
Lecture Notes

Equilibration and eigenstate thermalization

• An important motivation for the use of random matrix theory, originally due to Wigner,
is that the eigenvalues of highly complicated many-body Hamiltonians exhibit statistical
features of the eigenvalues of random matrices. Rather than trying to calculate individual
eigenvalues, it is possible to make exact statements about the statistical properties of the
eigenvalue spectrum. In Fig. 1 we show the level spacing distribution, i.e. the probability
distribution for the distance between subsequent energy levels, En+1−En with En+1 > En,
for the “Nuclear Data Ensemble”, which comprises 1726 normalized level spacings for
the eigenspectra of various heavy nuclei. This probability distribution can be calculated
for random matrices drawn from the Gaussian Orthogonal Ensemble, and the agreement
between the two is remarkable. This distribution is also contrasted with the Poisson
distribution that would be obtained if the eigenvalues were statistically independent
variables.

Figure 1: Nearest neighbor spacing distribution for the “Nuclear Data Ensemble”
comprising 1726 spacings (histogram) versus s = S/D, where D is the mean level
spacing and Sn = En+1 − En is the actual spacing. Lines represent the GOE and the
Poisson distributions.

In this exercise, we will derive the distribution of the eigenvalue spacing of a random
symmetric 2× 2 matrix. Suppose we have a 2× 2 random matrix
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drawn from the Gaussian Orthogonal Ensemble, i.e.
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This matrix has two eigenvalues E± and eigenvalue spacing s = E+ − E−. Calculate the
probability distribution of this spacing, also known as the Wigner surmise, and compare
with Fig. 1. Hint: The necessary integral can be evaluated using polar coordinates.

How is the distribution modified for a Hermitian matrix for which the real and imaginary
parts are independently distributed? Such matrices can be drawn from the Gaussian
Unitary Ensemble:
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Lecture Notes

• The spectral function appearing in off-diagonal matrix elements in ETH naturally ap-
pears in linear response, underlying the important fluctuation-dissipation relation, and
determines all nontrivial operator dynamics. Consider two-point autocorrelation func-
tions at an inverse temperature β of the form

κ2(t) = 〈Ô(t)Ô〉β − 〈Ô〉
2
β . (4)

Here the thermal expectation value is defined as 〈•〉β = Tr[• e−βH]/Z. Using ETH, argue
that the autocorrelation function can be written as

κ2(t) =
1
Z

∫

dEm

∫

dEn e−βEn+S(Em)+S(En)−S(Emn) | fO(Emn,ωmn)|2 e−iωmn t . (5)

This integration can be simplified by switching to so-called Wigner variables E ≡ Emn
and ω ≡ ωmn. Perform this change of variables and Taylor expand the entropies in ω.
You can set eS′′(E)ω2/4 equal to 1 (argue why) and perform a saddle-point integration to
return

κ2(t) =

∫

dω eβω/2 | fO(Eβ ,ω)|2 e−iωt . (6)

In this way we find that the spectral function can be interpreted as the Fourier transform
of the autocorrelation function.

• Using a similar approach, evaluate the operator fluctuations in an eigenstate |n〉. Specif-
ically, use ETH to express the eigenstate fluctuations

δO2
n = 〈n|O

2|n〉 − 〈n|O|n〉2 (7)

in terms of the spectral function of O. Argue that these fluctuations are reproduced by
the Gibbs state.
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