \omega_0$

How large is large enough?

issue: effective amplitude $\propto \omega \rightarrow \omega$ ever more strongly driven as $\omega \rightarrow \infty$

• idea: use Galilean 'force potential' in rot frame to cancel strong periodic drive

$$H_{\text{rot}}(t) = \mathscr{P}^{\dagger}(t) \left(\frac{p^2}{2} - \left(\omega_0^2 + \underline{A\omega \cos \omega t} \right) \cos \theta \right) \mathscr{P}(t) - \underline{i} \mathscr{P}^{\dagger}(t) \dot{\mathscr{P}}(t)$$

guess: $\mathscr{P}(t) = \exp \left(+ i \underbrace{A \sin \omega t}_{=\int^t \overline{A\omega \cos \omega t'} dt'} \cos \theta \right) \Rightarrow \mathscr{P}^{\dagger}(t) i \dot{\mathscr{P}}(t) = -A\omega \cos \omega t \cos \theta$

- Hamiltonian $H(t) = \frac{p^2}{2} (\omega_0^2 + A\omega \cos \omega t) \cos \theta$ note: simplified units
 - stable inverted equilibrium for $A \gg \omega_0$

How large is large enough?

issue: effective amplitude $\propto \omega \rightarrow \infty$ ever more strongly driven as $\omega \rightarrow \infty$

• idea: use Galilean 'force potential' in rot frame to cancel strong periodic drive

$$H_{\rm rot}(t) = \mathscr{P}^{\dagger}(t) \left(\frac{p^2}{2} - \left(\omega_0^2 + \underline{A\omega \cos \omega t} \right) \cos \theta \right) \mathscr{P}(t) - \underline{i} \mathscr{P}^{\dagger}(t) \dot{\mathscr{P}}(t)$$

guess: $\mathscr{P}(t) = \exp \left(+ i \underbrace{A \sin \omega t}_{=\int^t A \omega \cos \omega t' dt'} \cos \theta \right) \Rightarrow \mathscr{P}^{\dagger}(t) i \dot{\mathscr{P}}(t) = -A\omega \cos \omega t \cos \theta$

• intermediate result:
$$H_{\text{rot}}(t) = \mathscr{P}^{\dagger}(t) \frac{p^2}{2} \mathscr{P}(t) - \omega_0^2 \cos \theta = \frac{1}{2} \left(\mathscr{P}^{\dagger}(t) p \mathscr{P}(t) \right)^2 - \omega_0^2 \cos \theta$$

- Hamiltonian $H(t) = \frac{p^2}{2} (\omega_0^2 + A\omega \cos \omega t) \cos \theta$ note: simplified units
 - stable inverted equilibrium for $A \gg \omega_0$

How large is large enough?

issue: effective amplitude $\propto \omega \rightarrow \infty$ ever more strongly driven as $\omega \rightarrow \infty$

idea: use Galilean 'force potential' in rot frame to cancel strong periodic drive

$$H_{\rm rot}(t) = \mathscr{P}^{\dagger}(t) \left(\frac{p^2}{2} - \left(\omega_0^2 + \underline{A\omega \cos \omega t} \right) \cos \theta \right) \mathscr{P}(t) - \underline{i\mathscr{P}^{\dagger}(t)\dot{\mathscr{P}}(t)}$$

guess: $\mathscr{P}(t) = \exp\left(+ i \underbrace{A \sin \omega t}_{=\int^t A \omega \cos \omega t' dt'} \cos \theta \right) \Rightarrow \mathscr{P}^{\dagger}(t) i \dot{\mathscr{P}}(t) = -A\omega \cos \omega t \cos \theta$

• intermediate result: $H_{\text{rot}}(t) = \mathscr{P}^{\dagger}(t) \frac{p^2}{2} \mathscr{P}(t) - \omega_0^2 \cos \theta = \frac{1}{2} \left(\mathscr{P}^{\dagger}(t) p \mathscr{P}(t) \right)^2 - \omega_0^2 \cos \theta$

HW:
$$\mathscr{P}^{\dagger}(t)p\mathscr{P}(t) = p - i\partial_{\theta}\left(iA\sin\omega t \cos\theta\right) = p - A\sin\omega t \sin\theta$$

- Hamiltonian $H(t) = \frac{p^2}{2} (\omega_0^2 + A\omega \cos \omega t) \cos \theta$ note: simplified units
 - stable inverted equilibrium for $A \gg \omega_0$

How large is large enough?

issue: effective amplitude $\propto \omega \rightarrow \omega$ ever more strongly driven as $\omega \rightarrow \infty$

idea: use Galilean 'force potential' in rot frame to cancel strong periodic drive

$$H_{\text{rot}}(t) = \frac{1}{2} \left(p - A \sin \omega t \sin \theta \right)^2 - \omega_0^2 \cos \theta$$

= $\frac{p^2}{2} + \frac{A^2}{2} \sin^2 \omega t \sin^2 \theta - \omega_0^2 \cos \theta - \frac{A}{2} \sin \omega t \{ p, \sin \theta \}_+$
no more diverging terms as $\omega \to \infty$

- Hamiltonian $H(t) = \frac{p^2}{2} (\omega_0^2 + A\omega \cos \omega t) \cos \theta$ note: simplified units
 - stable inverted equilibrium for $A \gg \omega_0$

How large is large enough?

issue: effective amplitude $\propto \omega \rightarrow \omega$ ever more strongly driven as $\omega \rightarrow \infty$

• idea: use Galilean 'force potential' in rot frame to cancel strong periodic drive

$$H_{\text{rot}}(t) = \frac{1}{2} \left(p - A \sin \omega t \sin \theta \right)^2 - \omega_0^2 \cos \theta$$

= $\frac{p^2}{2} + \frac{A^2}{2} \underbrace{\sin^2 \omega t}_{\to 1/2} \sin^2 \theta - \omega_0^2 \cos \theta - \frac{A}{2} \sin \omega t \{ p, \sin \theta \}_+$
no more diverging terms as $\omega \to \infty$

compute period-average
 effective period

effective potential $V_{\rm eff}(\theta)$

$$H_F^{(0)} = \frac{1}{T} \int_0^T H_{\text{rot}}(t) \, \mathrm{d}t = \frac{p^2}{2} + \frac{A^2}{4} \, \sin^2\theta - \omega_0^2 \, \cos\theta$$

• Hamiltonian
$$H(t) = \frac{p^2}{2} - (\omega_0^2 + A\omega \cos \omega t) \cos \theta$$

note: simplified units

• stable inverted equilibrium for $A \gg \omega_0$

How large is large enough?

leading-order effective Hamiltonian

inverse-frequency expansions

$$H_F^{(0)} = \frac{1}{T} \int_0^T H_{\text{rot}}(t) \, \mathrm{d}t = \frac{p^2}{2} + \frac{A^2}{4} \sin^2 \theta - \omega_0^2 \, \cos \theta \qquad \qquad H_F = \sum_{n=0}^\infty \omega^{-n} H_F^{(n)}$$

effective potential $V_{\text{eff}}(\theta)$
$$P(t) = \prod_{n=0}^\infty P^{(n)}(t)$$

 $P^{(0)}(t) = \mathscr{P}(t)$

Marín Bukov

MPI-PKS

• Hamiltonian
$$H(t) = \frac{p^2}{2} - (\omega_0^2 + A\omega \cos \omega t) \cos \theta$$

note: simplified units

• stable inverted equilibrium for $A \gg \omega_0$

How large is large enough?

• idea: use Galilean 'force potential' in rot frame to cancel strong periodic drive

• Hamiltonian
$$H(t) = \frac{p^2}{2} - (\omega_0^2 + A\omega \cos \omega t) \cos \theta$$

note: simplified units

• stable inverted equilibrium for $A \gg \omega_0$

How large is large enough?

θ

• idea: use Galilean 'force potential' in rot frame to cancel strong periodic drive

• leading-order effective Hamiltonian

$$H_{F}^{(0)} = \frac{1}{T} \int_{0}^{T} H_{rot}(t) dt = \frac{p^{2}}{2} + \frac{A^{2}}{4} \sin^{2}\theta - \omega_{0}^{2} \cos\theta$$
effective potential $V_{eff}(\theta)$
• analyze stability at $\theta = \pm \pi$
 $\partial_{\theta}^{2} V_{eff}(\theta) = \omega_{0}^{2} \cos\theta + \frac{A^{2}}{2} \cos 2\theta$
 $\int_{\theta} = \pi$
Marin Bukov
• leading-order effective Hamiltonian
 $H_{F} = \sum_{n=0}^{\infty} \omega^{-n} H_{F}^{(n)}$
 $P(t) = \prod_{n=0}^{\infty} P^{(n)}(t)$
 $\int_{\theta} = \pi$
 $\int_{\theta} = \pi$
 $A_{c} > \sqrt{2}\omega_{0}$
 $Metrin Bukov$
• leading-order effective Hamiltonian
 $H_{F} = \sum_{n=0}^{\infty} \omega^{-n} H_{F}^{(n)}$
 $P(t) = \prod_{n=0}^{\infty} P^{(n)}(t)$
 $\int_{\theta} = \pi$
 $\int_{\theta} = \pi$
 $\int_{\theta} = \pi$
 $A_{c} > \sqrt{2}\omega_{0}$
 $Metrin Bukov$
 $H_{F} = \sum_{n=0}^{\infty} \omega^{-n} H_{F}^{(n)}$
 $P(t) = \prod_{n=0}^{\infty} P^{(n)}(t)$
 $\int_{\theta} = \pi$
 $\int_{\theta} = \pi$

Outline

• Examples

artificial gauge fields

• compare:
$$H_{\text{rot}}(t) = \frac{1}{2} \left(p - A \sin \omega t \sin \theta \right)^2 - \omega_0^2 \cos \theta$$
 vs

Kapitza pendulum in rotating frame

vs. $H = \frac{1}{2} (p - A(x))^2 + V(x)$

particle in magnetic field?

• compare: $H_{\text{rot}}(t) = \frac{1}{2} \left(p - A \sin \omega t \sin \theta \right)^2 - \omega_0^2 \cos \theta$ vs. I

$$H = \frac{1}{2} (p - A(x))^{2} + V(x)$$

gauge potential but no magnetic field in 1d!

particle in magnetic field?

- compare: $H_{\text{rot}}(t) = \frac{1}{2} \left(p A \sin \omega t \sin \theta \right)^2 \omega_0^2 \cos \theta$ vs. $H = \frac{1}{2} \left(p A(x) \right)^2 + V(x)$
 - gauge potential but no magnetic field in 1d!
- compare: $\vec{F}_{\text{Coriolis}} = -2m\vec{\omega} \times \vec{v}$ vs. $\vec{F}_{\text{Lorentz}} = -q\vec{B} \times \vec{v}$
 - artificial magnetic fields from *Floquet engineering*

• compare:
$$H_{\text{rot}}(t) = \frac{1}{2} \left(p - A \sin \omega t \sin \theta \right)^2 - \omega_0^2 \cos \theta$$
 vs. $H = \frac{1}{2} \left(p - A(x) \right)^2 + V(x)$

VS.

- gauge potential but no magnetic field in 1d!
- compare:

$$\overrightarrow{F}_{\text{Coriolis}} = -2m\overrightarrow{\omega} \times \overrightarrow{v}$$

$$\overrightarrow{F}_{\text{Lorentz}} = -q\overrightarrow{B} \times \overrightarrow{v}$$

artificial magnetic fields from Floquet engineering

superconductor: Abrikosov vortex lattice

Abrikosov, Nobel Lecture, Rev Mod Phys 76 975 (2004)

 $NbSe_2 \\ \mbox{type-II superconductor}$

scanning tunneling microscopy (STM)

VS.

• compare:
$$H_{\text{rot}}(t) = \frac{1}{2} \left(p - A \sin \omega t \sin \theta \right)^2 - \omega_0^2 \cos \theta$$
 vs. $H = \frac{1}{2} \left(p - A(x) \right)^2 + V(x)$

- gauge potential but no magnetic field in 1d!
- compare:

$$\overrightarrow{F}_{\text{Coriolis}} = -2m\overrightarrow{\omega} \times \overrightarrow{v}$$

$$\overrightarrow{F}_{\text{Lorentz}} = -q\overrightarrow{B} \times \overrightarrow{v}$$

artificial magnetic fields from *Floquet engineering*

ultracold atoms in optical lattices

- quantum simulation of topological insulators
- *but:* no orbital *B*-field effects for neutral atoms

Floquet engineered magnetic fields

MAX PLANCK INSTITUTE FOR THE PHYSICS OF COMPLEX SYSTEMS

Floquet engineering for quantum simulation

MPI-PKS, Dresden

- Floquet engineering: periodic drives ascribe new properties to physical systems
 - dynamical stabilization
 - artificial gauge fields (topological insulators, etc.)
- caveat: driven systems may absorb energy (heat death)

key idea: design fictitious forces in rotating reference frame

MAX PLANCK INSTITUTE

Floquet engineering for quantum simulation

MPI-PKS, Dresden

- Floquet engineering: periodic drives ascribe new properties to physical systems
 - dynamical stabilization

THE PHYSICS OF COMPLEX SYSTEMS

artificial gauge fields (topological insulators, etc.)

key idea: design fictitious forces in rotating reference frame

caveat: driven systems may absorb energy (heat death)

International Max Planck PhD Program (IMPRS) @ MPI-PKS

application deadlines: Apr 30 / Oct 31 learn more about

our research

www.pks.mpg.de/nqd

MPI-PKS

Literature

- N Goldman, J Dalibard, Phys. Rev. X 4, 031027, 2014
- M Bukov, L D'Alessio, A Polkovnikov, Adv. in Physics, 2015, Vol. 64, No. 2, 139-226
- A Eckardt, Rev. Mod. Phys. 89, 011004, 2017
- A Eckardt, E Anisimovas, New J. Phys. 17 093039, 2015
- C Weitenberg, J Simonet, Nature Physics 17, 1342–1348 (2021)
- S Higashikawa, H Fujita, M Sato, arXiv:1810.01103
- M Aidelsburger, PhD thesis, 2014
 <u>Artificial gauge fields with ultracold atoms in optical lattices</u>
- P M Schindler, M Bukov, Geometric Floquet theory, arXiv:2410.07029
- V Khemani, R Moessner, S L Sondhi A Brief History of Time Crystals, arXiv:1910.10745